飞机的飞行性能.
第二讲 飞机的基本飞行性能

北航 509
计算基本条件
1)基本气动外形 2)给定发动机工作状态(加力、最大、额定等)
第 二 章 引 言 北航 509
3)平均飞行重量或其它给定重量
求解方法
1)近似解析法 2)数值计算法
正常装载、半油的飞机重量 通过图解比较可用推力/功率(已知) 和需用推力/功率(由平飞条件Y=G 求出)得到飞机基本性能特点。
Q0 Qi K max Ppxmin 有利状态
小展弦比 2 1 2 Q M ,Qi 2 , A , C 基本不变, 0 大后掠角 x0 - M 薄翼型 1 M Myl,Q0 Qi,Qpf 最小, K Kmax 细长机身 飞 机 跨音速面 ) 定 M lj M 1.2 ~ 1.3(跨音速范围 积律等 常 M Ppx C x 0 ,A , 平 飞 此时,波阻为主(音障),应采用低波阻构形。 需 用 M 1.2 ~ 1.3(超音速范围 ) 推 力 C x 0 1 / M 2 1,Q0 M,Qi可逐渐忽略 曲 Ppx增加较跨音速区缓慢。 线 为了兼跨不同M数下的要求,采用变后掠、切尖三角翼加 北航 边条等先进气动技术。
北航 509
平飞需用推力的计算
1 2 P Q C V S px pf x Qpf Cx 1 G 2 Ppx Qpf Y Cy K K 1 2 G Y C y V S 2
K max Ppx min Vyl , yl , C yyl
V
θ
Vy dH dt
Vy
V sin V
V y max
(VP ) max G
P G
一般H , V y max
2 - 3 飞 机 定 常 上 升 和 下 滑 性 能 的 确 定
飞行性能和要求图文

飞行性能和要求飞行性能是指飞机在飞行中表现出的各种性能指标。
这些性能指标包括飞行速度、飞行高度、爬升速度、下降速度等等。
作为一名飞行员或航空工程师,对于飞行性能的了解和掌握至关重要。
因此,在设计和操作飞机时,需要考虑到飞行性能以及相应的要求。
飞行速度飞行速度是指飞机在空中飞行时的速度。
飞机的最大飞行速度受到多种因素的限制,包括设计制约、气动效应、动力系统等。
除了最大速度之外,还有最小速度、巡航速度、着陆速度等不同的速度要求,这些要求需要遵循以确保飞机的飞行安全。
飞行高度飞行高度是指飞机在空中飞行时的高度。
与飞行速度一样,飞行高度也受到多种因素的限制,包括气压高度、飞机结构限制、人员舒适度等等。
在规定的飞行高度内保持飞行安全是飞行员和航空工程师的重要任务之一。
爬升和下降速度爬升和下降速度分别指飞机向上爬升和向下下降的速度。
这些速度指标对飞机的安全性和舒适度都有重要影响。
在起飞和着陆时,飞机需要保持特定的爬升和下降速度,以确保航班的顺利进行。
此外,这些速度指标还需要保持在一定的范围内,以确保航班的舒适度和乘客的安全。
转弯半径和坡度转弯半径和坡度分别指飞机在空中转弯时的半径和倾斜度。
这些指标同样对飞机的安全性和舒适度都有着重要的影响。
在进行大转弯时,飞机需要保持大的转弯半径以确保安全;而在进行小转弯时,飞机需要保持小的转弯半径以确保舒适度和乘客的安全。
能源消耗和经济性能源消耗和经济性是指飞机在空中飞行时所消耗的燃油数量和相关的经济成本。
这些指标对航空公司和航班运营商来说尤为重要,因为它们可以直接影响航班运营的成本和盈利能力。
在设计飞机时,需要考虑到能源消耗和经济性,以确保航空公司和航班运营商能获得最大的经济效益。
在设计和操作飞机时,飞行性能和相应的要求都是非常重要的。
飞行性能包括飞行速度、飞行高度、爬升速度、下降速度等等;而要求则涉及到制约因素、安全标准、舒适度等等。
对于飞行员和航空工程师来说,了解这些指标和要求是非常必要的,因为它们能够确保航班的顺利进行和乘客的安全。
飞机的运行和性能

