分布式电源系统设计

合集下载

分布式电源接入系统典型设计

分布式电源接入系统典型设计

分布式电源接入系统典型设计首先,逆变器选型是分布式电源接入系统设计的首要任务。

逆变器用于将分布式电源的直流电能转换为交流电能供电到电网中。

逆变器的选型需要考虑分布式电源的功率、电压等参数,并满足电力系统的要求。

常见的逆变器有串联逆变器和并联逆变器两种,根据不同的应用场景选择合适的逆变器类型。

其次,电网同步控制是分布式电源接入系统设计中的关键环节。

电网同步控制主要是指将分布式电源的交流电压与电网电压进行同步,以保证分布式电源和电网的功率匹配。

电网同步控制可以通过改变逆变器的输出电压和频率来实现。

在设计中,需要考虑同步控制的算法、控制策略以及系统的响应速度等因素。

同时,故障保护是分布式电源接入系统设计中必不可少的一部分。

故障保护主要是指当电网出现故障时,分布式电源能够及时脱离电网,以保护其自身的运行安全。

常见的故障保护措施包括过电流保护、过压保护、短路保护等。

在设计中,需要考虑故障保护的快速响应和可靠性。

此外,分布式电源接入系统设计还需要关注电能质量的问题。

分布式电源的接入可能会对电力系统的电能质量产生影响,如谐波、功率因素等问题。

因此,在系统设计中需要考虑电能质量的监测和控制,确保分布式电源接入系统不会对电力系统的正常运行造成影响。

最后,分布式电源接入系统设计还需考虑经济性和可行性。

设计中需要综合考虑分布式电源的成本、效率等因素,以及系统的可行性和可靠性。

在实际应用中,还需要根据具体情况进行参数优化和系统调试,以实现最佳的设计效果和经济效益。

综上所述,分布式电源接入系统的典型设计包括逆变器选型、电网同步控制、故障保护等方面。

在设计中需要综合考虑分布式电源的特性和电力系统的需求,以实现系统的安全可靠运行和经济高效运行。

分布式电源接入与能量管理系统设计

分布式电源接入与能量管理系统设计

分布式电源接入与能量管理系统设计随着电力需求的增加和可再生能源的快速发展,分布式电源的接入成为一种越来越常见的电力供应方式。

为了有效地接入和管理分布式电源,需要设计一个高效且可靠的分布式电源接入与能量管理系统。

本文将详细探讨该系统的设计。

第一部分:分布式电源接入系统设计1. 设备需求分析在设计分布式电源接入系统时,首先需要进行设备需求分析。

该系统需要考虑到不同类型的可再生能源发电设备,如太阳能、风能等。

确定所需的设备种类和数量,并确保能够有效地接入和管理这些设备。

2. 接口设计接下来,需要设计分布式电源接入系统的接口。

这些接口应该具有良好的兼容性,能够与不同类型的分布式电源设备进行通信。

此外,接口还应提供相应的保护措施,以确保电力系统的稳定运行。

3. 能量监测和测量分布式电源接入系统应提供能量监测和测量功能。

该系统应能够准确记录分布式电源的发电量,并可以实时监测电力系统的能耗情况。

这些数据对于系统的能量管理至关重要。

4. 安全措施在设计分布式电源接入系统时,安全是一个重要的考虑因素。

系统应考虑到电压、电流等参数的安全要求,并设计相应的保护机制。

此外,还应考虑到防止电网中的故障电流进入分布式电源系统,以确保系统的安全稳定运行。

第二部分:能量管理系统设计1. 能量需求预测能量管理系统应具备能量需求预测功能。

通过收集历史数据和当前环境信息,系统可以预测未来的能量需求。

这样可以帮助系统合理规划分布式电源的接入和能量的分配,以满足实际需求。

2. 能量分配与优化分布式电源接入与能量管理系统应提供能量分配和优化功能。

这意味着系统应具备良好的算法和策略,以合理地将电能分配给各个负荷。

通过优化能量分配,可以最大程度地利用可再生能源,实现能量的高效利用。

3. 能量储存和调度在能量管理系统中,能量储存和调度是非常重要的环节。

该系统应考虑到能量的储存需求,并具备相应的储能装置。

通过储存和合理调度能量,可以平衡供需关系,使能量分布更加稳定和高效。

分布式电源接入系统设计内容深度规定

分布式电源接入系统设计内容深度规定

