目标跟踪算法的研究毕业论文

合集下载

《2024年目标跟踪算法综述》范文

《2024年目标跟踪算法综述》范文

《目标跟踪算法综述》篇一一、引言目标跟踪是计算机视觉领域的重要研究方向之一,其应用广泛,包括视频监控、人机交互、自动驾驶等领域。

目标跟踪算法的主要任务是在视频序列中,对特定目标进行定位和跟踪。

本文旨在全面综述目标跟踪算法的研究现状、基本原理、技术方法以及发展趋势。

二、目标跟踪算法的基本原理目标跟踪算法的基本原理是通过提取目标特征,在视频序列中寻找与该特征相似的区域,从而实现目标的定位和跟踪。

根据特征提取的方式,目标跟踪算法可以分为基于特征的方法、基于模型的方法和基于深度学习的方法。

1. 基于特征的方法:该方法主要通过提取目标的颜色、形状、纹理等特征,利用这些特征在视频序列中进行匹配和跟踪。

其优点是计算复杂度低,实时性好,但容易受到光照、遮挡等因素的影响。

2. 基于模型的方法:该方法通过建立目标的模型,如形状模型、外观模型等,在视频序列中进行模型的匹配和更新。

其优点是能够处理部分遮挡和姿态变化等问题,但模型的建立和更新较为复杂。

3. 基于深度学习的方法:近年来,深度学习在目标跟踪领域取得了显著的成果。

该方法主要通过训练深度神经网络来提取目标的特征,并利用这些特征进行跟踪。

其优点是能够处理复杂的背景和目标变化,但需要大量的训练数据和计算资源。

三、目标跟踪算法的技术方法根据不同的应用场景和需求,目标跟踪算法可以采用不同的技术方法。

常见的技术方法包括基于滤波的方法、基于相关性的方法和基于孪生网络的方法等。

1. 基于滤波的方法:该方法主要通过设计滤波器来对目标的运动进行预测和跟踪。

常见的滤波方法包括卡尔曼滤波、光流法等。

2. 基于相关性的方法:该方法通过计算目标与周围区域的相关性来实现跟踪。

常见的相关性方法包括基于均值漂移的算法、基于最大熵的算法等。

3. 基于孪生网络的方法:近年来,基于孪生网络的跟踪算法在准确性和实时性方面取得了显著的进步。

该方法通过训练孪生网络来提取目标和背景的特征,并利用这些特征进行跟踪。

目标跟踪 综述

目标跟踪 综述

目标跟踪综述目标跟踪是指在视频监控系统或图像处理中,将特定目标物体从连续变化的场景中进行定位和跟踪的技术。

目标跟踪是计算机视觉和模式识别领域的重要研究方向,广泛应用于视频监控、安防、智能交通等领域。

目标跟踪的主要目标是识别、跟踪和通过目标位置预测目标的未来位置。

它可以根据目标的外观、形状、运动、上下文等特征进行分类和识别,然后通过复杂的算法在连续帧的图像序列中跟踪目标位置的变化。

目标跟踪技术需要解决很多挑战,如光照变化、目标遮挡、视角变化、背景干扰等。

为了克服这些挑战,研究人员提出了许多不同的目标跟踪方法。

基于特征的目标跟踪是最常见的方法之一。

它通过提取目标的某些特定特征(如颜色、纹理、形状等)并根据这些特征进行匹配来实现目标的跟踪。

这种方法有助于解决目标外观的变化和光照变化等问题,但对于目标遮挡和背景干扰等情况仍然面临困难。

另一种常用的目标跟踪方法是基于模型的方法。

这种方法使用事先训练的模型来描述目标的外观和形状,并通过将模型对应到当前图像中来进行目标的跟踪。

这种方法对于目标外观和形状的变化有一定的适应性,但需要大量的训练数据,并且对于复杂场景中的目标遮挡和背景干扰效果较差。

最近,深度学习技术的发展为目标跟踪提供了新的解决方案。

通过使用深度神经网络对图像进行特征提取和分类,在目标跟踪任务中取得了很好的效果。

深度学习方法能够自动学习目标的特征表示,对于复杂的目标和场景具有较强的鲁棒性。

总之,目标跟踪是计算机视觉和模式识别领域中的重要研究方向。

随着技术的不断进步,目标跟踪方法越来越成熟,并且在实际应用中得到了广泛的使用。

未来,我们可以期待更高效、准确和鲁棒的目标跟踪算法的发展。

《微型无人机目标跟踪控制策略研究》

《微型无人机目标跟踪控制策略研究》

《微型无人机目标跟踪控制策略研究》一、引言随着科技的不断进步,微型无人机(也称为无人飞行器)的应用越来越广泛。

其在军用和民用领域的多任务执行能力已经成为众多研究者关注的焦点。