50 英尺
V=0
着陆距离
各飞行阶段飞行事故比例
2、飞行剖面
飞行剖面是飞机完成一次飞行任务各个阶段的飞行轨迹(航 迹)在垂直剖面上的投影图形,是飞机在不同时间(或距离) 上的高度所表示出来的图形。它是飞行计划的依据和基础。
标准的飞行剖面
航程油量
滑行 油量
停机坪
松刹车 起飞机场
进近
接地 目的地机场
第二章民用航空器
第七节 飞机的性能
(1)parking
(2)pushback and start up
(3)taxi
(4)take off
(5)climb
(6)cruise
(7)approach
(8)landing
飞机的飞行过程
1、飞机的飞行阶段和性能—起飞
起飞---从跑道端从刹车开始,到飞机 离地面1500ft(450m),是飞机起 飞阶段。
航路备份 油量
滑行 油量
备用飞行剖面
航程油量
等待油量 备份油量
停机坪
松刹车 起飞机场
进近
复飞 接地 目的地机场
备降机场
3、飞机各种重量的关系
(1)最大起飞重量(MTOW):飞机在跑道头开始起动的重 量,是飞机结构允许的最大总重量。
(2)最大着陆重量(MLW):飞机在着陆时允许的最大重量 。应考虑着陆时对飞机的冲击。
减速
下降速度 250 kt(ATC 限制)
10000 ft
减速到进近速度
1500ft
着陆
1、飞机的飞行阶段和性能—进近和着陆阶段
进近阶段:从规定点开始,在管制员指挥下沿规定路径减速 ,下降对准跑道的过程,该过程到飞机以50英尺高度飞越 跑道头。
【南航】飞行原理(飞行性能)

起飞着陆性能
• 飞机的着陆滑跑距离取决于飞机的着陆接地速度和落地后的 减速性能。
• 着陆接地速度同样也由飞机的最小平飞速度决定。 • 为改善落地后的减速性能,飞机除了在机轮上安装刹车装置
外,通常还采用减速板、反推力、减速伞等装置。 ★★
反推力
减速板
减速伞
机动性能
机动性能 • 指飞机改变飞行速度、飞行高度和飞行方向的能力。 • 通常用过载来衡量飞机的机动性。★★ • 过载n定义为飞机上所受的外力与飞机重力之比。(通常所说
的过载多指法向过载,即飞机的升力与重力之比) • 过载越大,飞机机动能力越强。为保证飞机和飞行员的安全
,飞机过载不能过大。通常战斗机的最大过载在10左右。
爬升性能
爬升率 ★ 飞机的爬升率是指单位时间内飞机所上升的垂直高度,通
常以vy表示。 要提高最大爬升率vymax,除设法减小阻力和降低飞机重量
外,重要的措施是加大推力。
爬升性能
静升限:飞机能作水平直线飞行所能达到的最大高度。 理论静升限:飞机能够保持平飞的最大飞行高度,此时爬升率 等于零。 ★★ 实 用 静 升 限 : 飞 机 最 大 爬 升 率 等 于 0.5m/s ( 亚 声 速 飞 机 ) 或 5m/s(超声速飞机)时所对应的飞行高度。 ★★
速度性能
最大飞行速度 ★ 指飞机在某一高度上作水平飞行,发动机以最大可用推力
工作时飞机所能达到的最大飞行速度。
巡航速度 ★ 发动机每公里消耗燃油量最小情况下的飞行速度。一般为
最大飞行速度的70%~80%。
最小飞行速度 ★★ 在一定高度上飞机能维持水平直线飞行的最小速度。飞机
的最小平飞速度的大小,对飞机的起降性能有很大影响。
飞机飞行性能计算

飞机飞行性能计算1、飞机动态建模飞机在铅垂面内飞行,是指飞机对称面式中与某个给定的空间铅垂面重合且飞行航迹式中在铅垂面内运动。
这种飞行状态又称为对称飞行,此时有质心运动方程:()cos()sin sin cos sin p p g g dv m P X mg dt d mV P dt dx V dt dy dH V dt dt a j q q a j q q ìïï=+--ïïïïïï=+ïïíïï=ïïïïïï==ïïïî最大平飞速度读,最小平飞速度和升限,估算中一般取飞机质量为平均飞机质量(50%),飞机处于基本构型,发动机处于(加力、最大、额定)工作状态。
2、平飞所需推力计算;平飞:飞机作等速直线水平飞行。
在某一高度,平飞所需推力则需要根据飞机作等速水平直线飞行时的质心运动方程。
飞机平飞时,0q =。
则运动方程为: P X Y G ìï=ïíï=ïî平飞中为使飞行速度保持不变必须使发动机推力等于飞行阻力。
平飞中为克服飞行阻力所需的发动机推力就叫做平飞所需推力,记为r P ,即212r xP X C V S r == 式中0x x xi xh C C C C =++D0x C 为零升阻力系数,一般为飞行马赫数的函数;xi C 为诱导阻力系数。
一般在迎角较小时2xi y C A C =,A 为马赫数的函数;当迎角较大时xi C 除随a M 而变化外,还是迎角的复杂函数,在某些飞机说明书中以诱导阻力曲线的形式给出;xh C D 是考虑到不同高度的雷诺数影响系数。
3、最大/最小平飞速度计算 由所需推力公式:212r xP X C V S r ==计算出所需推力,将不同高度上的发动机推力与所需推力绘制到一幅图上,根据所需推力和发动机所提供的推力曲线的相交情况来确定最大最小速度。
787飞机 记录的飞行数据 参数

