初三数学二次函数知识点汇总
九年级数学二次函数知识点总结

初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查2-32y=-2x 22y=3(x+4)22y=3x2y=-2(x-3)2两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
九年级数学二次函数知识点

九年级数学二次函数知识点二次函数是数学中的一个重要知识点,它在实际生活中有着广泛的应用。
了解和掌握二次函数的相关知识对于理解高中数学和解决实际问题都具有重要意义。
本文将从定义、性质、图像和应用等方面介绍九年级数学中的二次函数知识点。
一、定义和表示方式二次函数是指由形如y=ax²+bx+c的函数所表示的函数关系。
其中,a、b、c是已知实数,且a ≠ 0。
其中,a称为二次项系数,b 称为一次项系数,c称为常数项。
二次函数的一般形式可以表示为y=f(x)=ax²+bx+c。
二、性质1. 对称性:二次函数的图像关于过抛物线的对称轴对称,对称轴方程为x=-b/2a。
2. 开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 最值点:二次函数的最值点即为抛物线的顶点,对应的坐标为(-b/2a,f(-b/2a))。
4. 零点:二次函数的零点即为方程f(x)=0的解,可以通过解一元二次方程求得。
5. 判别式:一元二次方程ax²+bx+c=0的判别式Δ=b²-4ac,当Δ>0时,方程有两个不相等的实根;Δ=0时,方程有两个相等的实根;Δ<0时,方程无实根。
三、图像二次函数的图像是一个抛物线,根据开口方向和顶点的位置可以确定其形状。
当a>0时,抛物线开口向上,顶点位于抛物线的最低点;当a<0时,抛物线开口向下,顶点位于抛物线的最高点。
通过对二次函数的系数a、b、c进行调整,可以改变抛物线的形状、位置和大小。
四、应用二次函数在现实生活中有着广泛的应用。
以下列举几个常见的应用场景:1. 物体自由落体运动:物体自由落体运动的高度随时间的变化可以用二次函数进行建模,通过解一元二次方程可以求得物体的落地时间和最大高度等信息。
2. 弹射问题:弹射物体的轨迹可以用二次函数进行描述。
3. 平抛问题:平抛运动物体的轨迹也可以用二次函数进行建模,通过解一元二次方程可以求得物体的着地点和最大飞行距离等信息。
初中数学二次函数最全知识点总结

初中数学二次函数最全知识点总结二次函数是数学中一个重要的函数概念,在初中阶段也有着广泛的应用。
下面是关于初中数学二次函数最全的知识点总结,供你参考。
一、基本形式二次函数的基本形式为:y = ax² + bx + c,其中a、b、c为常数且a ≠ 0。
二、图像特征1.抛物线:二次函数的图像是一个抛物线,可以开口向上或向下。
2.拉伸:a确定了抛物线的开口方向和形状,绝对值越大,抛物线越“瘦长”,绝对值越小,抛物线越“圆胖”。
3.对称性:二次函数的图像关于直线x=-b/2a对称。
4.顶点坐标:直线x=-b/2a与抛物线的交点即为抛物线的顶点坐标。
5. 零点:二次函数的零点是指函数图像与x轴交点的横坐标,即解方程ax² + bx + c = 0。
三、顶点坐标的确定1.顶点坐标的横坐标x=-b/2a。
2.代入x值可以得到顶点坐标的纵坐标y=f(-b/2a)。
四、二次函数的方程及解法1. 二次函数方程一般形式:ax² + bx + c = 0。
2.解法一:使用因式分解法,将方程化为(x-m)(x-n)=0的形式,其中m和n为实数。
3. 解法二:使用配方法,对方程ax² + bx + c = 0进行化简,得到(ax + p)² + q = 0的形式,其中p和q为实数。
4. 解法三:使用求根公式,根据公式x = (-b ± √(b² - 4ac)) / 2a求得方程的根。
五、二次函数的特殊情况1.完全平方式:当二次函数的方程形式为(x+m)²=0时,说明抛物线的顶点坐标为(-m,0),且抛物线开口向上。
2.切线与二次函数的关系:二次函数的切线与函数图像的交点为切点,其斜率等于函数的导数值,切线的方程可以通过点斜式得到。
3. 线性函数与二次函数的关系:当二次函数的系数a = 0时,二次函数化为线性函数,即y = bx + c。
六、二次函数的应用1.模型拟合:二次函数可以用来拟合一些实际问题的数学模型,如抛物线运动问题、图像反演等。
初三数学_二次函数_知识点总结