目次前言 (III)1范围 (1)2规范性引用文件 (1)3术语和定义 (1)4设计依据和主要内容 (2)4.1设计依据......................................................................24.2设计范围......................................................................24.3设计边界条件..................................................................24.4设计主要内容 (2)4.5设计思路和研究重点 (2)5系统一次 (2)5.1电力系统现状概况及分布式电源概述 (2)5.2地区电网发展规划 (3)5.3接入系统方案 (3)5.4附图 (4)6系统二次 (4)6.1总体要求 (4)6.2继电保护 (4)6.3调度自动化 (4)6.4电能计量装置及电能量采集终端 (5)6.5接入系统二次设备清单及投资估算 (5)6.6附图 (5)7系统通信..........................................................................57.1概述..........................................................................57.2技术要求及选型................................................................67.3分布式电源通信方案............................................................67.4通道组织及话路分配............................................................67.5通信设备配置方案..............................................................67.6设备清单及投资................................................................67.7附图..........................................................................68接入系统方案经济技术比选..........................................................69结论 (6)编制说明 (7)I前言本标准在调查研究,总结国内分布式电源接入系统工程设计实践经验,参考国内外有关标准并在广泛征求意见的基础上编制而成。

基于软开关和均流技术的分布式电源系统设计

基于软开关和均流技术的分布式电源系统设计

[ ]郭 峰.S n g从 入 门 到精 通 [ .北 京: 华 大 学 出 版 6 O n M] 清
社 ,0 6 20 .
[ ]胡竞 , 3 王克宏.设计模 式与 Jv [ B O . t / tc. c . aa E / L] ht /eh ci p: d
n t c m/ u / ril / 3 3 a 9 7 p1 h m1 e. o p b at e c 0 c 4 10 .t .
— —
[ ]Ca l .S r gi ci [ .M rn ,0 7 7 ri Wa s p n atn M] alg2 0 . g l i n o i [ ]BinG R bnM. osJv aaO jcsM] ero d c— 8 r oi a R o.aaD t bet[ .P asnE ua
[ ]孙卫琴. 1 精通 Srt: t s基于 MV u C的 Jv We aa b设计与开发 [ . M] 北京 : 电子工业 出版社 , 0 4 20 . [ ]龚赤兵.利用 MV 2 C设计模 式运用到开发 Jv [ B O ] aa应 E / L .
ht / e h 1 3 c m/m / 3 6 2 0 06 2- 9 9 hm1 t /tc . 6 . o t 0 0 2 / 3 2 9 2 0. t . p:
旦经验童煎 旦
参 考 文献
仪 器仪 表用户
[ ]s r g系列 :S r g框 架 简介 [ B OL .hp:/ w im. 5 pn i pn i E / ] t / w w.b t
credvl ew rsc/aaw - r g/ o ee p rok/ njv/ as i l n o pn
摘要 : 文设计了一种分布式电源系统 , 本 其输入为单相交流 20 输出 2 V, 为 直 流 5 1 A 以 及 1V/0 V/0 5 2 A。 系 统 分 为 前 后 两 级 。 级 的 输 出 是 前 4 V。 8 同时 它 也是 后 级 的 输 入 。 系统 具 有 功 率 因数 校 正 功 能 。 而且 采 用 了软 开关 技 术 提 高效 率 。 此 外 由 于 使 用 了均 流 技 术 , 以 系 统 可 根 据 所 用户需要进行扩容。