787飞机的飞行数据参数包括以下几个方面:
1.飞行高度:787飞机可以在不同的高度进行飞行,其最大飞行高度为42000
英尺(约13100米)。
2.飞行速度:787飞机的最大巡航速度为0.85马赫,相当于每小时915公里。
3.航程:787飞机的最大航程为15700公里,可以覆盖从纽约到伦敦的直飞距
离。
4.起飞和降落:787飞机可以在较短的距离内起飞和降落,其起飞滑跑距离为
2280米,着陆滑跑距离为1355米。
5.发动机:787飞机采用遄达1000系列型涡扇发动机,该发动机具有较高的
燃油效率和较低的排放,为飞机的环保性能提供了保障。
6.机身尺寸:787飞机的翼展为50.3~51.8米,机长为55.5米,高度为16.5
米。
总之,这些参数是描述787飞机性能的主要指标,它们反映了飞机的技术规格和飞行能力。
第二讲飞机的基本飞行性能讲义

第二讲飞机的基本飞行性能讲义一、引言飞机的基本飞行性能是指飞机在不同飞行阶段中的各种性能指标。
了解和掌握飞机的基本飞行性能对于飞行员和飞机设计师来说都是十分重要的。
本讲义将介绍飞机的基本飞行性能指标及其计算方法。
二、起飞性能起飞性能是飞机在地面开始起飞到到达安全飞行高度之间的性能指标。
主要包括起飞距离、起飞速度和最大爬升率。
1. 起飞距离起飞距离是指飞机从起飞开始到离地面50英尺高时所需的距离。
起飞距离计算公式如下:起飞距离 = 加速距离 + 抬轮距离 + 离地距离其中,加速距离是指飞机从静止到达起飞速度所需的距离;抬轮距离是指飞机从离地面50英尺高到离地面100英尺高所需的距离;离地距离是指飞机离开地面100英尺高时所需的距离。
2. 起飞速度起飞速度是指飞机在起飞时所需的最低速度。
起飞速度取决于飞机的重量和机翼的亮度。
一般来说,起飞速度随飞机重量的增加而增加,随机翼的亮度的增加而减小。
3. 最大爬升率最大爬升率是指飞机在起飞过程中爬升的最大速率。
最大爬升率取决于飞机的发动机推力、机翼提供的升力和飞机的阻力。
飞机的最大爬升率在不同高度下可能会有所不同。
三、巡航性能巡航性能是指飞机在巡航飞行阶段的性能指标。
主要包括巡航速度、巡航升力系数和巡航推力。
1. 巡航速度巡航速度是指飞机在巡航飞行阶段所保持的恒定速度。
巡航速度取决于飞机的气动性能和发动机的推力。
为了保持较低的燃料消耗和较长的航程,飞机会选择一个较低的巡航速度。
2. 巡航升力系数巡航升力系数是指飞机在巡航飞行阶段的升力与机翼面积、空气密度和飞机速度的比值。
巡航升力系数影响飞机的升力和阻力。
3. 巡航推力巡航推力是指飞机在巡航飞行阶段的发动机推力。
巡航推力决定飞机的速度和燃料消耗。
四、下降和着陆性能下降和着陆性能是指飞机从巡航飞行阶段到着陆的过程中的性能指标。
主要包括下降速度、下降距离和着陆距离。
1. 下降速度下降速度是指飞机从巡航飞行阶段开始向地面下降时的速度。
飞机基本参数数据