二次函数一、二次函数概念:1.二次函数的概念:一般地,形如2=++(a b cy ax bx ca≠),,是常数,0的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.(因此:二次函数应满足两个条件:①二次项的系数不等于0,②x 最高项的指数是2)2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2=的性质:y ax①,a 的绝对值决定开口的大小(a 的绝对值越大,抛物线的开口越小,a 的绝对值越小,抛物线的开口越大)②a 的符号决定开口的方向(a>0,开口向上,a<0开口向下)2. 2=+的性质:y ax c上加下减。
(c>0,将2=的图像向下移=向上移动,c<0将2y axy ax动=3.()2y a x h =-的性质:左加右减。
4.()2y a x h k=-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a=-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a<-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a>-时,y 随x的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式(又称为对称式):2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(又称为两点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠. ⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开a 的大小决定开口的大小.2. 一次项系数b :在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴ab2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式(三点式);2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式(对称式);3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式(两点);4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况): 一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-. 二次函数与x 轴两个交点的距离)② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1'当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 十、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少注:在实际应用中凡是需要求最大,最小(或极值)问题一般都要考虑用二次函数的最大值或最小值二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如: 已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )A B C D 3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
初三数学二次函数知识点归纳

初三数学二次函数知识点归纳在初中数学的学习中,二次函数是一个重要的内容,也是进一步深入学习代数的基础。
学好二次函数的性质和运用对于学生的数学能力的提升至关重要。
下面将对初三数学中二次函数的知识进行归纳总结。
一、二次函数及其图象的性质1. 二次函数的定义二次函数是一个以x的二次幂作为最高次幂的多项式函数,一般的二次函数表达式为: y = ax^2 + bx + c (其中 a, b, c 为常数且 a ≠ 0)。
2. 二次函数图象的平移二次函数图象的平移可以通过改变 a, b 和 c 的值来实现。
当将 a 的值变为 a',则图象的开口方向和大小会有相应的改变;当将 b 的值变为 b',则图象在 x 轴方向上平移;当将 c 的值变为 c',则图象在y 轴方向上平移。
3. 二次函数图象的对称轴二次函数图象的对称轴是一个线段,记作 x = -b/2a,对称轴将图象分为两个对称的部分。
4. 二次函数的顶点二次函数的顶点就是图象的最高点或最低点,所有的二次函数图象都有一个顶点。
5. 二次函数图象的开口方向二次函数图象的开口方向由二次项的系数 a 的正负决定。
当 a > 0 时,图象开口向上;当 a < 0 时,图象开口向下;当 a = 0 时,不再是二次函数。
二、二次函数的求解1. 二次函数的零点二次函数的零点是指函数曲线与 x 轴相交的点,也就是函数的根。
求解二次函数的零点可以通过以下步骤进行:首先,将函数表达式设置为 y = 0;然后,应用求根公式 x = (-b ± √(b^2 - 4ac))/(2a) 计算 x 的值。
2. 二次函数的最值二次函数的最值通过求解顶点来确定。
当a > 0 时,函数有最小值,且最小值为顶点的纵坐标;当 a < 0 时,函数有最大值,且最大值为顶点的纵坐标。
三、二次函数的应用1. 抛物线二次函数的图象通常被称为抛物线。
九年级数学二次函数知识点归纳