分布式电源接入系统典型设计

分布式电源接入系统典型设计

(2016版)分布式电源接入系统典型设计【征求意见稿】国家电网公司2016年1月前言为配合《国家电网公司关于做好分布式电源并网服务工作的意见》及《国家电网公司关于促进分布式电源并网管理工作的意见》和《分布式电源接入配电网相关技术规定》的发布,国家电网公司发展部会同有关部门,组织国网北京经济技术研究院和江苏省电力设计院有限公司、上海电力设计院、南瑞电力设计有限公司、浙江浙电经济技术研究院、国网北京电力经济技术研究院、国网山东电力经济技术研究院、国网河北电力经济技术研究院、国网河南电力经济技术研究院、国网安徽电力经济技术研究院、国网山西电力经济技术研究院、国网宁夏电力经济技术研究院等12家设计、科研单位,吸收分布式电源并网的科研及设计实践成果,对接入10kV及以下配电网的分布式发电并网工程设计进行了统一的规范,形成了《分布式电源接入系统典型设计(2016版)》。

本典型设计是在2013年发布的《分布式电源接入系统典型设计》基础上,结合分布式电源的国家政策、标准,行业标准、企业标准及接入系统工程的具体情况,修订完成统一的分布式电源接入系统典型设计方案,包括8个光伏发电接入系统典型设计方案、6个风电接入系统典型设计方案、6个燃机接入系统典型设计方案和5个光伏扶贫项目接入系统典型案例。

全书共分六篇,第一篇为总论;第二篇为技术原则及方案划分;第三篇为光伏发电(逆变器型)接入系统典型方案及典型案例;第四篇为风电(异步电机型)接入系统典型方案;第五篇为燃机发电(同步电机型)接入系统典型方案;第六篇为光伏扶贫项目接入系统典型案例。

此外,考虑加强设计指导性,本典设补充编制了分布式电源接入配电台区参考容量表。

本典型设计自发布之日起可应用于分布式电源接入系统实际工程设计。

随着分布式电源发展和接入系统技术、设备水平的不断提升,典型设计将开展修编完善,满足后续应用需求。

典型设计编写组2016年1月目录第一篇总论 (1)第1章概述 (1)1.1 工作目的和意义 (2)1.2 设计原则 (3)1.3 工作方式 (3)1.4 设计范围及方案划分 (4)1.5 应用说明 (14)第2章工作过程 (17)第3章典型设计依据 (18)3.1 设计依据性文件 (18)3.2 主要设计标准、规程规范 (18)3.3 主要电气设备技术标准 (21)第二篇接入系统典型方案及技术原则 (22)第4章概述 (22)第5章系统一次设计及方案划分 (23)5.1 内容和深度要求 (23)5.2 主要原则及接入系统方案 (24)第6章系统继电保护及安全自动装臵 (46)6.1 内容与深度要求 (46)6.2 技术原则 (46)第7章系统调度自动化 (50)7.1 内容与深度要求 (50)7.2 技术原则 (50)第8章系统通信 (54)8.1 内容及深度要求 (54)8.2 技术原则 (54)第9章计量 (58)9.1 内容与深度要求 (58)9.2 技术原则 (58)第三篇光伏发电(逆变器型)接入系统典型设计方案 (61)第10章10K V接入公共电网变电站方案典型设计(XGF10-T-1) (61)10.1 方案概述 (61)10.2 接入系统一次 (61)10.3 接入系统二次 (66)第11章10K V接入公共电网开关站、环网室(箱)、配电室或箱变方案典型设计(XGF10-T-2) 8511.1 方案概述 (85)11.2 接入系统一次 (85)11.3 接入系统二次 (90)第12章10K V T接公共电网线路方案典型设计(XGF10-T-3) (113)12.1 方案概述 (113)12.2 接入系统一次 (113)12.3 接入系统二次 (118)第13章10K V接入用户开关站、环网室(箱)、配电室或箱变方案典型设计(XGF10-Z-1) . 13613.1 方案概述 (136)13.2 接入系统一次 (136)13.3 接入系统二次 (142)第14章380V接入公共电网配电箱/线路方案典型设计(XGF380-T-1) (165)14.1 方案概述 (165)14.2 接入系统一次 (165)14.3 接入系统二次 (169)第15章380V接入公共电网配电室、箱变或柱上变压器低压母线方案典型设计(XGF380-T-2)17315.1 方案概述 (173)15.2 接入系统一次 (173)15.3 接入系统二次 (179)第16章380V接入用户配电箱/线路方案典型设计(XGF380-Z-1) (182)16.1 方案概述 (182)16.2 接入系统一次 (182)16.3 接入系统二次 (189)第17章380V接入用户配电室、箱变或柱上变压器低压母线方案典型设计(XGF380-Z-2). 19217.1 方案概述 (192)17.2 接入系统一次 (192)17.3 接入系统二次 (197)第四篇风力发电(异步电机型)接入系统典型设计方案 (201)第18章10K V接入公共电网变电站方案典型设计(XFD10-T-1) (201)18.1 方案概述 (201)18.2 接入系统一次 (201)18.3 接入系统二次 (206)第19章10K V接入公共电网开关站、环网室(箱)、配电室或箱变方案典型设计(XFD10-T-2)22619.1 方案概述 (226)19.2 接入系统一次 (226)19.3 接入系统二次 (231)第20章10K V T接公共电网线路方案典型设计(XFD10-T-3) (256)20.1 方案概述 (256)20.2 接入系统一次 (256)20.3 接入系统二次 (261)第21章10K V接入用户开关站、环网室(箱)、配电室或箱变方案典型设计(XFD10-Z-1) . 28021.1 方案概述 (280)21.2 接入系统一次 (280)21.3 接入系统二次 (286)第22章380V接入公共电网配电室、箱变或柱上变压器低压母线方案典型设计(XFD380-T-1)30822.1 方案概述 (308)22.2 接入系统一次 (308)22.3 接入系统二次 (314)第23章380V接入用户配电室、箱变或柱上变压器低压母线方案典型设计(XFD380-Z-1). 31723.1 方案概述 (317)23.2 接入系统一次 (317)23.3 接入系统二次 (323)第五篇燃机(同步电机型)接入系统典型设计方案 (326)第24章10K V接入公共电网变电站方案典型设计(XRJ10-T-1) (326)24.1 方案概述 (326)24.2 接入系统一次 (326)24.3 接入系统二次 (330)第25章10K V接入公共电网开关站、环网室(室)、配电室或箱变方案典型设计(XRJ10-T-2)34725.1 方案概述 (347)25.2 接入系统一次 (347)25.3 接入系统二次 (350)第26章接入用户10K V开关站、环网室(箱)、配电室或箱变方案典型设计(XRJ10-Z-1). 37326.1 方案概述 (373)26.2 接入系统一次 (373)26.3 接入系统二次 (378)第27章380V接入公共电网配电室、箱变或柱上变压器方案典型设计(XRJ380-T-1) (400)27.1 方案概述 (400)27.2 接入系统一次 (400)27.3 接入系统二次 (404)第28章380V接入用户配电室、箱变或柱上变压器方案典型设计(XRJ380-Z-1) (408)28.1 方案概述 (408)28.2 接入系统一次 (408)28.3 接入系统二次 (412)第六篇光伏扶贫项目接入系统典型设计 (416)第29章概述 (416)第30章分布式光伏10K V集中接入典型设计案例(一) (419)30.1 案例概述 (419)30.2 当地配电网现状 (419)30.3 一次部分 (420)30.3 一次设备清单 (428)30.4 二次部分 (428)30.5 投资估算 (433)第31章分布式光伏10K V集中接入典型设计案例(二) (434)31.1 案例概述 (434)31.2 当地配电网现状 (434)31.3 一次部分 (435)31.4 二次部分 (441)31.5 投资估算 (446)第32章分布式光伏380V集中接入典型设计案例 (447)32.1 案例概述 (447)32.2 当地配电网现状 (447)32.3 一次部分 (448)32.4 二次部分 (457)32.5 投资估算 (460)第33章分布式光伏380V分散接入典型设计案例 (461)33.1 案例概述 (461)33.2 当地配电网现状 (461)33.3 一次部分 (463)33.4 二次部分 (469)33.5 投资估算 (472)第34章分布式光伏220V分散接入典型设计案例 (473)34.1 案例概述 (473)34.2 当地配电网现状 (473)34.3 一次部分 (474)34.4 二次部分 (481)34.5 投资估算 (483)附录A短路电流计算公式 (484)附录B送出线路导线截面 (486)附录C谐波电压与电流 (490)附录D电压异常时的响应特性 (491)附录E频率响应特性 (492)附录F变压器性能参数 (493)附录G分布式电源接入配电台区参考容量表 (498)第一篇总论第1章概述能源是国民经济发展的基础。

含分布式电源的配电网潮流计算毕业设计

含分布式电源的配电网潮流计算毕业设计

毕业论文毕业论文含分布式电源的配电网潮流计算摘要在分布式电源系统当中,主要是它和大电网的供电系统起到了一个相互补充和协调的作用,主要是利用了现有的综合设备以及资源,从而可以给用户提供一个更为良好的并且可靠的电能应用方式。

因为分布式电源通过了并网以后,它对于在各个地区的电网运行和在其结构当中都发生很大的变化,有一定的影响,所以,分布式的电源潮流计算就能起到了一定的作用,这也是作为评估的重要方式之一,作为优化电网运行重要的理论基础,通过长期的研究证明,技术已经较为成熟,有利于电网长足的发展。

现在,新能源开发利用的分布式发电技术已经成为了电力工业一个新的研究热点。

目前,国内外在研究基于分布式电源的潮流计算方法主要围绕在牛顿拉夫逊法(newton-raphson method,NR)、前推回代法、高斯Zbus 3 种方法。

在配电网潮流计算方面,本文分局接口的模型的不同将DG分为PQ,PV,PI和PQ(V)等四种节点类型,并为每种节点类型DG建立了潮流计算模型。

在传统潮流计算方法的基础上,结合各点类型DG的潮流计算模型,提出了适用于含不同类型DG的配电网潮流计算方法,并以IEEE33算例验证了算法的可行性。

关键词:配电网,分布式电源,潮流计算IIIABSTRACTIn the distributed power system, mainly it and large power grid power supply system to a mutual supplement and coordination role, mainly is the use of existing integrated equipment and resources, and can provide users with a more good and reliable electricity can be used.Because of the distributed power supply through the grid after it for power grid operation in various regions and in the structure have taken place great changes, certain influence, so distributed power flow calculation will be able to play a certain role, it is also regarded as one of the important ways to evaluate the, as an important theoretical basis for power grid operation optimization, through long-term research proof, technology has been more mature, is conducive to the rapid development of the grid.Now, new energy development and utilization of distributed generation technology has become a new research focus in the power industry. At present, research at home and abroad based on distributed power flow calculation method mainly focus on Newton Raphson (Newton-Raphson,NR), forward and backward substitution method, ZBUS Gauss 3 kinds of methods. In terms of power flow calculation, this paper divides DG into PQ, PV, PI and PQ (V) and other four kinds of node types, and establishes the power flow calculation model for each node type DG. In the traditional power flow calculation method based on, combined with the trend of the type of DG calculation model, is proposed, which can be used with different types of DG distribution network power flow calculation method, and the IEEE 33 examples to verify the feasibility of the algorithm.Keywords: Distribution Network, Distributed Power Supply, Power Flow CalculationIV目录摘要 (III)ABSTRACT (IV)目录 (V)第一章绪论 (7)1.1选题背景及意义 (7)1.2含分布式电源的配电网研究的现状 (8)1.2.1 分布式电源的发展及应用概况 (8)1.2.2 分布式电源的潮流算法研究现状 (9)1.3本文主要工作 (10)第二章分布式电源的建模 (11)2.1 太阳能光伏发电 (11)2.1.1 光伏发电的工作原理 (11)2.1.2 光伏发电的模型 (12)2.2 燃料电池 (14)2.2.1燃料电池的工作原理 (14)2.2.2 燃料电池的模型 (15)2.3 风力发电 (16)2.3.1 风力发电的工作原理 (16)2.3.2 风力发电的模型 (16)第三章配电网潮流计算 (19)3.1 配电网潮流计算的概述 (19)3.1.1 配电网潮流计算的基本要求 (19)3.2基于回路分析法的配电网潮流计算 (20)3.2.1回路分析法基础 (20)3.3基于回路分析法的潮流直接算法 (21)第四章含分布式电源的配电网潮流计算 (24)4.1分布式电源的模拟 (24)4.1.1 PQ恒定型分布式电源 (24)4.1.2 PI恒定型分布式电源 (24)4.1.3 PQ(V)分布式电源 (25)V4.1.4 PV恒定型分布式电源 (25)4.1.5 分布式电源的处理方法 (26)4.2含DG的潮流计算方法 (27)4.2.1 配电网拓扑结构的矩阵描述 (27)4.2.2 潮流算法的实现 (28)4.2.3 潮流算法的流程 (30)4.2.4 含DG配电网潮流计算方法的实现 (31)4.3算例分析 (32)结论 (34)参考文献 (35)附录 (37)致谢 (38)VI第一章绪论1.1选题背景及意义随着负荷的快速增长以及电力市场的逐步推行,传统的集中式发电已经不能满足当今社会对电力及能源供应的需求。

分布式电源接入系统设计内容深度规定

分布式电源接入系统设计内容深度规定

目次前言 (III)1范围 (1)2规范性引用文件 (1)3术语和定义 (1)4设计依据和主要内容 (2)4.1设计依据......................................................................24.2设计范围......................................................................24.3设计边界条件 (2)4.4设计主要内容 (2)4.5设计思路和研究重点 (2)5系统一次 (2)5.1电力系统现状概况及分布式电源概述 (2)5.2地区电网发展规划 (3)5.3接入系统方案 (3)5.4附图 (4)6系统二次 (4)6.1总体要求 (4)6.2继电保护 (4)6.3调度自动化 (4)6.4电能计量装置及电能量采集终端 (5)6.5接入系统二次设备清单及投资估算 (5)6.6附图 (5)7系统通信..........................................................................7.1概述..........................................................................57.2技术要求及选型................................................................67.3分布式电源通信方案............................................................67.4通道组织及话路分配............................................................67.5通信设备配置方案..............................................................67.6设备清单及投资................................................................67.7附图..........................................................................68接入系统方案经济技术比选..........................................................69结论 (6)编制说明 (7)I前言本标准在调查研究,总结国内分布式电源接入系统工程设计实践经验,参考国内外有关标准并在广泛征求意见的基础上编制而成。

分布式电源接入系统典型设计

分布式电源接入系统典型设计

分布式电源接入系统典型设计1.接口设计:分布式电源接入系统需要与电力系统中的主网进行连接。

为了确保安全可靠地将分布式电源接入到主网中,需要设计合适的接口。

接口设计应考虑主网电压、频率等参数,确保分布式电源能够稳定地接入主网。

2.保护设计:分布式电源接入系统需要具备保护功能,以确保电力系统的稳定运行。

保护设计包括过电压、过电流、短路等情况的保护措施,以防止分布式电源对电力系统造成损害。

3.网络通信设计:为了实现对分布式电源的管理和调度,分布式电源接入系统需要具备网络通信功能。

通信设计应考虑与电力系统中的监测设备、控制中心等进行数据交互,以实现对分布式电源的远程监控和调度。

4.电量计量设计:分布式电源接入系统需要对接入的分布式电源进行电量计量。

电量计量设计应具备精确的计量能力,以确保对分布式电源的电量进行准确统计。

5.控制与调度设计:分布式电源接入系统需要具备对分布式电源的控制和调度能力。

通过对接入分布式电源的输出功率进行控制和调度,可实现对电力系统的功率平衡和负荷调节。

6.数据管理设计:分布式电源接入系统需要对接入分布式电源的数据进行管理。

数据管理设计应包括数据采集、存储、分析和应用等功能,以提供对分布式电源接入情况的综合管理和分析。

7.安全性设计:分布式电源接入系统需要具备安全性设计,以保障系统运行的安全。

安全性设计包括系统防护、安全监测、数据加密等措施,以防止系统遭受恶意攻击或数据泄露。

8.故障检测与处理设计:分布式电源接入系统需要能够进行故障检测和处理。

通过对接入分布式电源的运行状态进行监测和诊断,及时发现故障并进行相应处理,以保证分布式电源接入系统的稳定运行。

综上所述,典型的分布式电源接入系统设计应包括接口设计、保护设计、网络通信设计、电量计量设计、控制与调度设计、数据管理设计、安全性设计以及故障检测与处理设计等方面。

这些设计可以提高分布式电源接入系统的安全性、可靠性和运行效率,实现对分布式电源的管理和调度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分布式电源系统设计
2008-3-7 14:24:00
分布式电源系统不再使用统一的直流电源给系统供电,而是对系统中不同设备、不同电路板、甚至对同一电路板上不同的电路采用不同的电源供电。

系统中低频电路和高频电路,小电流负载和大负载供电线路完全分离。

特别在低电压大电流负载时,采用较高电压传输到负载附近再用DC—DC变换模块降压供给负载。

系统中各电路的电源相对独立,减少了大电流传输线路,使系统的总效率有一定的提高,并且对可靠性和电磁兼容性问题也比较容易解决。

一、分布式电源系统结构
分布式电源系统可分为交流分布和直流分布两种基本结构。

每一种结构都可以采用不同的变换模块在深度和广度两个方面扩展,当然两种结构也可以互相渗透。

(一)交流分布式电源系统
交流分布式电源系统由多个AC—DC变换模块组成,每一块电路板或一个装置拥有一个AC—DC变换模块,典型结构如图9—30所示。

这种结构比较昂贵,因为每一个AC—DC变换模块都需具有整流滤波及抑制电磁干扰电路,也意味着交流电源线围绕整个系统,增加了电磁干扰敏感程度和安全问题。

然而,在某些情况下这种结构可能是正确的方案。

例如,某电信设备制造厂利用这种结构给某栋楼房中的电信设备供电。

每层楼使用一个AC—DC模块,配电结构如图9—31所示。

这种结构也应用于某电脑生产厂家的文件服务器中,如图9—32所示。

图中CPU板和每一个磁盘驱动器都使用一个AC—DC模块电源。

(二)直流分布式电源系统
直流分布式电源系统是应用最广泛的一种结构。

它一般包含一个交流前端AC—DC模块(或者多个前端模块并连,也可使用冗余技术),前端模块将交流电压变换成24、48V或300V的直流电压,形成直流分布总线。

利用直流总线传输到系统中每一个负载板上,由负载板上的DC—DC变换模块再来产生负载需要的直流电压。

这种DC—DC变换可能需要多次。

例如,某负载板上需要5 V和2.1V两种直流电压,5V电压可利用一个DC—DC模块从48V总线获得,2.1V电压用另一个DC—DC模块从5V电压获得比较好。

应该注意,在典型的电信设备中,前端模块不一定见到,因为48V直流总线也许从很远的地方传来,或许是由电池提供。

直流分布式电源系统典型结构如图9—33所示。

直流分布式电源系统可根据系统的实际需要,采用如图9—34所示的三种分布方式之一。

图9—34a采用按层分布方式,系统中的每一层设置一组DC—DC模块,为该层所有逻辑电路板或外围设备供电。

图9—34b采用按功能分布方式,系统中每一种功能部件采用一组DC—DC模块供电。

图9—34c采用单板分布方式。

系统中每一个逻辑板或磁盘驱动器都由自己的DC—DC模块提供合适的电压、电流。

例如,前面提到的文件服务器采用交流分布式电源系统,其实也可以采用直流分布式方案。

下面我们给两种不同规模的文件服务器采用单板分布方案设计电源系统。

中规模文件服务器包含一个CPU板和28个磁盘驱动器,分4层安装(每层7个驱动器),电源总功率小于750W;高端文件服务器包含一个CPU板和56个磁盘驱动器,分8层安装,电源总功率小于1500 W。