飞机基本参数数据引言概述:飞机作为一种重要的交通工具,其基本参数数据对于飞行安全和性能分析至关重要。
飞机的基本参数数据包括飞行速度、起飞重量、翼展等多个方面,这些数据对于设计、制造和操作飞机都有着重要的指导意义。
本文将从飞行速度、起飞重量、翼展、航程和燃油容量这五个方面,详细介绍飞机的基本参数数据。
一、飞行速度1.1 最大巡航速度:飞机在巡航阶段能够达到的最高速度,通常以马赫数(Mach)表示。
1.2 失速速度:飞机在特定重量和配置下的最低速度,低于该速度会导致失去升力而失速。
1.3 着陆速度:飞机在着陆时的最低速度,通常由机型和着陆重量决定。
二、起飞重量2.1 最大起飞重量:飞机在起飞时所能承受的最大重量,包括飞机本身的重量和载荷。
2.2 空机重量:飞机在没有任何载荷的情况下的重量,包括机身、发动机、燃油等。
2.3 载荷能力:飞机能够携带的最大重量,即起飞重量减去空机重量。
三、翼展3.1 翼展:飞机两个翼面(主翼)之间的距离,通常以米(m)表示。
3.2 翼展对比:不同机型的翼展对比分析,可以评估飞机的机动性和稳定性。
3.3 翼展与机场限制:翼展对于机场的限制也是一个重要的考虑因素,比如狭小的跑道可能无法容纳翼展较大的飞机。
四、航程4.1 最大航程:飞机在满载燃油状态下能够飞行的最大距离。
4.2 经济航程:飞机在经济速度下能够飞行的最大距离,通常是指在燃油效率最佳的速度下飞行。
4.3 航程与载荷的关系:飞机的航程与载荷有一定的关系,较大的载荷可能会影响飞机的航程。
五、燃油容量5.1 最大燃油容量:飞机能够携带的最大燃油量。
5.2 燃油效率:飞机在不同速度下的燃油消耗率,通常以每小时消耗的燃油量(升/小时)表示。
5.3 燃油容量与航程的关系:飞机的燃油容量直接影响其航程,较大的燃油容量能够支持较长的飞行距离。
结论:飞机的基本参数数据对于飞行安全和性能分析至关重要。
飞行速度、起飞重量、翼展、航程和燃油容量等参数直接影响飞机的飞行能力和航程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞机的飞行性能
2014-06-15
飞机的飞行性能
在对飞机进行介绍时,我们常常会听到或看到诸如“活动半径”、“爬升率”、“巡航速度”这样的名词,这些都是用来衡量飞机飞行性能的术语。
简单地说,飞行性能主要是看飞机能飞多快、能飞多高、能飞多远以及飞机做一些机动飞行(如筋斗、盘旋、战斗转弯等)和起飞着陆的能力。
速度性能
最大平飞速度:是指飞机在一定的高度上作水平飞行时,发动机以最大推力工作所能达到的最大飞行速度,通常简称为最大速度。
这是衡量飞机性能的一个重要指标。
最小平飞速度:是指飞机在一定的飞行高度上维持飞机定常水平飞行的最小速度。
飞机的最小平飞速度越小,它的起飞、着陆和盘旋性能就越好。
巡航速度:是指发动机在每公里消耗燃油最少的情况下飞机的飞行速度。
这个速度一般为飞机最大平飞速度的'70%~80%,巡航速度状态的飞行最经济而且飞机的航程最大。
这是衡量远程轰炸机和运输机性能的一个重要指标。
当飞机以最大平飞速度飞行时,此时发动机的油门开到最大,若飞行时间太长就会导致发动机的损坏,而且消耗的燃油太多,所以一般只是在战斗中使用,而飞机作长途飞行时都是使用巡航速度。
高度性能
最大爬升率:是指飞机在单位时间内所能上升的最大高度。
爬升率的大小主要取决与发动机推力的大小。
当歼击机的最大爬升率较高时,就可以在战斗中迅速提升到有利的高度,对敌机实施攻击,因此最大爬升率是衡量歼击机性能的重要指标之一。
理论升限:是指飞机能进行平飞的最大飞行高度,此时爬升率为零。
由于达到这一高度所需的时间为无穷大,故称为理论升限。
实用升限:是指飞机在爬升率为5m/s时所对应的飞行高度。
升限对于轰炸机和侦察机来说有相当重要的意义,飞得越高就越安全。
飞行距离
航程:是指飞机在不加油的情况下所能达到的最远水平飞行距离,发动机的耗油率是决定飞机航程的主要因素。
在一定的装载条件下,飞机的航程越大,经济性就越好(对民用飞机),作战性能就更优越(对军用飞机)。
活动半径:对军用飞机也叫作战半径,是指飞机由机场起飞,到达某一空中位置,并完成一定任务(如空战、投弹等)后返回原机场所能达到的最远单程距离。
飞机的活动半径略小于其航程的一半,这一指标直接构成了歼击机的战斗性能。
续航时间:是指飞机耗尽其可用燃料所能持续飞行的时间。
这一性能指标对于海上巡逻机和反潜机十分重要,飞得越久就意味着能更好地完成巡逻和搜索任务。
飞机起飞着陆的性能优劣主要是看飞机在起飞和着陆时滑跑距离的长短,距离越短则性能优越。