九年级数学二次函数知识点归纳九年级数学二次函数知识点1一、基本概念1.方程、方程的解(根)、方程组的解、解方程(组)2.分类:二、解方程的依据—等式性质1.a=b←→a+c=b+c2.a=b←→ac=bc(c≠0)三、解法1.一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化成1→解。
2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法②加减法四、一元二次方程1.定义及一般形式:2.解法:⑴直接开平方法(注意特征)⑵配方法(注意步骤—推倒求根公式)⑶公式法:⑷因式分解法(特征:左边=0)3.根的判别式:4.根与系数顶的关系:逆定理:若,则以为根的一元二次方程是:5.常用等式:五、可化为一元二次方程的方程1.分式方程⑴定义⑵基本思想:⑶基本解法:①去分母法②换元法(如,)⑷验根及方法2.无理方程⑴定义⑵基本思想:⑶基本解法:①乘方法(注意技巧!!)②换元法(例,)⑷验根及方法3.简单的二元二次方程组由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。
六、列方程(组)解应用题一概述⑴审题。
理解题意。
弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。
①直接未知数②间接未知数(往往二者兼用)。
一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。
一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。
在这个过程中,列方程起着承前启后的作用。
因此,列方程是解应用题的关键。
二常用的相等关系1.行程问题(匀速运动)基本关系:=vt⑴相遇问题(同时出发):+=;⑵追及问题(同时出发):若甲出发t小时后,乙才出发,而后在B处追上甲,则⑶水中航行:;2.配料问题:溶质=溶液某浓度溶液=溶质+溶剂3.增长率问题:4.工程问题:基本关系:工作量=工作效率某工作时间(常把工作量看着单位“1”)。
九年级二次函数知识点汇总

九年级二次函数知识点汇总二次函数是初中数学中的一种重要的函数形式,它的形式为f(x)=ax^2+bx+c。
在九年级,学生需要掌握二次函数的基本概念、图像、性质以及与实际问题的应用。
下面将对九年级二次函数的知识点进行汇总和总结。
1. 二次函数的基本概念二次函数是一个以x为自变量、以ax^2+bx+c为因变量的函数。
其中,a、b、c是常数,且a不等于0。
a决定了二次函数的开口方向和图像的形态。
当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
2. 二次函数的图像二次函数的图像一般为抛物线,其形状和位置与a、b、c的取值有关。
当a>0时,图像在y轴上方有一个最低点,称为顶点;当a<0时,图像在y轴下方有一个最高点,也称为顶点。
顶点的坐标为(-b/2a,f(-b/2a))。
3. 二次函数的性质(1) 零点:二次函数与x轴相交的点称为零点。
根据二次函数的图像性质,当抛物线与x轴相切时,有且只有一个零点;当抛物线与x轴有两个交点时,有两个零点;当抛物线与x轴没有交点时,没有零点。
(2) 对称轴:二次函数的对称轴是通过顶点且垂直于x轴的直线。
对称轴的方程为x=-b/2a。
(3) 最值:对于开口向上的二次函数,最小值等于顶点的纵坐标;对于开口向下的二次函数,最大值等于顶点的纵坐标。
(4) 单调性:由于二次函数的图像呈现抛物线的形状,所以二次函数在对称轴两侧的增减性是不同的。
即在对称轴的左侧,二次函数单调递减;在对称轴的右侧,二次函数单调递增。
4. 二次函数的变形九年级数学中,我们还学习了二次函数的变形,包括平移、伸缩和翻折等操作。
这些操作可以通过对a、b、c的取值进行调整来实现。
(1) 平移:当二次函数的形式为f(x)=a(x-h)^2+k时,其中(h,k)为平移的向量,分别表示横坐标和纵坐标的平移量。
平移后的二次函数的图像相对于原图像在平面上左右或上下移动了h个单位和k个单位。
初三数学二次函数知识点总结

初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c=+上加下减。
3.()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:y=-2x 2y=3(x+4)22y=3x 2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★二次函数知识点汇总★
1.定义:一般地,如果c b a c bx ax y ,,(2
++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2
ax y =的性质
(1)抛物线2ax y =)(0≠a 的顶点是坐标原点,对称轴是y 轴.(2)函数2
ax y =的图像与a 的符号关系. ①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点 3.二次函数 c bx ax y ++=2
的图像是对称轴平行于(包括重合)y 轴的抛物线.
4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中a
b a
c k a b h 4422-=-
=,. 5.二次函数由特殊到一般,可分为以下几种形式:
①2
ax y =;②k ax y +=2
;③()2
h x a y -=;④()k h x a y +-=2
;⑤c bx ax y ++=2
.
6.抛物线的三要素:开口方向、对称轴、顶点. ①a 决定抛物线的开口方向:
当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .
7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法
(1)公式法:a b ac a b x a c bx ax y 44222
2
-+
⎪⎭⎫ ⎝
⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2
的形式,得到顶点为(h ,k ),对称轴是h x =.
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.
★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★ 9.抛物线c bx ax y ++=2
中,c b a ,,的作用
(1)a 决定开口方向及开口大小,这与2
ax y =中的a 完全一样.
(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2
的对称轴是直线a
b x 2-=,故:
①0=b 时,对称轴为y 轴;②0>a
b (即a 、b 同号)时,对称轴在y 轴左侧;
③0<a
b (即a 、b 异号)时,对称轴在y 轴右侧.
(3)c 的大小决定抛物线c bx ax y ++=2
与y 轴交点的位置.
当0=x 时,c y =,∴抛物线c bx ax y ++=2
与y 轴有且只有一个交点(0,c ):
①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<a
b .
11.二次函数图象的平移
1. 平移步骤:
方法一:⑴ 将抛物线解析式转化成顶点式()2
y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,
处,具体平移方法如下:
【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位
2. 平移规律
在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:
⑴c bx ax y ++=2
沿
y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成
m c bx ax y +++=2(或m c bx ax y -++=2)
⑵c bx ax y ++=2
沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2
变成
c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)
12.用待定系数法求二次函数的解析式
(1)一般式:c bx ax y ++=2
.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2
.已知图像的顶点或对称轴,通常选择顶点式.
(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 13.直线与抛物线的交点
(1)y 轴与抛物线c bx ax y ++=2
得交点为(c ,0)
(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2
有且只有一个交点(h ,c bh ah ++2). (3)抛物线与x 轴的交点
二次函数c bx ax y ++=2
的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程
02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点⇔0>∆⇔抛物线与x 轴相交;
②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点
同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标
为k ,则横坐标是k c bx ax =++2
的两个实数根.
(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02
≠++=a c bx ax y 的图像G 的交点,由方程组
⎩⎨⎧++=+=c
bx ax y n
kx y 2
的解的数目来确定: ①方程组有两组不同的解时⇔l 与G 有两个交点;
②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.
(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2
与x 轴两交点为()()0021,,,
x B x A ,由于1x 、2x 是方程02
=++c bx ax 的两个根,故 a
c
x x a b x x =⋅-=+2121,
()()a a ac b a c a b x x x x x x x x AB ∆=
-=-⎪⎭
⎫ ⎝⎛-=-+=-=
-=44422
212
212
2121 14.二次函数与一元二次方程的关系:
(1)一元二次方程c bx ax y ++=2
就是二次函数c bx ax y ++=2
当函数y 的值为0时的情况. (2)二次函数c bx ax y ++=2
的图象与x 轴的交点有三种情况:有两个交点、有一个交点、没有交点;
当二次函数c bx ax y ++=2的图象与x 轴有交点时,交点的横坐标就是当0=y 时自变量x 的值,即一元二次方程02
=++c bx ax 的根.
(3)当二次函数c bx ax y ++=2
的图象与x 轴有两个交点时,则一元二次方程c bx ax y ++=2
有两个不
相等的实数根;当二次函数c bx ax y ++=2
的图象与x 轴有一个交点时,则一元二次方程
02=++c bx ax 有两个相等的实数根;当二次函数c bx ax y ++=2的图象与x 轴没有交点时,则一
元二次方程02
=++c bx ax 没有实数根 15.二次函数的应用:
(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;
(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系; 运用二次函数的知识解决实际问题中的最大(小)值.
16.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.
附录:二次函数图像参考:
2-3
2
y=3(x+4)2
2
y=3x 2。