特别是在目标跟踪这一重要应用中,如何实现高效、精准的跟踪控制成为了研究的热点。

本文旨在探讨微型无人机目标跟踪控制策略的研究现状、方法及未来发展趋势。

二、目标跟踪的重要性与挑战目标跟踪是无人机应用中不可或缺的一环,它涉及到无人机的导航、定位、避障以及与目标的交互等关键技术。

在执行任务时,如何保持对目标的持续追踪并实现快速响应,对于提高无人机的执行效率和准确性具有重要意义。

然而,由于目标可能存在多种不同的特性(如动态变化、形状复杂、表面颜色变化等),加上外部环境的复杂多变(如风力影响、信号干扰等),给微型无人机的目标跟踪带来了巨大的挑战。

三、目标跟踪控制策略的研究现状针对上述挑战,目前已经有多项控制策略被提出并应用在微型无人机的目标跟踪中。

这些策略主要包括基于视觉的跟踪、基于激光雷达的跟踪以及基于多传感器融合的跟踪等。

1. 基于视觉的跟踪:通过搭载摄像头等视觉传感器,实现对目标的视觉识别和跟踪。

这种方法具有成本低、操作简便等优点,但受环境光线的变化和遮挡等因素影响较大。

2. 基于激光雷达的跟踪:激光雷达能够提供目标的精确位置信息,实现对目标的精准定位和跟踪。

但其价格较高,且易受大气环境影响。

3. 基于多传感器融合的跟踪:通过融合多种传感器的信息,实现对目标的全方位、多角度的跟踪。

这种方法能够有效地克服单一传感器的局限性,提高目标跟踪的准确性和稳定性。

四、新型控制策略的研究与探讨除了传统的控制策略外,还有一些新型的控制策略也在研究中,如基于深度学习的目标跟踪算法、基于强化学习的控制策略等。

这些新型策略能够更好地适应复杂多变的环境,提高目标跟踪的效率和准确性。

1. 基于深度学习的目标跟踪算法:通过训练深度学习模型,实现对目标的快速识别和准确跟踪。

目标检测及跟踪技术研究及应用

目标检测及跟踪技术研究及应用

目标检测及跟踪技术研究及应用一、绪论目标检测及跟踪技术是计算机视觉中重要的研究领域,其应用涵盖各种领域,如视频监控、自动驾驶、智能手机相机、虚拟现实等。

本文将对目标检测及跟踪技术的研究现状及其应用进行综述。

二、目标检测技术目标检测技术是指在图像或视频中检测出感兴趣的目标。

常见的目标检测算法有:1. 基于颜色、形状和纹理特征的目标检测方法,如颜色过滤、形态学处理、边缘检测等;2. 基于人工神经网络(ANN)、深度神经网络(DNN)、支持向量机(SVM)等机器学习算法的目标检测方法,如YOLO、Faster R-CNN、SSD等;3. 基于特征点的目标检测方法,如SIFT、SURF、ORB等。

三、目标跟踪技术目标跟踪技术是指在视频序列中追踪目标的位置、大小和形状等属性。

常见的目标跟踪算法有:1. 基于滤波的目标跟踪方法,如卡尔曼滤波、粒子滤波等;2. 基于特征点的目标跟踪方法,如KLT、TLD、CSK等;3. 基于区域的目标跟踪方法,如MIL、LOT等;4. 基于深度学习的目标跟踪方法,如SiamFC、SiamRPN等。

四、技术应用1. 视频监控领域:目标检测及跟踪技术可以应用于视频监控系统中,用于检测和追踪行人、车辆等目标,实现智能识别和报警功能。

2. 自动驾驶领域:目标检测及跟踪技术可以应用于自动驾驶车辆中,实现对路面交通标志、行人、车辆等目标的识别和跟踪,实现车辆的自主导航和安全驾驶。

3. 智能手机相机领域:目标检测及跟踪技术可以应用于智能手机相机中,用于实现人脸识别、手势识别、拍摄稳定等功能,提高用户的摄影体验。

4. 虚拟现实领域:目标检测及跟踪技术可以应用于虚拟现实技术中,用于实现对用户手部和头部的追踪,提高交互体验。

五、结论目标检测及跟踪技术是计算机视觉中的重要研究领域,其应用既广泛又深入。

本文综述了目标检测及跟踪技术的研究现状及其应用情况,对相关领域的研究和发展具有重要的指导意义。

《遮挡和尺度变换场景下目标跟踪算法的研究与跟随系统的设计》范文

《遮挡和尺度变换场景下目标跟踪算法的研究与跟随系统的设计》范文

《遮挡和尺度变换场景下目标跟踪算法的研究与跟随系统的设计》篇一一、引言目标跟踪作为计算机视觉领域的一项重要技术,被广泛应用于智能监控、无人驾驶、人机交互等众多领域。

然而,在实际应用中,遮挡和尺度变换等复杂场景下的目标跟踪问题一直是研究的难点。

本文将针对遮挡和尺度变换场景下的目标跟踪算法进行研究,并设计一套有效的跟随系统。

二、遮挡和尺度变换下的目标跟踪算法研究1. 遮挡问题研究遮挡是目标跟踪过程中的常见问题,当目标被其他物体遮挡时,传统的跟踪算法往往会出现跟踪失败或跟踪漂移的现象。

为了解决这一问题,我们可以采用基于深度学习的目标跟踪算法,如Siamese网络、孪生网络等。

这些算法通过学习目标的外观特征和运动规律,能够在一定程度上应对部分遮挡和完全遮挡的情况。

2. 尺度变换问题研究尺度变换是另一个影响目标跟踪性能的重要因素。

当目标在运动过程中发生尺度变化时,传统的跟踪算法往往无法准确估计目标的实际大小和位置。

针对这一问题,我们可以结合目标检测技术,采用多尺度特征融合的方法来提高跟踪的鲁棒性。

具体而言,我们可以将不同尺度的特征图进行融合,以便更好地适应目标尺度的变化。

三、跟随系统的设计1. 系统架构设计本系统采用模块化设计思想,主要包括目标检测模块、特征提取模块、跟踪模块和用户交互模块。

其中,目标检测模块负责检测视频中的目标对象;特征提取模块负责提取目标的外观特征和运动特征;跟踪模块则根据提取的特征进行目标跟踪;用户交互模块则负责与用户进行交互,提供友好的操作界面。

2. 具体实现(1)目标检测模块:采用基于深度学习的目标检测算法,如Faster R-CNN、YOLO等,对视频中的目标进行检测。

(2)特征提取模块:提取目标的外观特征和运动特征。

外观特征可以通过深度学习网络进行提取,而运动特征则可以通过光流法或相关滤波器进行计算。

(3)跟踪模块:采用上述研究的遮挡和尺度变换下的目标跟踪算法,根据提取的特征进行目标跟踪。

基于生成式模型的目标跟踪方法综述

基于生成式模型的目标跟踪方法综述
a t i v e a l g o i r t h m i f n d s o u t t h e m o s t s i mi l a r a r e a w i t h o b j e c t f r o m b a c k g r o u n d b y c l a s s i i f e r . I n t h e
式方法和判别式方法对 比分析 , 针对生成式算法中的两个最核心问题一 目标表示方法、 目标模型一 的 研 究现状 通过 分 为不 同的类别进 行 纵横 对 比综述 ,然 后分 类描 述 出了 2 0 0 8年 至 2 0 1 4年 出现 的效果
比较好 的生成式算法, 最后对基于生成式模型 目 标跟踪的未来进行展望。 关 键词 : 判别 式方 法 ; 生成 式 方法 ; 生成 式模 型 ; 目标 跟踪 ; 目标模 型 ; 目标 表 示方 法

微机软件 ・
基 于生成式模型 的 目标跟踪方法综述
朱文青 1 , 2 , 刘 艳 , 卞 乐 一 , 张子龙 1 , 2
( 1 . 河海大学物联 网工程学院, 常州 2 1 3 0 2 2 ; 2 . 常州市传感 网与环境感知重点实验室, 常州 2 1 3 0 2 2 ) 摘

要: 目 标跟踪技术因其在视 频监控、 人机 交互 以及交通检测等实际应用 中有着广泛的应用,
直是计算机视觉领域研究的热点之一。传统的判别式算法通过分类器从背景 中找 出与 目 标最为相 似 的区域。为 了 取得更好 的跟踪效果 , 近年来越来越 多的学者采用生成式算法跟踪 目标。 首先对生成
( J . C o l l e g e o fl n t e r n e t fT o h i n g s E n g i n e e n n g , Ho h m U n i v e r s i t y, C h a n sh g o u 2 1 3 0 2 2 , C h i n c h "

《2024年目标跟踪算法综述》范文

《2024年目标跟踪算法综述》范文

《目标跟踪算法综述》篇一一、引言目标跟踪是计算机视觉领域的一个重要研究方向,广泛应用于视频监控、智能驾驶、人机交互等众多领域。

随着深度学习技术的发展,目标跟踪算法取得了显著的进步。

本文旨在全面综述目标跟踪算法的研究现状、主要方法和挑战,以期为相关研究提供参考。

二、目标跟踪算法的研究现状目标跟踪算法的发展历程可以追溯到上世纪中期,经历了从传统方法到深度学习方法的发展。

传统方法主要依赖于特征提取和匹配,而深度学习方法则通过学习大量数据来提高跟踪性能。

近年来,随着深度学习的广泛应用,基于深度学习的目标跟踪算法成为了研究热点。

三、主要目标跟踪算法1. 基于特征的方法基于特征的方法是早期目标跟踪的主要方法。

该方法首先提取目标对象的特征,然后在视频帧中搜索与该特征相似的区域。

常见的特征包括颜色、纹理、边缘等。

然而,这种方法对于复杂场景和动态背景的适应性较差。

2. 基于模型的方法基于模型的方法通过建立目标的模型来进行跟踪。

该方法首先从视频帧中提取目标对象,然后使用模型对目标进行描述和预测。

常见的模型包括模板匹配、支持向量机等。

这种方法对于模型的准确性和泛化能力要求较高。

3. 基于深度学习的方法基于深度学习的方法是近年来目标跟踪算法的研究热点。

该方法通过学习大量数据来提取目标的特征和模型,从而提高跟踪性能。

常见的深度学习方法包括卷积神经网络(CNN)、循环神经网络(RNN)等。

深度学习方法对于复杂场景和动态背景的适应性较强,但需要大量的训练数据和计算资源。

四、主要挑战与解决方法1. 目标形变与遮挡目标形变和遮挡是目标跟踪中的主要挑战之一。

为了解决这一问题,研究者们提出了各种方法,如使用更复杂的模型来描述目标、引入遮挡检测机制等。

此外,基于深度学习的方法也可以通过学习目标的形态变化和遮挡情况来提高跟踪性能。

2. 背景干扰与噪声背景干扰和噪声会影响目标的准确跟踪。

为了解决这一问题,研究者们提出了使用更鲁棒的特征提取方法和背景抑制技术。

红外小目标检测与跟踪算法研究共3篇

红外小目标检测与跟踪算法研究共3篇

红外小目标检测与跟踪算法研究共3篇红外小目标检测与跟踪算法研究1红外小目标检测与跟踪算法研究红外小目标检测和跟踪是指根据红外图像信息,识别出图像中的小目标,并跟踪其运动轨迹。

这一领域与军事、安防等方面有着重要的应用价值。

针对这一问题,目前已经涌现出了很多相关的研究成果。

红外小目标检测与跟踪技术的研究主要面临着两个关键难题:一是如何从复杂的背景中准确提取出目标;二是如何在目标运动轨迹复杂多变的情况下,实现对目标的快速、准确跟踪。

在红外小目标检测方面,常用的方法主要有基于像素的方法和基于特征的方法。

基于像素的方法是指利用像素的灰度信息进行目标提取,例如常用的背景差分法和帧间差分法。

这些方法简单易于实现,但是对目标和背景的分离要求较高,在存在强烈噪声和变化的情况下效果可能不佳。

相比之下,基于特征的方法则能更好地克服这些问题。

其中,既有基于几何形状特征的方法,如Hough变换、连通区域分析等;也有基于局部纹理、颜色特征的方法,如基于Gabor滤波器、小波变换等方法。

利用人工神经网络可以对进一步的信息抽取,从而提高检测性能。

这些方法对目标的提取效果较好,但是对搜索速度和目标方向变化较快的情况下稳定性还有待进一步提高。

针对红外小目标跟踪问题,目前常用的方法主要有基于模型预测的方法和基于特征匹配的方法。

基于模型预测的方法即通过先验知识,构建出目标的运动模型,再通过运动模型预测目标在下一帧中的位置,从而实现对目标的跟踪。

该方法具有较强的鲁棒性和准确性,但是需要较多的先验知识和手工定义。

基于特征匹配的方法则是利用图像中不同区域之间的共性特征,如颜色、纹理等信息,实现对目标的跟踪。

该方法容易实现,但对目标的选择、特征提取等方面存在较大的挑战。

除此之外,还有一些新兴的算法应用在红外小目标检测和跟踪中,如卷积神经网络(CNN)和深度学习等技术。

这些方法通过检测和跟踪的联合优化,实现了对目标的更加准确和稳定的跟踪。

在将红外小目标检测和跟踪技术广泛应用于实际工程中时,我们需要考虑实际应用中的问题,如复杂场景下的干扰、恶劣的天气条件等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (1)ABSTRACT (2)第一章绪论 (4)1.1课题研究背景和意义 (4)1.2国外研究现状 (5)1.3本文的具体结构安排 (7)第二章运动目标检测 (8)2.1检测算法及概述 (8)2.1.1连续帧间差分法 (9)2.1.2背景去除法 (11)2.1.3光流法 (13)第三章运动目标跟踪方法 (16)3.1引言 (16)3.2运动目标跟踪方法 (16)3.2.1基于特征匹配的跟踪方法 (16)3.2.2基于区域匹配的跟踪方法 (17)3.2.3基于模型匹配的跟踪方法 (18)3.3运动目标搜索算法 (18)3.3.1绝对平衡搜索法 (18)3.4绝对平衡搜索法实验结果 (19)3.4.1归一化互相关搜索法 (21)3.5归一化互相关搜索法实验结果及分析 (22)第四章模板更新与轨迹预测 (26)4.1模板更新简述及策略 (26)4.2轨迹预测 (28)4.2.1线性预测 (29)4.2.2平方预测器 (30)4.3实验结果及分析: (31)致 (36)参考文献 (37)毕业设计小结 (38)摘要图像序列目标跟踪是计算机视觉中的经典问题,它是指在一组图像序列中,根据所需目标模型,实时确定图像中目标所在位置的过程。

它最初吸引了军方的关注,逐渐被应用于电视制导炸弹、火控系统等军用备中。

序列图像运动目标跟踪是通过对传感器拍摄到的图像序列进行分析,计算出目标在每帧图像上的位置。

它是计算机视觉系统的核心,是一项融合了图像处理、模式识别、人工只能和自动控制等领域先进成果的高技术课题,在航天、监控、生物医学和机器人技术等多种领域都有广泛应用。

因此,非常有必要研究运动目标的跟踪。

本论文就图像的单目标跟踪问题,本文重点研究了帧间差分法和背景去除法等目标检测方法,研究了模板相关匹配跟踪算法主要是:最小均方误差函数(MES),最小平均绝对差值函数(MAD)和最大匹配像素统计(MPC)的跟踪算法。

在跟踪过程中,由于跟踪设备与目标的相对运动, 视野中的目标可能出现大小、形状、姿态等变化, 加上外界环境中的各种干扰, 所要跟踪的目标和目标所在的场景都发生了变化, 有可能丢失跟踪目标。

为了保证跟踪的稳定性和正确性, 需要对模板图像进行自适应更新。

由于目标运动有一定得规律,可以采取轨迹预测以提高跟踪精度,本文采用了线性预测法。

对比分析了相关匹配算法的跟踪精度和跟踪速度;对比不采用模板更新和模板跟新的跟踪进度和差别,实验表明,跟踪算法加上轨迹预测及模板跟新在很大程度上提高了跟踪帧数,提高了跟踪精度,具有一定的抗噪声性能。

关键词:目标跟踪,目标检测,轨迹预测,模板更新ABSTRACTTarget tracking, image sequence is a classic computer vision problems, it is defined as a set of image sequences, in accordance with requirements of the target model, real-time images to determine the location of the target process. It initially attracted the concern of the military has gradually been applied to television-guided bombs, fire control systems for military preparation. Moving target tracking sensor is taken through the image sequence analysis, to calculate the target image in each frame position. It is the core of computer vision system is a combination of image processing, pattern recognition, artificial only and the results of automatic control in areas such as advanced high-tech issues in the aerospace, control, biomedical and robotics fields, etc. There are widely used. Thus, it is necessary to study the tracking of moving targets.In this paper, the image of the single-target tracking problem, research the target detection method is mainly based on inter-frame difference and background removal method to detect the target in preparation for target tracking. Template matching tracking algorithm is: the smallest mean square error function (MES), the smallest mean absolute difference function (MAD) and the maximum matching pixelstatistics (MPC) of the tracking algorithm. In the tracking process, due to the relative camera movement with the goal, the goal of vision may occur in size, shape, gesture, such as changes in the external environment combined with the various kinds of interference, as well as over time, to track where the goals and objectives scene changes have taken place, it is possible to track the target is lost. In order to ensure the stability and tracking accuracy, the need for adaptive template image update. