《概率论与数理统计》样卷分析
概率论和数理统计考试试题和答案解析

一.填空题(每空题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p 0.6 ,=)B -A (p 0.1 ,)(B A P ⋅= 0.4 , =)B A (p 0.6。
2、一个袋子中有大小相同的红球6只、黑球4只。
(1)从中不放回地任取2只,则第一次、第二次取红色球的概率为: 1/3 。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。
3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为: 0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4,Y X 与的协方差为: - 0.2 ,2Y X Z +=的分布律为:6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 ,(~,12N Y X Y 则+= 5 , 16 )。
7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=-)2(Y X E - 4 ,=-)2(Y X D 6 。
8、设2),(125===Y X Cov Y D X D,)(,)(,则=+)(Y X D 30 9、设261,,X X 是总体)16,8(N 的容量为26的样本,X 为样本均值,2S 为样本方差。
《概率论与数理统计》考试试题B(答案)

广东白云学院2007—2008学年第二学期期末考试《概率论与数理统计》B卷参考答案及评分标准适用专业及方向: 经济管理类各专业、土木工程层次: 本科年级: 07级限时: 120分钟考试形式: 闭卷考场要求: 笔试考试形式:闭卷考场要求:笔试.(×)2. 设、为两事件, 则.(×)3. 设, 则其一定是某连续型随机变量的密度函数.(√)4. 设随机变量~N(1, 9), 则.(√)5.设, , 与相互独立, 则.二、填空题(请将正确答案填写在括号内。
每空3分,共30分), 则( 0.6 ).7.设随机变量和都服从[0,2]上的均匀分布, 则( 2 ).8. 设为两个随机事件,且已知, , ,则条件概率(0.6).则常数c=(0.1),}5.15.0{<<-XP=(0.5).10. 已知~,函数值,则=(0.9772).11. 服从参数的泊松分布, 令, 则(13), (75).12. 设三次独立试验中, 事件出现的概率相等, 若已知至少出现一次的概率等1/3 ).,则下列关系成立的是( C )A. B.C. D.15.同时抛掷3枚均匀的硬币, 则恰好有两枚正面朝上的概率为( D )A. 0.5B. 0.125C. 0.25D. 0.37516. 10张奖券中含有3张中奖的奖券,每人购买一张,则第3个购买者中奖的概率为( B )A. B. 0.3 C. D.17. 设连续型随机变量服从参数为的指数分布,若方差,则数学期望( B )A. B. C. D.18. 如果离散型随机变量相互独立,且服从参数为的泊松分布,则当充分大时,离散型随机变量( D )近似服从标准正态分布.A. B. C. D.19. 设连续型随机变量的概率密度为,则( A )A. B. C.D.四、计算题(每小题8分,共32分)(1)若事件BA,互不相容,求α; (2)若事件BA,相互独立,求α.解 (1)因为BA,互不相容,所以φ=AB, (1分)所以)()()()(BPABPBPBAP=-= (2分)而)(1)()()()(APBAPBPAPBAP-=-+=(3分)所以α=0.3 (4分)(2)因为BA,相互独立,则A与B也相互独立, (5分))())(1)(()()()()()(BPBPAPBPAPBPAPBAP+-=-+=(7分)所以α=73(8分)21. 某产品主要由三个厂家供货.甲、乙、丙三个厂家的产品分别占总数的15%,80%,5%,其次品率分别为0.02,0.01,0.03,试计算(1)从这批产品中任取一件是不合格品的概率;(2)已知从这批产品中随机地取出的一件是不合格品,问这件产品由哪个厂家生产的可能性最大?解记=A{所取一件产品是不合格品},321,,BBB分别表示”产品来自甲、乙、丙厂” (1分) 依题意有:15.0)(1=BP, 80.0)(2=BP,05.0)(3=BP02.0)(1=BAP,01.0)(2=BAP,03.0)(3=BAP (2分) (1)由全概率公式0125.0)()()(31==∑=iiiBPBAPAP (5分) (2)由贝叶斯公式24.00125.002.015.0)()()()(111=⨯==APBAPBPABP, (6分)64.00125.001.080.0)()()()(222=⨯==APBAPBPABP, (7分)12.00125.003.005.0)()()()(333=⨯==A PB A P B P A B P (8分) 22.设连续型随机变量X 的密度函数⎩⎨⎧<<=其他020)(2x Ax x ϕ,求(1)常数A ;(2))(),(X D X E .解 因为138)(202===⎰⎰∞+∞-A dx Ax dx x ϕ (2分) 所以 83=A (3分)所以 ⎪⎩⎪⎨⎧<<=其他2083)(2x xx ϕ2383)()(203===⎰⎰∞+∞-dx x dx x x X E ϕ (5分) 51283)()(20422===⎰⎰∞+∞-dx x dx x x X E ϕ (7分) 20323512)]([)()(222=⎪⎭⎫ ⎝⎛-=-=X E X E X D (8分) 23. 已知电站供电网有10000盏电灯, 夜晚每一盏灯开灯的概率都是0.7, 而假定开、关时间彼此独立, 试用切贝谢夫不等式估计夜晚同时开着的灯数在6800与7200之间的概率。
2022年自考概率论与数理统计10月真题及详解答案

C. D.
2.某人每次射击命中目旳旳概率为p(0<p<1),她向目旳持续射击,则第一次未中第二次命中旳概率为(D)
A.p2B.(1-p)2
C.1-2pD.p(1-p)
3.已知P(A)=0.4,P(B)=0.5,且A B,则P(A|B)=(C)
A.0B.0.4
C.0.8D.1
解:(P14)∵A B,∴ , 。
26.设二维随机变量(X,Y)只能取下列数组中旳值:
(0,0),(-1,1),(-1, ),(2,0),
且取这些值旳概率依次为 , , , .
(1)写出(X,Y)旳分布律;
(2)分别求(X,Y)有关X,Y旳边沿分布律.
解:(P?)由已知条件可得: , ,
, ,即X取-1,0,2;Y取0, ,1;
∴(1)(X,Y)旳分布律如下表:
且E(X)= .求:(1)常数a,b;(2)D(X).
解:(P39)(1)由概率密度旳性质 ,得
,简化为 ……………①
又 ,
简化得 ……………………………………………………………………………②
联立①、②解之得, , ;代入得
(2)另 ,
∴ ,
答:略。
29.设测量距离时产生旳随机误差X~N(0,102)(单位:m),现作三次独立测量,记Y为三次测量中误差绝对值不小于19.6旳次数,已知Φ(1.96)=0.975.
(1)求每次测量中误差绝对值不小于19.6旳概率p;
(2)问Y服从何种分布,并写出其分布律;
(3)求E(Y).
解:(P?)(1)∵随机误差X~N(0,102)∴ ,
p= ;
(2)(P32)∵三次测量均独立∴Y服从参数为3,0.025旳二项式分布,即 ,
概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案概率论与数理统计概率论试题一、填空题1.设 A、B、C是三个随机事件。
试用 A、B、C分别表示事件1)A、B、C 至少有一个发生 2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,。
则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A______________7. 已知随机变量X的密度为,且,则________________8. 设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+10有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y x , y 0 和 x 2 所围成,二维随机变量x,y在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x 1 处的值为。
15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为3的泊松分布,记YX1-2X2+3X3,则D(Y)19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或 ~ 。
特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于22.设是来自正态总体的样本,令则当时~。
23.设容量n 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值,样本方差24.设X1,X2,…Xn为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P A+B P A; (B)(C) (D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 (A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。
《概率论与数理统计》典型例题

《概率论与数理统计》典型例题第一章 随机事件与概率例1.已知事件,A B 满足,A B 与同时发生的概率与两事件同时不发生的概率相等,且()P A p =,则()P B = 。
分析:此问题是考察事件的关系与概率的性质。
解:由题设知,()(P AB P A B =∩),则有()()()1()1()()()P AB P A B P A B P A B P A P B P AB ===−=−−+∩∪∪而,故可得。
()P A p =()P B =1p −注:此题具体考察学生对事件关系中对偶原理,以及概率加法公式的掌握情况,但首先要求学生应正确的表示出事件概率间的关系,这三点都是容易犯错的地方。
例2.从10个编号为1至10的球中任取1个,则取得的号码能被2或3整除的概率为 。
分析:这是古典概型的问题。
另外,问题中的一个“或”字提示学生这应该是求两个事件至少发生一个的概率,即和事件的概率,所以应考虑使用加法公式。
解:设A :“号码能被2整除”,B :“号码能被3整除”,则53(),()1010P A P B ==。
只有号码6能同时被2和3整除,所以1()10P AB =,故所求概率为 5317()()()()10101010P A B P A P B P AB =+−=+−=∪。
注:这是加法公式的一个应用。
本例可做多种推广,例如有60只球,又如能被2或3或5整除。
再如直述从10个数中任取一个,取得的数能被2或3整除的概率为多少等等。
例3.对于任意两事件,若,则 A B 和()0,()0P A P B >>不正确。
(A )若AB φ=,则A 、B 一定不相容。
(B )若AB φ=,则A 、B 一定独立。
()若C AB φ≠,则A 、B 有可能独立。
()若D AB φ=,则A 、B 一定不独立。
分析:此问题是考察事件关系中的相容性与事件的独立性的区别,从定义出发。
解:由事件关系中相容性的定义知选项A 正确。
《概率论与数理统计》样卷分析共20页文档

(A) E(XC)2= EX2C2 (B) E(XC)2= E(X )2
(C) E(XC)2 E(X )2 (D) E(XC)2 E(X )2
[]
10. 设二维r.v.(X, Y)服从二维正态分布, 则r.v.=X+Y与 =XY不相关的充分必要条件为
0 , 若 X 2 Y ,
U 1 , 若 X Y ; V 1 , 若 X 2 Y ;
试求(1)U和V的联合概率分布; (2) U和V的相关系数.
8. 游客乘电梯从底层到电视塔顶层观光, 电梯于每个整点 的第5分钟,第25分钟, 第55分钟从底层起行, 假设某游客在早 八点第X分钟到达底层侯梯处, 且X在[0, 60]上均匀分布, 求该 游客等候时间的数学期望.
1.设r. v. X、Y相互独立, D(X)=2, D(Y)=4, 则D(2X-Y)
=
.
2. 设随机变量X与Y独立同分布, 且U=X-Y, V=X+Y, 则
协方差cov (U, V) =
.
3. 已知随机变量X ~ N(0,1), , > 0,为常数,试证明: X + ~ N(, 2).
4. 设二维连续型随机变量(X,Y)的密度函数为
0, 其它
若k 使得P{X k}=2/3, 则k的取值范围是
.
6. 设F1(x)与F2(x)分别为 r.v.X1与X2的分布函数, 为使 F(x)=a F1(x)b F2(x)是某一r.v.的分布函数, 在下列给定的各组 数值中应取
(A) a=3/5, b= 2/5
(B) a=2/3, b= 2/3
2. 袋中有20只黄球30只白球, 二人依次从中任取一球, 则第
概率论与数理统计__典型例题及其分析

概率论与数理统计 典型例题及其分析第三章 多维随机变量及其分布Y ⑴ 求,a b 应满足的条件; ⑵ 若X 与Y 相互独立 ,求 a,b 的值. 【思路】 先利用联合分布律的性质1ijijp=∑∑确定a,b 应满足的条件,再利用独立性的定义来求出a 与b. 【解】⑴ 因为1ij ijp =∑∑,所以11111,84248b a +++++= 因此 11.24a b += ⑵ 由于 X 与Y 相互独立,即对所有,i j x y 有 ()()(),,i j i j P X x Y y P X x Y y ===== 于是 ()()()112,121,46a P X Y P X Y a a ⎛⎫⎛⎫=======++⎪⎪⎝⎭⎝⎭解得 112a =或1.2a =同理 ()()()131,212,88b P X Y P X Y B b ⎛⎫⎛⎫=======++ ⎪⎪⎝⎭⎝⎭解得 18b =或3.8b = 再由11.24a b +=知 13,128a b == 【解毕】 【技巧】 由于X 与Y 的独立性,故对所有的,i j x y 应有()()(),,i j i j P X x Y y P X x Y y ===== 因此,我们可在联合分布律表中找到几个比较容易计算的值来分别确定分布律中的参数,例如()13,1,24P X Y ===而()()1131,66P X Y a ⎛⎫===∙+ ⎪⎝⎭可求得1;12a =又()13,2,8P X Y ===而18求得3.8b =这种参数的确定方式,需要读者熟练掌握. 例3.2.2 (1999年考研题)设随机变量X 与Y 相互独立 ,下表列出了二维随机变量(),X Y 的联合分布律及关于X 和关于Y 的边缘分布律中的部分数值,试将其余数值填入表中的空间处:- 62 -j【思路】 利用边缘分布律的求法及独立性来进行,例如,从11,86p +=求得11,24p =再利用独立性知1111.6p p =⨯从而知11,4p =等等. 【解】 利用;i ij jij jip p pp ==∑∑以及 1i jijp p==∑∑ 与独立性 ij i j p p p =. 求解空格内的数值,故11111111111,,68246p p p p p =-===⨯即11,4p =又由121,p p +=可得2131.44p =-= 反复运用上列公式,可求得 1322232313111,,,,.128423p p p p p ===== j例3.2.3 (1999年考研题)已知随机变量1X 和2X 的概率分布分别为 1x -1 0 1 2x 0 1 与 P111 424 P 1122, 而且()120 1.P X X ==求1X 和2X 的联合分布;问: ⑴ 1X 和2X 是否独立? ⑵ 为什么? 【思路】 已知1X 和2X 的边缘分布,一般是不能确定1X 和2X 的联合分布的,但题中给了一附加条件()120 1.P X X ==因此就要从条件入手加以分析,再利用边缘分布与联合分布的关系,就可求解此题了.独立性的判断是比较简单的.【解】⑴ 由()120 1.P X X ==知()1200,P X X ≠=即()()12121,11,10.P X X P X X =-===== 于是1X 和2X 的联合分布有如下结构:1j p 从而利用边缘分布律与联合分布律的关系知()()()1121211,01,1,P X P X X P X X =-==-=+==即 1110,4p +=从而得111.4p = 同理可知31222111,,0.p p p ===故1X 和2X 的联合分布律为1j p ⑵ 由以上结果知 ()120,00,P X X === 而 ()()12111000.224P X P X ===⨯=≠ 可见,1X 与2X 不独立. 【技巧】先.将边缘分布的数据以及由条件()1201P X X ==中对应数据填入表中,得到联合分布律表的基本结构,再来求其余ij p 的值,是对解离散型随机向量的基本技巧.按独立性的要求,可以检验1X 与2X 是否独立,特别对不独立的说明只需找出一对(),i j x y ,使ij i j p p p ≠即可.例3.2.4 将两封信投入3个编号为1,2,3的信箱,用,X Y 分别表示投入第1,2号信箱的信的数目,求(),X Y 的边缘分布律,并判断X 与Y 是否独立.【思路】 首先确定(),X Y 的所有可能取值,并用古典概型求出取相应值的概率,即可得到(),X Y 的联合分布律,剩下的问题也就迎刃而解了.【解】 将2封信投到3个信箱的总投法239,n ==而X 和Y 的可能取值均为0,1,2,于是- 64 -()0,0P X Y P ===(两封信都投入第3号信箱)=1;9()1,0P X Y P ===(两封信中一封投入第1号信箱,另一封投入第3号信箱)11212.99C C == 同理可得:()()220,1;1,1;99P X Y P X Y ====== ()()()1,22,12,20.P X Y P X Y P X Y ========= 这样,可得(),X Y 的联合分布律,又由于()()()()22,,0,1,2,,,0,1,2.i i P X k P X k Y i k P X k P X i Y k k ============∑∑故所求的分布律为X 的边缘分布律在表中的最后一列,Y 的边缘分布律在表中的最后一行. 由于()10,09P X Y ===,而()()44100,999P X P Y ===⨯≠故X 与Y 不独立. 【解毕】 【技巧】 二维离散型随机变量的联合分布律,在实际问题中可用事件的乘机(交)的概率求得,此时概率的乘法公式是十分常用的计算技巧. 例3.2.5 设(),X Y 服从区域(){}2,:01D x y y x =≤≤-上的均匀分布,⑴ 写出(),X Y 的联合密度函数;⑵ 求X 和Y 的边缘密度函数; ⑶ 求概率()2P Y X ≥.【思路】 先画出区域D 的图形,再按上面的解法来求解. 【解】 (1)由于区域D 是由曲线21y x =-和0y =所围成的(如图3.2.1所示),其面积为()12141.3D x dx -=-=⎰ 所以(),X Y 的联合密度为()23,01,40, y xf x y ⎧≤≤-⎪=⎨⎪⎩其他图3.2.1⑵ X 的边缘密度函数为()()()()2120331,11,11,440, 0, x X x x dy x f x f x y dy -+∞-∞⎧⎧⎪--<<⎪-<<===⎨⎨⎪⎪⎩⎩⎰⎰其他其他 而Y 的边缘密度函数为()()3,011,40, 0, Y dx y y f y f x y dy +∞-∞⎧<<⎪<<===⎨⎪⎪⎩⎩⎰其他其他 ⑶ 记(){}2,:G x y y x =≥,则G D ⋂为图3.2.2阴影部分,从而()()()()2221,,33 .442Gx G Dx P Y X P X Y G f x y dxdydxdy dxdy -⋂≥=∈====⎰⎰⎰⎰⎰【寓意】 本题要求熟悉二维均匀分布和计算边缘密度及概率的基本方法,求这些问题的技巧读者应牢牢掌握,最关键的问题是激发呢区间和积分区域的确定. 图 3.2.2例3.2.6 设二维随机变量(),X Y 的概率密度为 (), 0,,0, Ay Ae x y f x y -⎧<<=⎨⎩其他⑴ 确定常数A ;⑵ 求随机变量X 的密度()X f x ;⑶ 求概率()1P X Y +≤. (后二问为1992年考研题) 【解】⑴ 记D 为(),f x y 的零区域,即 (){},:0D x y x y =<< 其图形如图3.2.3所示.由联合密度的性质得(),1f x y dxdy +∞+∞-∞-∞=⎰⎰,从而有()01, .AyAyDxI f x y dxdy Aedxdy dx Ae dy A+∞+∞+∞+∞---∞-∞====⎰⎰⎰⎰⎰⎰ 因此,A=1. ⑵ X 的边缘密度为 ()(), 0, 0,0, 00, 0yx X x e d yx e x f x f x y dy x x +∞-+∞--∞⎧>⎧>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰⑶ 设(){},:1G x y x y =+≤,则D G ⋂如图3.2.4所示.故()()1112121, 12.xyyGD GxP X Y f x y dxdy edxdy dx e dy e e -----⋂+≤====+-⎰⎰⎰⎰⎰⎰- 66 -图 3.2.3 图3.2.4【技巧】 在利用(),1f x y dxdy +∞+∞-∞-∞=⎰⎰确定(),f x y 中的常数时,若(),0f x y ≠的区域为D ,则只需用(),1Df x y dxdy =⎰⎰就可以了.例3.3.1 设(),X Y 的联合分布律为求:⑴ 常数a; ⑵ 联合分布函数在点31,22⎛⎫⎪⎝⎭处的值31,;22F ⎛⎫ ⎪⎝⎭ ⑶ ()1|0.P X y ==【解】⑴ 由联合分布律的性质1ij ijp =∑∑知 1111,446ij ijp a ==+++∑∑ 求得1.3a =⑵(),X Y 的联合分布函数(),F x y 在点31,22⎛⎫⎪⎝⎭处的值 ()()3131111,,1,11,0.2222442F p X Y P X Y P X Y ⎛⎫⎛⎫=≤≤===-+===+= ⎪ ⎪⎝⎭⎝⎭⑶ ()()()11,0341|0.110743P X Y P X Y P X ========+ 【解毕】 【技巧】 求联合分布函数(),F x y 时,只需把取值满足,i j x x y y ≤≤的点(),i j x y 的概率ij p 找出来,然后求和就可以了,值得注意的是不要有遗漏.而求条件分布律时的关键是将其边缘分布求出即可,而边缘分布律的求法在前节已反复强调过多次.例3.3.2 已知随机变量X 和Y 联合概率密度为 ()4, 01,01,,0, xy x y f x y ≤<≤<⎧=⎨⎩其他求⑴ 条件密度()||X Y f x y 及()||;Y X f y x ⑵ X 和Y 的联合分布函数(),F x y .(第二问为1995年考研题) 【思路】 根据条件密度的定义,我们首先要求出X 与Y 的边缘密度,然后再来求条件密度.而联合分布函数的求法是一个较为繁琐的工作,需要分区域讨论,这些区域不能遗漏. 【解】⑴ 由于X 的边缘密度为 ()()104, 012, 01 ,0, 0, X x y d yx x x f x f x y dy +∞-∞⎧≤<≤<⎧⎪===⎨⎨⎩⎪⎩⎰⎰其他.其他同理,有 ()()2, 01,,0, Y y y f y f x y dx +∞-∞≤<⎧==⎨⎩⎰其他故当01y <<时,()Y f y >0,且 ()()()|4, 01,,2|0, X Y Y xyx f x y yf x y f y ⎧≤<⎪==⎨⎪⎩其他从而,在{}Y y =条件下,X 的条件密度为 ()|2, 01,01,|0, X Y x x y f x y ≤<<<⎧=⎨⎩其他同样可得,在{}X x =条件下,Y 的条件密度为 ()|2, 01,01,|0, Y X y y x f y x ≤<<<⎧=⎨⎩其他⑵ 对联合分布函数()(),,F x y P X x Y y =≤≤要分区域讨论.对于0x <或0y <,有 ()(),,0;F x y P X x Y y =≤≤= 对于01,01,x y ≤<≤<有 ()2200,4;yx F x y uvdudv xy ==⎰⎰对于1,1x y ≥≥,有 (),1;F x y = 对于1,01,x y ≥≤<有 ()()2,1,;F x y P XY y y =≤≤= 对于1,01,y x ≥≤<有 ()()2,,1;F x y P X x Y x =≤≤= 从而,X 和Y 的联合分布函数为 ()22220, 00,01,01,,, 01,1,, 1,01,1, 1,1x y x y x y F x y x x y y x y x y<<⎧⎪≤<≤<⎪⎪=≤<≤⎨⎪≤≤<⎪≤≤⎪⎩或【技巧】 由于本题中,X 与Y 的地位完全平等,因此,在求条件密度时,只需求出一个,另一个用对- 68 -称性即可得到,此对称性在(),F x y 中也有很好的体现,对称性的利用也经常是我们解决数学问题的一种技巧,另外,在求(),X Y 的分布函数时,一定要牢牢记住它的定义:()(),,.F x y P X x Y y =≤≤对一切,x y 都要讨论,它是一个分区域函数,不同值的定义范围一定要证明. 例3.4.1 设二维随机变量(),X Y 的概率密度函数为 ()()2,01,0,,0, ky x x y x f x y ⎧-≤≤≤≤=⎨⎩其他试求常数k ,并问X 与Y 是否相互独立?【思路】 常数k 的确定仍是利用联合密度的性质,而独立性质的判断只须验证是否成立()()(),,X Y f x y f x f y =为此,首先要求出X 与Y 的边缘密度()X f x 与()Y f y .【解】 由联合密度的性质知()()()1010151,22,24xx y f x y dxdy ky x dxdy k dx x ydy k +∞+∞-∞-∞≤≤≤≤==-=-=⎰⎰⎰⎰⎰⎰ 所以,24.5k =(),X Y 关于X 的边缘密度为()()()()2024122, 012, 0 1,550, 0, x X x ydy x x x x f x f x y dy +∞-∞⎧⎧-≤≤-≤≤⎪⎪===⎨⎨⎪⎪⎩⎩⎰⎰其他.其他而(),X Y 关于Y 的边缘密度为()()()()122412, 01,34,01,52,50, 0, Y y ydx y y y y y x f y f x y dx +∞-∞⎧⎧≤<-+≤≤⎪⎪-===⎨⎨⎪⎪⎩⎩⎰⎰其他其他 很明显,当01,0,x y x <<<<时,有 ()()(),,X Y f x y f x f y ≠ 所以X 与Y 不互相独立. 【注】本例中,(),X Y 的联合密度(),0f x y ≠的区域是三角形区域(){},:01,0D x y x y x =≤≤≤≤.虽然(),f x y 在D 上可表达成分离变量形状 ()()()12,f x y kg x g y =,这里,()12,g x x =-()2.g y y =但需要注意的是,只有当D 为矩形区域(){},:,D x y a x b c y d =≤≤≤≤(包括全平面、半平面等)时,()()()12,f x y kg x g y =才是使X 与Y 相互独立的充要条件.从而本题中X 与Y 不是相互独立的.如果(),X Y 的联合密度改为()()~~2,01,01,,0, k y x x y f x y ⎧⎪-≤≤≤≤=⎨⎪⎩其他则此时,X 与Y 必相互独立.例3.4.2 设X 和Y 是两个相互独立的随机变量,X 服从区间()0,1上的均匀分布,Y 服从参数12λ=的指数分布,求a 的二次方程220a Xa Y ++=有实根的概率.【思路】 方程220a Xa Y ++=有实根当且仅当2440,X Y ∆=-≥故本题是求概率()2P X Y ≥,而要计算此概率必须知道X 与Y 的联合密度,因此 首先必须根据题中独立性的假定求出(),.f x y【解】 有题设知,X 与Y 的概率密度分别为 ()1 010, X x f x <<⎧=⎨⎩,其他. 和 () 00, y 0Y x f y ⎧>⎪=⎨⎪≤⎩y-21e 2.由于,X Y 相互独立,故X 与Y 的联合密度为 ()()(), 01,0,0, X Y x y f x y f x f y ⎧<<>⎪==⎨⎪⎩y-21e 2其他又因为方程220a Xa Y ++=有实数当且仅当2440,X Y ∆=-≥故所求概率为()()()()2221120000101, 1 1110.x x yx y x y P X Y f x y dxdy dxdy dx dy dx dx ≥≥<<>⎛⎫≥====- ⎪ ⎪⎝⎭=-=Φ-Φ⎤⎦⎰⎰⎰⎰⎰⎰⎰⎰22y y x ---222x -211e e e 22e而()()10,10.8432Φ=Φ=(查正态分布表),故方程220a Xa Y ++=有实根的概率为0.1448. 【技巧】 本题是二维连续型随机变量的综合题,要求读者熟悉均匀分布,指数分布的定义,掌握独立性和概率计算的基本方法,知道怎么利用独立性构造联合分布.同时,要求大家在计算形如2-Ax e的积分时,如何应用正态分布的性质和特征,这种计算技巧,在概率论、微积分中是常用的.例3.4.3 一电子仪器由两个部件构成,以X 和Y 分别表示两部件的寿命(单位:千小时),已知X 和Y 的联合分布函数为 ()()0.50.50.51,0,0,,0, x y x y e e e x y F x y -+--⎧--+≥≥⎪=⎨⎪⎩其他⑴ 问X 和Y 是否独立; ⑵ 求两个部件的寿命都超过100小时的概率.α【解】 (方法1)直接利用分布函数计算. ⑴ X 与Y 的边缘分布函数分别为()()0.51, 0,,0, 0.x X e x F x F x x -⎧-≥=+∞=⎨<⎩ 与 ()()0.51, y 0,,0,y 0.y Y e F y F y -⎧-≥=+∞=⎨<⎩ 故有 ()()(),, ,,X Y F x y F x F y x y =-∞<<+∞ 从而,X 与Y 相互独立. ⑵ 由于X 与Y 相互独立,故- 70 -()()()()()()()0.050.050.10.1,0.10.10.110.110.1 10.110.1 .x y P X Y P X P Y P X P Y F F eeeα---=>>=>>=-≤-≤⎡⎤⎡⎤⎣⎦⎣⎦⎡⎤=--==⎡⎤⎣⎦⎣⎦(方法2)利用概率密度进行计算.⑴ 以(),f x y ,()(),X Y f x f y 分别表示(),,,X Y X Y ,的概率密度,则()()()0.5,0.25, 0,0,,0, x y F x y e x y f x y x y -+⎧∂≥≥⎪==⎨∂∂⎪⎩其他. ()()0.50.5,0,,0, x X e x f x f x y dy +∞--∞⎧≥==⎨⎩⎰其他. ()()0.50.5,0,,0, y Y e y f y f x y dx +∞--∞⎧≥==⎨⎩⎰其他. 由()()(),, (,)X Y f x y f x f y x y =-∞<<+∞知X 与Y 独立. ⑵()()0.50.10.10.10.1,0.10.25.x y P X Y dy edx e α+∞+∞-+-=>>==⎰⎰ 【解毕】【技巧】 用分布函数和概率密度均可以判定随机变量的独立性,具体应用哪种方法要依题而定.一般较为常用的是概率密度的方法,但本题中用前一方法反而简单些.在本题的计算时,读者要注意X 与Y 的对称性,不必重复计算,另外,利用分布函数(),F x y 的性质也可以直接计算出α,即()()()()()0.10.1,0.1,0.1,,0.10.1,0.1.P X Y F F F F e α-=>>=+∞+∞-+∞-+∞+=例3.5.1 设二维随机变量的联合分布律为求:(1)1;Z X Y =+(2)2Z X Y =(3)3;Z Y=(4)()4max ,Z X Y =的分布律 【思路 】 思路与一维离散型随机变量的函数的分布律的计算类似,注意上面介绍的技巧.【解】 我们将(),i j x y 的取值与取这些值的概率以及要计算的所有随机变量的函数()1,2,3,4k Z k =的Y X Y从而得到:(1)1Z X Y =+的分布律为(2)2Z X Y =的分布律为 Y(3)3XZ=的分布律为(4)()4,Z max X Y =分布律为【注】(1)二维离散型随机变量的函数的分布律的计算是有一定的方法可循的,读者在利用上述方法计算时要搞清楚它的背景.在求XY的分布律时,注意要求()00.P Y =≠ (2)如果已知X 与Y 独立,且X 与Y 的分布律给定时,求(),Z g X Y =的分布律的方法是:首先利用独立性构造出X 与Y 的联合分布律表,然后再按本题类似的技巧处理. 例3.5.2 (1987年考研题)设随机变量X 与Y 相互独立,其概率密度函数分别为()1,01,0, X x f x ≤≤⎧=⎨⎩其他.和 (), 0,0, y 0y Y e y f y -⎧>=⎨≤⎩. 求随机变量2Z X Y =+的概率密度函数. 【思路】 这是计算两个独立随机变量和的概率密度的典型题,可有两种解法,一是通过2Z X Y =+的分布函数来求解.另一是利用卷积公式来计算. 【解】 (方法1)分布函数法.因为,X Y 相互独立,所以(),X Y 的联合概率密度函数为()()(), 01,0,,0, y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他.故2Z X Y =+的分布函数为 ()()()22,.Z X Y ZF z P X Y Z f x y dxdy +≤=+≤=⎰⎰记(),0f x y ≠的区域为(){},:01,0D x y x y =≤≤>,积分区域为(){},:2,G x y X Y Z =+≤于是().y Z D GF z e dxdy -⋂=⎰⎰为此,考虑区域D G ⋂的情形.① 当0z ≤时,D G ⋂≠∅(见图3.5.1),于是,()0.Z F z = ② 当02z <≤时,D G ⋂为图3.5.2中的阴影部分,于是()()()22220111.2z xyyx z z Z D GF z e dxdy dxe dy e dx z e ππ-----⋂===-=-+⎰⎰⎰⎰⎰图3.5.1 图3.5.2当2z >时,D G ⋂为图3.5.3中的阴影部分,于是()()1220111.2z xyy z Z D GF z e dxdy dxe dy e e ----⋂===--⎰⎰⎰⎰所以,随机变量2Z X Y =+的概率密度为 ()()()()'20, 0,11, 02,211, 2.2z z z zz f z F z e z e e z --⎧⎪≤⎪⎪==-<≤⎨⎪⎪->⎪⎩(方法2)卷积公式法.若记2W X =,为求W 的密度函数,我们先考虑W 的分布函数()()()()2220, 0,, 02,21, 2.W wXw F w P WwP Xw P X w w f x d x w w-∞⎛⎫=≤=≤=≤⎪⎝⎭≤⎧⎪⎪==<≤⎨⎪>⎪⎩⎰故W 的概率密度为()1, 02,20, W w f w ⎧<≤⎪=⎨⎪⎩其他.图3.5.3因为,X Y 相互独立,所以W 与Y 也相互独立,从而2Z X Y W Y =+=+的概率密度可按卷积公式计算,即 ()()()z W Y f z f wf z wd w+∞-∞=-⎰为使被积函数非零,则必须满足条件 02,0,w z w <≤⎧⎨->⎩ 即 02,.w w z <≤⎧⎨<⎩ 从而,分情况讨论:① 若0,z ≤则{}{}02,w w z <≤⋂<=∅于是 ()0;z f z = ② 若02,z <≤则 {}{}{}020,w w z w z <≤⋂<=<<故 ()()()0111;22zz w zz f z e dw e ---==-⎰ ③ 若2z >,则{}{}{}020,w w z w z <≤⋂<=<<故 ()()()220111.22z w z z f z e dw e e ---==-⎰ 综上知 ()()()20, 0,11, 02,211, 2.2z z zz f z e z e e z --⎧⎪≤⎪⎪=-<≤⎨⎪⎪->⎪⎩【技巧】 这类问题的求解,主要工作量是求分段函数的积分和积分上、下限的确定,希望读者仔细体会此题求解的方法,得到举一反三的效果.第一种分布函数的方法是通常的方法,第二种卷积公式法仅适用随机变量和的情形.其实,对两随机变量和的线性组合,我们也有如下推广的卷积公式:设(),X Y 的联合概率密度为(),f x y ,则()0,0Z aX bY a b =+≠≠的概率密度为()11,,.z z ax z by f z fx dx f y dy b b a a +∞+∞-∞-∞--⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭⎰⎰不妨用此公式去验证一下本题的结论. 例3.5.3 设二维随机变量(),X Y 的概率密度函数为 ()(), 0,0,,0, x y ex y f x y -+⎧>>⎪=⎨⎪⎩其他求Z X Y =-的概率密度. 【思路】 用分布函数法.【解】 显然,当0z ≤时,有 ()()()0;z F z P Z z P X Y z =≤=-≤= 当0z >时,有 ()()()()()00,.x y z x y zx y zy F z P Z z P X Y z f x y dxdy e dxdy -+-≤-≤>>=≤=-≤==⎰⎰⎰⎰此积分的积分区域如图3.5.4所示.因此,化此重积分为累次积分,得()()()()03331112221.z x zx zx y x y z zx zz z z z z F z dxedy dxedye e e e e ++∞+-+-+------=+⎛⎫=-++- ⎪⎝⎭=-⎰⎰⎰⎰所以有 ()1, 00, 0.z Z e z F z z -⎧->=⎨≤⎩从而Z X Y =-的概率密度为()(), 0,0, 0.z Z Z e z df z F z dz z -⎧>==⎨≤⎩ 图3.5.4 【寓意】 本题考查的是给定(),X Y 联合概率密度的条件下,求X 和Y 的函数的分布函数,关键是对二重积分确定其积分区域.例3.5.4 设二维随机变量(),X Y 服从取区域(){},:0,0D x y x a y a =<<<<上的均匀分布,试求:(1)XZ Y=的概率密度;(2)()max ,M X Y =的概率密度. 【思路】 利用分布函数法来处理,先分别求出Z 和M 的分布函数,然后再求导.【解】 (1)由于(),X Y 的概率密度为 ()21, 0,0,,0, x a y a f x y a ⎧<<<<⎪=⎨⎪⎩其他故当0z <时,()0.Z X F z P Z Y ⎛⎫=≤=⎪⎝⎭而当01z <<时,有()()201,.2zya Z xz yX z F z P z f x y dxdy dy dx Y a ≤⎛⎫=≤=== ⎪⎝⎭⎰⎰⎰⎰当1z ≥时,有 ()()2011,1.2a aZ xx z yzX F z P z f x y dxdy dx dy Y a z≤⎛⎫=≤===- ⎪⎝⎭⎰⎰⎰⎰从而XZ Y =的概率密度为 ()()20, 0,1, 0<z<1,21, 1.2Z Z z d f z F z dz z z<⎧⎪⎪==⎨⎪⎪≥⎩(2)由于 ()21, 0,0,,0, x a y a f x y a ⎧<<<<⎪=⎨⎪⎩其他故 ()()1, 0,,0, X x a f x f x y dy a+∞-∞⎧<<⎪==⎨⎪⎩⎰其他. ()()1, 0,,0, Y y a f y f x y dx a +∞-∞⎧<<⎪==⎨⎪⎩⎰其他.从而,X 与Y 相互独立,且均服从()0,a 上的均匀分布,故对()max ,M X Y =的分布函数有()()()()()()()()()22max ,,, 0,0, M X Y F z P M z P X Y z P X z Y z P X z P Y z z z a F z F z a =≤=≤=≤≤=≤≤⎧<<⎪==⎨⎪⎩其他,.由此得()max ,M X Y =的概率密度为 ()()22, 0<z<a,0, .M M zd f z F z adz ⎧⎪==⎨⎪⎩其他 【注】 此题时考查对随机变量的商及极值函数的分布的计算,其中的关键仍然时积分区域的确定.当然,商运算等也已有现成的公式,我们在此一并介绍给读者.若(),X Y 的联合密度为(),f x y ,则有()()()()()()(),; ,;11,; ,.X Y X YXY X Y f z f x z x dx f z f x x z dx z f z f x dx f z f zy y dy x x y +∞+∞+--∞-∞+∞+∞-∞-∞=-=-⎛⎫== ⎪⎝⎭⎰⎰⎰⎰综例3.6.1 在10件产品中有2件一等品,7件二等品和1件次品,从10件产品中不放回地抽取3件,用X 表示其中的一等品数,Y 表示其中的二等品数.求:(1)(),X Y 的联合分布律;(2),X Y 的边缘分布律;(3)X 和Y 是否独立; (4)在 0X =的条件下,Y 的条件分布律.【解】 ⑴ 依题设知X 只能取0,1,2,Y 只能取0,1,2,3.显然,当2i j +<或3i j +>时,有 (),0.P X i Y j ===当23i j ≤+≤时,由古典概率知 ()()3271310,0,1,2,0,1,2,3.i j i j C C C P X i Y j i j C --===== 将这些一一计算并列表后,即得(),X Y 的分布律的具体表示. ⑵ ,X Y 的边缘分布律也列于分布律表中,具体形式如下:⑶ 而()()000,120P X P Y ===≠因此,X 与Y 不相互独立. ⑷ 在0X =的条件下,Y 的条件概率为 ()()()0,|0,0,1,2,3.0P X Y j P Y j X j P X =======因此Y 的条件分布律如下:【寓意】本例时二维离散型随机变量的综合题,首先要求读者了解如何用古典概型来求解相关的概率,进而考查联合分布律与边缘分布律的关系及独立性的判别,条件分布律的计算只需知道条件概率的定义便可给出.综例 3.6.2 设12,34,,ξξξξ独立同分布,且 ()()00.6,10.4,1,2,3,4.i i P P i ξξ=====(第一问为1994年考研题)求:(1)行列式1234ξξξξξ=的概率分布;(2)方程组112231420,0x x x x ξξξξ+=⎧⎨+=⎩ 只有零解的概率.【思路】 要求行列式ξ的分布律,先要将ξ的所有可能取值找到,然后利用独立性将取这些值的概率计算出来,而第二问就是求系数行列式0ξ≠的概率. 【解】(1)记114223,,ηξξηξξ==则 142312ξξξξξηη=-=-由于12,34,,ξξξξ相互独立,故12,ηη也相互独立,且12,ηη都只能取0,1两个值,而()()()()()122323111,1110.16,P P P P P ηηξξξξ==========()()120010.160.84.P P ηη====-= 随机变量12ξηη=-有3个可能取值-1,0,1,易见()()()()121210,1010.840.160.1344,P P P P ξηηηη=-=======⨯= ()()()()121211,0100.160.840.1344,P P P P ξηηηη========⨯= ()()()01110.7312.P P P ξξξ==-=--== 于是行列式ξ的概率分布为(2)由于齐次方程 112231420,0.x x x xξξξξ+=⎧⎨+=⎩ 只有零解的充要条件是系数行列式不为0,故此题就简化为求概率 ()()01010.73120.2688.P P ξξ≠=-==-=【技巧】 本题实质上是求多维离散型随机变量的函数分布的问题,通过引入变量12,ηη将其化为二维随机变量函数分布问题,问题的解决最关键的是用到了独立性的性质:若随机变量12,,,n ξξξ相互独立,则()112,,,m g ξξξ与()212,,,m m n g ξξξ++也相互独立.综例3.6.3 设随机变量(),X Y 服从(){}22,:0,1D x y y xy =≥+≤上的均匀分布,定义随机变量,U V如下:0, 0,1, 0,2, .X U X Y X Y <⎧⎪=≤<⎨⎪≥⎩0, 3,1, 3.XV X⎧≥⎪=⎨<⎪⎩ 求(),U V 的联合概率分布,并计算()0.P UV ≠【思路】 写出(),U V 的所有可能取值,并利用均匀分布的特征计算其取值的概率.【解】 由题设知,(),X Y 的联合密度函数为 ()()()2, ,,,0, ,.x y D f x y x y D π⎧∈⎪=⎨⎪∉⎩(),U V 有6个可能取值:()()()()()0,0,0,1,1,0,1,1,2,0和()2,1.由,U V 的定义知()()()()()()()()000,0,1,0,1,10,021, .4AOC BCE x yx yP U V P P U V P P U V P X Y X P X Y S f x y dxdy dxdy S π≤<≤<===∅===∅===≤<<=≤<====⎰⎰⎰⎰扇其中,AOC S 扇和BCE S 分别表示图3.6.1中扇形AOC 与半圆BCE 的面积.同理有()()()()()()()()()10,10,0 ,212,0, ,612,1,.12BCE BCE AOF BCE S P U V P X X P X S S P U V P Y X X P X S S P U V P Y X X P Y X S ===<<=<=====≤≥=≥=====≤≥=≤<==扇COE 扇BOF 扇所以,(),U V 的联合概率分布为图 3.6.1从而 ()()()01,12,1.4123P UV P U V P U V ≠===+===+= 【技巧】 本题是求连续型随机变量的离散值函数的分布问题,解题过程中巧妙地应用了均匀分布的性质从而简化了计算.综例3.6.4 设随机变量(),X Y 的联合概率密度为 (), 0,,0, .y cxe x y f x y -⎧<<<+∞=⎨⎩其他⑴ 求常数c; ⑵ X 与Y 是否独立?为什么? ⑶ 求()()|||,|X Y Y X f x y f y x ; ⑷ 求()()1|2,1|2;P X Y P X Y <<<= ⑸ 求(),X Y 的联合分布函数; ⑹ 求Z X Y =+的密度函数; ⑺ 求()1P X Y +<; ⑻ 求()()min ,1P X Y <.【解】 (1)根据(),1,f x y dxdy +∞+∞-∞-∞=⎰⎰得 ()20013.22y yy ccdy cxe dy y e dy c +∞+∞--===Γ=⎰⎰⎰这里利用了特殊函数()10x x e dx αα+∞--Γ=⎰的性质:()()1,αααΓ+=Γ故 1.c =(2)先分别计算X 和Y 的边缘密度.()(),0, 0,,0, 0.0,0yxX x xe dy x xe x f x f x y dy x x +∞-+∞--∞⎧>⎧>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰()()21, 0, y 0,,20, y 0.0, 0y y yY xxe dx y y e f y f x y dx y -+∞--∞⎧⎧>>⎪⎪===⎨⎨⎪⎪≤⎩≤⎩⎰⎰由于在0x y <<<+∞上,()()(),X Y f x y f x f y ≠,故X 与Y 不独立. (3)由条件分布密度的定义知()()()2|2,0,,|0, .X Y Y xx y f x y yf x y f y ⎧<<<+∞⎪==⎨⎪⎩其他 ()()()|,,0,|0,.x y Y X X f x y e x y f y x f x -⎧<<<+∞==⎨⎩其他 (4)直接由条件概率定义知()()()()()1212120222201,121,221|2.21512yxy Y dx xe dyf x y dxdy e e P X Y P X Y P Y ef y dyy e dy ----∞-∞---∞--<<<<====<-⎰⎰⎰⎰⎰⎰又由条件密度的性质知 ()()1|1|2|2X Y P X Y f x dx -∞<==⎰而 ()|,02,|220, .X Y xx f x ⎧<<⎪=⎨⎪⎩其他 ()111|2.24x P X Y dx <===⎰(5)由于()(),,,F x y P X x Y y =≤≤故有: 当0x <或0y <时,(),0.F x y = 当0y x ≤<<+∞时,有()()2200011,,11.22y yv vv y F x y P X x Y y dv ue du v e dv y y e ---⎛⎫=≤≤===-++ ⎪⎝⎭⎰⎰⎰当0x y ≤<<+∞时,有()()()()2001,,11.2y x xvu y x y u F x y P X x Y y dv ue dv u e e du x e x e -----=≤≤==-=-+-⎰⎰⎰综上知 ()()220, 00,1,11, 0,2111, 02yx y x y F x y y y e y x x e x e x y ---⎧⎪<<⎪⎪⎛⎫=-++≤<<+∞⎨ ⎪⎝⎭⎪⎪-+-≤<<+∞⎪⎩或 (6)根据两个随机变量和的密度公式 ()(),,z f z f x z x dx +∞-∞=-⎰ 由于要被积函数(),f x z x -非零,只要当0x z x <<-,即02zx <<时,从而有: 当0z <时, ()0;z f z =当0z ≥时, ()()22201;2zz x zxzz z f z xedx e xe dx e e ππ-----⎛⎫===+- ⎪⎝⎭⎰⎰因此, ()21, 0,20, 0.zz z z e e z f z z --⎧⎛⎫+-≥⎪ ⎪=⎨⎝⎭⎪<⎩(7)由于已经求出了Z X Y =+的密度,故()()1111220111.2z z z z P X Y f z dz e e dz e e -----∞⎡⎤⎛⎫+<==+-=--⎢⎥ ⎪⎝⎭⎣⎦⎰⎰(8)()()()()()2111min ,11min ,111,115 11 1.22v vvP X Y P X Y P X Y dv ue du v e dv e +∞+∞---<=-≥=-≥≥=-=-=-⎰⎰⎰【技巧】 本题是二维连续型随机变量的综合题,几乎涵盖了其中的主要内容.在常数确定c 时,应用了Γ函数的定义和性质,当然,读者也可以直接用分部积分法计算.概率()1|2P X Y <=的求法,要利用条件密度()||2X Y f x 进行计算,其计算过程同一般的一维密度的计算方法.()1P X Y +<的计算,我们利用了第(6)问的结论,在不需要求X Y +密度的情形下,只要直接计算就可以了,即 ()111212011.xyxP X Y dxxe dy ee ----+<==--⎰⎰综例3.6.5 设[]~0,1,X U 且在{}X x =的条件下,[]~0,,0 1.Y U X x ≤≤求(1)()221|,01;P X Y X x x +≤=≤≤ (2)()221.P X Y +≤【思路】第一问等价于求(),P Y x ≤=故只需利用条件密度()||Y X f y x 来计算,而第二问的计算,首先要知道(),X Y 的联合分布密度(),f x y . 【解】 由题设知,X 的密度函数为 ()1, 01,0, X x f x ≤≤⎧=⎨⎩其他.而在{}X x =条件下,Y 的条件密度为()|1, 01,|0, .Y Xy x f y x x⎧≤≤≤⎪=⎨⎪⎩其他 从而(),X Y 的联合密度函数为: ()()()|1, 01,,|0, X Y X y x f x y f x f y x x⎧≤≤≤⎪==⎨⎪⎩其他① 对01x ≤≤,有()()()22221|1|P X Y X x P Y x X x P Y X x +≤==≤-==≤=()((|11|min min .Y X y y f y x dy dx x x x===- 82 -②()()(22221422001101111,ln 1.cos x y x y y x P X Y f x y dxdy dxdy dr rd x r πθθ+≤+≤≤≤≤+≤===⎰⎰⎰⎰⎰⎰极坐标变换【注】 本题中的()||Y X f y x 和(),f x y 虽然具有相同的表示式,但其含义却截然不同. ()||Y X f y x 是y 的一元函数,而不是二元函数,x 在此视为常量,这相当于微积分中,当二元函数一个自变量固定时,它只是另一个变量的一元函数.当x 变化时,Y 的条件密度函数也变化. 综例3.6.6 设二维随机变量(),X Y 在矩形 (){},:02,01G x y x y =≤≤≤≤上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率密度().f s【解】 由题设知,二维随机变量(),X Y 的概率密度为 ()()()1,,,,20,,.x y G f x y x y G ⎧∈⎪=⎨⎪∉⎩若若设()(),S X Y F s P S s ==≤为S 的分布函数,则:当0s <时,()()0,F s P XY s =≤= 当2s ≥时,()()1,F s P XY s =≤= 当02s ≤<时,曲线xy s =与矩形G 的上边交于点(),1s (见图3.6.1),于是 ()()(),F s P S s P XY s =≤=≤因而,S XY =的概率密度为 ()()1ln 2ln ,02,20, s s f s ⎧-≤<⎪=⎨⎪⎩其他.【解毕】【寓意】 本题实质上是求两随机变量的乘积的概率密度.第四章 随机变量的数学特征例4.2.1 一台设备由三大部件构成,在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30,假设各部件的状态相互独立,以X 表示同时需要调整的部件数,试求X 的数学期望EX 和方差DX . 【思路】 关键是求出X 的分布律,然后用定义计算EX .【解】 引入事件:{}i=1,2,3.i A i =第个部件需要调整 根据题设,三部件需要调整的概率分别为()()()1230.10,0.20,0.30.P A P A P A ===由题设部件的状态相互独立,于是有()()()()()1231230 0.90.80.70.504.P X P A A A P A P A P A ====⨯⨯=()()12312312310.10.80.70.90.20.70.90.80.3 0.398P X P A A A A A A A A A ==⋃⋃=⨯⨯+⨯⨯+⨯⨯=()()12312312320.10.20.70.10.80.30.90.20.3 0.092;P X P A A A A A A A A A ==⋃⋃=⨯⨯+⨯⨯+⨯⨯=X从而00.50410.39820.09230.0060.6,i i iEX x p ==⨯+⨯+⨯+⨯=∑22222200.50410.39820.09230.0060.820.i i iEX x p ==⨯+⨯+⨯+⨯=∑故 ()2220.8200.60.46.DX EX EX =-=-=【解毕】【技巧】 本题的关键是引入事件i A ,将X 的分布律求出,因此,可以发现求期望和方差的难点转到了求X 的分布.同时,方差的计算一般均通过公式()22DX EX EX =-来进行.例4.2.2 对目标进行射击,直到击中目标为止.如果每次射击的命中率为p ,求射击次数X 的数学期望和方差.【解】 由题意可求得X 的分布律为()1, 1,2,,1.k P X k pq k q p -====-于是 1111.k k k k EX kpqp kq ∞∞--====∑∑为了求级数11k k kq∞-=∑的和,我们利用如下的技巧:由于11, 0<q<1.1k k q q∞==-∑- 84 -对此级数逐项求导,得1001,kk k k k k d dq q kq dq dq ∞∞∞-===⎛⎫== ⎪⎝⎭∑∑∑ 因此()12111,11k k d kq dq q q ∞-=⎛⎫== ⎪--⎝⎭∑ 从而 ()22111.1EX ppp pq ===- 为了求DX ,我们先求2EX .由于 ()()212121111.k k K k EX k k pqpq k k q p p ∞∞--===-+=-+∑∑ 为了求()221k k k k q∞-=-∑得值,注意到()()123112.11k k d d kq dq dq q q ∞-=⎛⎫⎛⎫== ⎪ ⎪ ⎪--⎝⎭⎝⎭∑ 从而()2322121.1q EX p qp p pq =+=+- 因此 ()22221.p qDX EX EX p p-=-== 【寓意】 本题实质上是求几何分布的数学期望和方差.本题的主要技巧是利用了级数的逐项求导公式来求期望. 当然同样可用逐项积分方法来求11k k kq∞-=∑和211k k kq ∞-=∑,这种手段在级数求和或数学期望和方差的计算是十分奏效的.还有一点,我们在此说明一下,在本题中,由于X 的取值都是正数,所以只要正项级数1kk k xp ∞=∑收敛,则一定绝对收敛,即1k k k x p ∞=∑的和就为EX .而实际情况中,可能存在级数1k k k x p ∞=∑是条件收敛的,此时,X 的数学期望就不存在(虽然1kk k xp ∞=∑本身仍是收敛的),因此判断离散型随机变量的期望是否存在,要用关于级数绝对收敛的判断方法.例4.2.3 设X 是一随机变量,其概率密度为()1, 10,1, 01,0, x x f x x x +-≤≤⎧⎪=-<≤⎨⎪⎩其他.求DX .(1995年考研题) 【解】()()()()()()()011011222221110..11211 6EX xf x dx x x dx x x dx EX x f x dx x x dx x x dx x x dx +∞-∞-+∞-∞-==++-===++-=-=⎰⎰⎰⎰⎰⎰⎰于是 ()221.6DX EX EX =-=【解毕】 【技巧】 在计算数学期望和方差时,应首先检验一下()f x 的奇偶性,这样可利用对称区间上奇偶函数的积分公式简化求解,比如本题中,()f x 为偶函数,故()0.EX xf x dx +∞-∞==⎰同样DX 的计算也可直接简化.例4.2.4 已知连续型随机变量X 的密度函数为 ()221, -<x<+.xx f x -+-=∞∞求EX 与DX .(1987年考研题) 【思路】 一种求法是直接利用数学期望与方差的定义来求.另一种方法是利用正态分布的形式及其参数的含义.【解】 (方法1)直接法.由数学期望与方差的定义知()()()()()()222211111 1.x x x x EX xf x dx xedx edx x e dx e dx +∞+∞+∞+∞-------∞-∞+∞--===+-==⎰⎰⎰⎰⎰()()()()()22222212111 .2x t t DX E X EX x f x dx x dxt e e dt +∞+∞---∞-∞+∞+∞---∞=-=-=-==⎰⎰⎰⎰(方法2) 利用正态分布定义.由于期望为μ,方差为2σ()()222.x x μσ---∞<<+∞所以把()f x 变形为- 86 -()()221212x f x π--⨯=易知,()f x 为11,2N ⎛⎫ ⎪⎝⎭的概率密度,因此有 11,.2EX DX ==【解毕】 【技巧】 解决本题的关键是要善于识别常用分布的密度函数,不然的话,直接计算将会带来较大的工作量.反过来,用正态分布的特性也可以来求积分2kx e dx +∞--∞⎰等.(2)若干计算公式的应用主要包括随机变量函数的数学期望公式,数学期望与方差的性质公式的应用.例4.2.5 设X 表示10次独立重复射击中命中目标的次数,每次射中目标的概率为0.4,求2EX . (1995年考研题) 【解】 由题意知()~10,0.4X B 于是100.44,EX =⨯=()100.410.4 2.4.DX =⨯⨯-=由()22DX EX EX =-可推知()2222.4418.4.EX DX EX =+=+=【寓意】 本题考查了两个内容,一是由题意归结出随机变量X 的分布;二是灵活应用方差计算公式,如果直接求解,那么 ()1010221000.410.4kk k K EX k C -==-∑的计算是繁琐的.例4.2.6 设X 服从参数1λ=的指数分布,求()2XE X e -+.(1992年考研题)【解】 由题设知,X 的密度函数为(), 0,0, 0.x e x f x x -⎧>=⎨≤⎩且1EX =,又因为()22201,3Xxx xEeef x dx e e dx +∞+∞-----∞===⎰⎰ 从而 ()22141.33XX E X eEX Ee --+=+=+= 【解毕】 【寓意】 本题的目的是考查常见分布的分布密度(或分布律)以及它们的数字特征,同时也考查了随机变量函数的数学期望的求法.例4.2.7 设二维随机变量(),X Y 在区域(){},:01,G x y x y x =<<<内服从均匀分布,求随机变量21Z X =+的方差.DZ【解】 由方差的性质得知()214DZ D X DX =+=又由于X 的边缘密度为()()1, 01,0, .2, 010, xX xdy x f x f x y dy x x +∞--∞⎧<<⎪==⎨⎪⎩<<⎧=⎨⎩⎰⎰其他其他.于是()112200222212, 2,32121.2318EX x xdx EX x xdx DX EX EX ====⎛⎫=-=-= ⎪⎝⎭⎰⎰因此 , 1244.189DZ DX ==⨯=【解毕】 【技巧】 尽管本题给出的是二维随机变量,但在求X 的期望于方差时,可以从X 的边缘密度函数出发,而不必从X 与Y 的联合密度函数开始.在一般情形下,采用边缘密度函数较为方便.例4.2.8 设随机变量X 和Y 独立,且X 服从均值为1Y 服从标准正态分布,试求随机变量23Z X Y =-+的概率密度函数.(1989年考研题)【思路】 此题看上去好像与数字特征无多大联系,但由于X 和Y 相互独立且都服从正态分布,所以Z- 88 -作为,X Y 的线性组合也服从正态分布.故只需求EZ 和DZ ,则Z 的概率密度函数就唯一确定了. 【解】 由题设知,()()~1,2,~0,1X N Y N .从而由期望和方差的性质得2235,29.EZ EX EY DZ DX DY =-+==+=又因Z 是,X Y 的线性函数,且,X Y 是相互独立的正态随机变量,故Z 也为正态随机变量,又因正态分布完全由其期望和方差确定,故知()~5,9Z N ,于是,Z 的概率密度为 ()()2529, .z Z f z z --⨯=-∞<<+∞ 【解毕】【寓意】 本题主要考查二点内容,一是独立正态分布的线性组合仍为正态分布;其二是正态分布完全由其期望和方差决定.例4.2.9 假设随机变量Y 服从参数为1λ=的指数分布,随机变量 0, ,1, .k Y k X Y k ≤⎧=⎨>⎩若若 ()1,2k =(1) 求1X 和2X 的联合概率分布; (2) 求()12E X X +. 【解】 显然,Y 的分布函数为()1, 0,0, 0.y e y F y y -⎧->=⎨≤⎩10, 11 1.Y X Y ≤⎧=⎨>⎩若,,若 20, 21 2.Y X Y ≤⎧=⎨>⎩若,,若 (1)()12X X +有四个可能取值:()()()()0,0,0,1,1,0,1,1,且()()()()()()()()()()()()()()121121212120,01,21 11,0,11,20,1,01,212 21,1,11,22 P X X P Y Y P Y F e P X X P Y Y P X X P Y Y P Y F F e e P X X P Y Y P Y --===≤≤=≤==-===≤>====>≤=<≤=-=-===>>=>()2 12.F e -=-=于是得到1X 和2X 的联合分布律为(3) 显然,12,X X 的分布律分别为1X 0 1 2X 0 1P 11e -- 1e - P 21e -- 2e -因此 1212,.EX e EX e --==故 ()121212.E X X EX EX e e --+=+=+ 【解毕】【技巧】 本题中若不要求求X 与Y 的联合分布律,也可直接求出()12E X X +,这是因为 ()()()1111011.EX P Y P Y P Y e -=⨯>+⨯≤=>=而 222,EX PY e -=>= 因此 ()121212.E X X EX EX e e --+=+=+不仅如此,我们还能求12,X X 其他函数的期望.例如求()12E X X ,此时,由于121, 2,0 .Y X X >⎧=⎨⎩若,其他故 ()()()()21212022.E X X P Y P Y P Y e -=⨯>+⨯≤=>=例4.2.10 设随机变量(),X Y 服从二维正态分布,其密度函数为()()22121,2x y f x y e π-+= 求随机变量Z .【思路】 利用随机变量函数的期望的求法进行计算.。
难做概率论与数理统计去年试卷分析

2010–2011学年 秋冬 学期《 概率论与数理统计》试卷注:~(0,1),(){}:(1)0.84,(1.645)0.95,(1.96)0.975,(2)0.98X N x P X x Φ=≤Φ=Φ=Φ=Φ=212(),(),(,)t n n F n n αααχ分别表示服从具有相应自由度的t 分布,2χ分布和F 分布的上α分位点: 22220.9750.950.050.025(9) 2.70,(9) 3.32,(9)16.92,(9)19.02χχχχ====,==0.050.025(9) 1.83,(9) 2.26t t ,0.050.05(2,9) 4.26,(9,2)19.4F F ==。
一、填空题 (每小格3分,共42分,每个分布均要写出参数)1.设,A B 为两随机事件,已知()0.6,()0.5,()0.3P A P B P AB === ,则()P A B ⋃= ___,()P A A B ⋃=_ _。
2.一批产品的寿命X (小时)具有概率密度2,800()0,800ax f x x x ⎧≥⎪=⎨⎪<⎩,则a =_ _,随机取一件产品,其寿命大于1000小时的概率为_ ;若随机独立抽取6件产品,则至少有两件寿命大于1000小时的概率为_ _;若随机独立抽取100件产品,则多于76件产品的寿命大于1000小时的概率近似值为_ _。
3.设随机变量221212(,)~(,,,,)X Y N μμσσρ,已知~(0,1),~(1,4)X N Y N ,0.5ρ=-。
设123,74Z X Y Z X Y =-=+,则1Z 服从_ __分布,12Z Z 与的相关系数12Z Z ρ=__ ___,12Z Z 与独立吗?为什么?答: 。
4.设总体2~(,),,(0)X N μσμσ>是未知参数,110,,X X 为来自X 的简单随机样本,记2X S 与为样本均值和样本方差,则22X μ是的无偏估计吗?答:__ __;若22{}0.95P S b σ≤=,则b =_ _; 22{}P S σ==_ _;μ的置信度为95%的单侧置信下限为_ ;对于假设2201:1,:1H H σσ≥<的显著性水平为5%的拒绝域为_ _。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河海大学理学院数学系 2010.07 一、古典概率
(一)内容提要:随机事件、概率及其性质、古典概型 内容提要:随机事件、概率及其性质、 与几何概型、条件概率、乘法公式、 与几何概型、条件概率、乘法公式、全概率公式与贝叶斯公 事件的独立性、伯努利概型. 式、事件的独立性、伯努利概型 (二)相关问题 1. 已知P(A)=0.3, P(A∪B)=0.4, 则 P ( A ∪ B ) = ;
5. 设
1 / 3, X ~ f ( x ) = 2 / 9, 0,
x ∈ [0, 1] x ∈ [ 3, 6] 其它
.
使得P{X ≥ k}=2/3, 则k的取值范围是 若k 使得 的取值范围是
6. 设F1(x)与F2(x)分别为 r.v.X1与X2的分布函数 为使 的分布函数, 与 分别为 F(x)=a F1(x)−b F2(x)是某一 的分布函数 在下列给定的各组 是某一r.v.的分布函数 − 是某一 的分布函数, 数值中应取 (A) a=3/5, b= −2/5 (C) a= −1/2, b= 3/2 (B) a=2/3, b= 2/3 (D) a=1/3, b= −3/2 [ ]
7. 已知随机变量 、Y相互独立且都来自参数为λ>0的指数 已知随机变量X、 相互独立且都来自参数为 相互独立且都来自参数为λ 的指数 分布,试用两种方法求出Z= + 的概率密度 的概率密度。 分布,试用两种方法求出 =X+Y的概率密度。
8. 设随机变量X概率密度是
0≤ x ≤1 x, f ( x ) = 2 − x , 1 < x ≤ 2 0, 其它.
i
− X)
2
2
( X i − µ )2 ∑
σ
~
;Байду номын сангаас
i =1
σ
2
~
.
2.设X1, …, Xn是来自正态总体N(µ, σ2)的一个样本, 则
1 n Z n = ∑ ( X i − µ ) 服从 n i =1
.
3.设X~N(µ1 ,σ 12),Y~N(µ2 ,σ 22),X1,…,Xn1 ;Y1,…,Yn2 分别是两总体相互独立的样本,则 X − Y 的分布 是 .
2. 若P(X=k)=λke−λ/k!, (k = 0, 1, 2, …), 则λ的极大似然估计量 = .
3. 设总体 的概率函数为 设总体X的概率函数为
e−( x−µ ) , x > µ f (x; µ)= = x≤µ 0,
为未知参数, 为来自总体X的一个样本 的一个样本。 其中µ 为未知参数,X1,…, Xn为来自总体 的一个样本。 的矩估计量和极大似然估计量; (1) 试求未知参数µ的矩估计量和极大似然估计量; ) 的极大似然估计量的无偏性, (2) 讨论未知参数µ的极大似然估计量的无偏性,并说明理 ) 由. 4. 设总体 的概率密度为 设总体X的概率密度为
五、参数估计
(一)内容提要:估计量与估计值、矩估计、极大似然估 内容提要:估计量与估计值、矩估计、 估计量的评价、区间估计、 计、估计量的评价、区间估计、正态分布均值与方差的置信区 间. (二)相关问题 1. 设总体X的密度函数为
− ( x − µ )2 1 f ( x; µ ) = e 18 , −∞ < x < ∞ 3 2π 其中为未知参数。求的矩估计量和极大似然估计量,并说明的 极大似然估计量是否为其无偏估计量,请给出理由。 1
(θ + 1) x θ , 0 < x < 1 f ( x) = 0, 其它
是未知参数, 是来自总体X的一个容量为 其中θ > −1是未知参数 X1, … , Xn是来自总体 的一个容量为 是未知参数 n 的简单随机样本 分别用矩估计法和极大似然估计法求 θ 的简单随机样本, 的估计量. 的估计量
0 , 若 X ≤ Y , U = 1, 若 X > Y ; 0, 若 X ≤ 2Y , V = 1, 若 X > 2Y ;
试求(1)U和V的联合概率分布 和 的联合概率分布 的联合概率分布; 试求
(2) U和V的相关系数 的相关系数. 和 的相关系数
8. 游客乘电梯从底层到电视塔顶层观光, 电梯于每个整点 游客乘电梯从底层到电视塔顶层观光 的第5分钟 分钟,第 分钟 分钟, 分钟从底层起行, 的第 分钟 第25分钟 第55分钟从底层起行 假设某游客在早 分钟从底层起行 八点第X分钟到达底层侯梯处 分钟到达底层侯梯处, 上均匀分布, 八点第 分钟到达底层侯梯处 且X在[0, 60]上均匀分布 求该 在 上均匀分布 游客等候时间的数学期望. 游客等候时间的数学期望 9. 设X是r.v., EX=µ, DX=σ2, 则对任意常数 必有 µ 是 σ 则对任意常数C, (A) E(X−C)2= EX2−C2 (B) E(X−C)2= E(X− µ)2 − − − (C) E(X−C)2< E(X− µ)2 (D) E(X−C)2 ≥ E(X− µ)2 − − − − [ ]
3. 设随机变量X服从参数为(2,p)的二项分布,随机变量Y 服从参数为(4,p)的二项分布,若P{X≥1}=5/9,则 P{Y≥1}= ; 4. 设顾客在某银行的窗口等待服务的时间(以分计)服从指 数分布,其密度函数为,
1 −x/ 2 e , x > 0, f ( x) = 2 0, x≤0 某顾客在窗口等待服务,若超过10分钟,他就离开。他一个月 要到银行5次,以Y表示一个月内他未等到服务而离开窗口的 次数,求出的分布律,并求P{Y≥4}。
8. 若事件A, B的概率为正, 则事件A, B互不相容与事件A, B相 互独立 同时成立.
二、随机变量及其分布
(一)内容提要:随机变量及其分类、一维离散型随机变 内容提要:随机变量及其分类、 分布律及其性质、分布函数及其性质、 量、分布律及其性质、分布函数及其性质、一维连续型随机变 密度函数及其性质、二维随机变量的联合分布、边缘分布、 量、密度函数及其性质、二维随机变量的联合分布、边缘分布、 随机变量的独立性、随机变量函数的分布. 随机变量的独立性、随机变量函数的分布 (二)相关问题 1.已知随机变量X的分布函数F(x)=A + Barctgx, 则A= B= , 概率密度f (x)= . ,
2. 设某类电子管的使用寿命X (以小时计)的概率密度是
x 1 − 100 e , x>0 f (x) = 100 0, x≤0 一等品的使用寿命在110小时以上,二等品的使用寿命在80 ~ 110小时,三等品的使用寿命在80小时以内,一等品、二等 品、三等品的包装损坏率分别是0.002、0.20与0.30,现从 一大批这类电子管(一、二、三等品混合)中任取一只,求 (1) 它碰巧是一只由于包装导致损坏的电子管的概率; (2) 若已知这是一只由于包装导致损坏的电子管,求它原 来是二等品的概率。
2. 袋中有 只黄球 只白球 二人依次从中任取一球 则第 袋中有20只黄球 只白球, 二人依次从中任取一球, 只黄球30只白球 二人抽得黄球的概率为 . . 3.已知P( A )=0.5, P(B)=0.4, P(A| B)=0.6, 则P(A∪ B )= 4.设事件A与B相互独立, 已知P(A)=0.5, P(A∪B)=0.8, . ; 则 P ( AB ) = 5. 设A, B为任意两事件 且A⊂B, P(B)>0,则下列不等式正确 为任意两事件, 为任意两事件 ⊂ > 则下列不等式正确 的是: 的是 (A) P(A) <P(A|B) (C)P(A) > P(A|B) (B) P(A) ≤ P(A|B) (D) P(A) ≥ P(A|B) [ ]
10. 设二维 设二维r.v.(X, Y)服从二维正态分布 则r.v.ξ=X+Y与 服从二维正态分布, 服从二维正态分布 ξ 与 η=X−Y不相关的充分必要条件为 − 不相关的充分必要条件为 (A) E(X)=E(Y) (B) E(X2)−[E(X)]2=E(Y2)−[E(Y)]2 − − [ ]
(C) E(X2)=E(Y2) (D) E(X2)+[E(X)]2=E(Y2)+[E(Y)]2
4. 设X1,X2,X3是来自正态总体N(0,1)的简单随机样本, 时,统计量X服从χ2分布, X = X12 + a(X2 − 2 X3)2 ,则当a = 自由度为 ; 5. 设X~N(µ1,σ12),Y~N(µ2,σ22),X1,…,Xn; Y1,…,Ym分 别是两相互独立的样本,则 X − Y ~ X=a(X1 −2X2)2+b(3X3 −4X4)2, 则当 = 则当a 量服从χ 分布, 量服从χ2分布 其自由度为 . ,b= . 时, 统计 6. 设X1, X2, X3, X4是来自正态总体 是来自正态总体 正态总体N(0, 22)的简单随机样本 的简单随机样本, 的简单随机样本
6. 甲、乙、丙三人同时对飞机射击,三人击中的概率分别为 0.4,0.6,0.8,飞机被一人击中而被击落的概率为0.3,被两人 击中而被击落的概率为0.7,若三人都击中飞机,飞机必定被 击落。(1)求飞机被击落的概率;(2)若已知飞机被击落, 求因被两人击中而被击落的概率。 7. 设有来自三个班级的各10名、15名和25名学生参加一个文 设有来自三个班级的各10名 15名和 名和25名学生参加一个文 体节目,其中各班的女生分别为3名 名和5名 体节目,其中各班的女生分别为 名、7名和 名。随机地选一个 名和 班级,再从中先后选取两人做一个节目。 班级,再从中先后选取两人做一个节目。 (1)求先选到的一人为女生的概率; )求先选到的一人为女生的概率; (2)已知后选到的一人为男生,求求先选到的一人为女生的概 )已知后选到的一人为男生, 率。
4. 设二维连续型随机变量(X,Y)的密度函数为
2, 0 ≤ x ≤ y , 0 ≤ y ≤ 1 f ( x, y) = 其它 0,