两种文件服务器可采用相同类型的模块电源和同一方式的电源系统,只是模块电源的数量不同而已,因此,可节省相当大的开发时间和论证费用。

首先需要750W的交流前端AC—DC模块将交流电源变换成48V直流电源。

为了提高可靠性采用N+1冗余方案,中规模文件服务器前端模块需要1+1冗余,高端文件服务器前端模块需要2+1冗余。

其次,给CPU板和每一个磁盘驱动器配置一个30W双路输出DC—DC模块就可以了。

当然,对系统中每一个磁盘驱动器也可以使用N+1冗余方案,由于成本太高,如非特别需要一般不用。

二、分布式电源系统特点
(一)分布式电源系统的主要优点
(1)安全可靠性高由于各部分电源相对比较独立,采用冗余技术或备用电池比较方便,局部电源功率较小,散热及安全保护措施也容易实现,部分电源出现故障不大会影响整个系统正常运行。

(2)适应性强由于将整个电源系统化整为零,各部分电源选择比较灵活,容易实现最佳配置。

而且,同一设计方案,稍加修改可用于其他系统。

更突出的是,如果在系统设计后期需要修改方案,也只是局部修改,不必重新设计整个系统,使系统重构容易并且减少许多浪费。

(3)系统效率高,输出电压稳定性好由于减少了低电压、大电流直流输出线路,线路损耗低,系统效率必然提高。

各个负载所需要的电源就地产生,负载与电源距离近,减少了线路阻抗对调整性能的影响,也减少了干扰信号对负载的影响,因而输出电压稳定性较好。

(4)电磁兼容性能优越由于电源比较分散,抑制电磁干扰的方案比较容易实现。

例如,大电流与小电流负载隔离,大电流波动不会影响小电流电源,并且可利用系统的控制功能,使几个功率较大的负载分时启动,减少系统大电流的冲击。

(二)分布式电源系统的缺点
尽管分布式电源系统有上述诸多优点,仍然有它的不足之处:
(1)系统设计比较繁琐分布式系统需要多级变换,前级与后级之间电压、电流匹配,同一级各变换模块之间电流均衡等都要仔细核算。

随着系统变换级的增多,电源系统管理任务增大。

例如,电源时序管理、故障检测等。

(2)材料费用高因为每一个转换级都是一个完整的变换模块,电源系统的材料费用必然会高些。

但是从整个系统整体费用来看,分布式电源也许比集中式电源要便宜得多。

例如,从维修费用去看,集中式电源比分布式电源要高。


为集中式电源发生故障时,整个电源都要更换,而分布式电源只要更换部分模块;集中式电源发生故障时,整个系统要停机,分布式电源需要停机可能性小,停机损失费用集中式电源要高些;另外,集中式电源一般平均无故障时间(MTBF)为100000h,而高密度模块电源一般为1000000h,显然集中式电源附加维修费用高。

三、分布式电源设计注意事项
(1)尽量减少电源种类电源系统设计时,首先要满足电子系统对电源的各种功能和技术条件的要求;其次要考虑电源系统的管理和维护方便,尽量合并性能相近的电源。

(2)尽量减少功率变换模块输入电压与输出电压之间的压差减少功率变换模块的压差,不仅会提高电源的效率,也会减少电源的造价。

例如,开关型变换器中的压差减少将会降低对电源中各种元器件的要求,电源的造价必然会减少。

对线性模块来说,减少压差必然会使调整元器件的功耗降低,从而提高电源效率。

(3)要留有一定的余量所谓余量实际上就是降额使用。

现代电子系统中,数字电路占有很大的份额,而数字电路中的电压电流都是脉冲波形,虽然平均功率不是很大,但瞬时功率的数值很可观,没有功率余量的电源很可能使整个电子系统崩溃。

(4)尽量采用按功能分布式方案根据电子系统中的各种功能部件分别设计稳压电路。

例如,数字电路、模拟电路、大功率输出电路应采取分别供电的方式,尽量减少这些电源之间的相互影响。

(5)尽量减少负载与电源之间的距离负载与电源之间的距离缩短,一方面可以降低电源系统的造价,另一方面可提高电源系统的抗干扰度和可靠性。

相关文档
最新文档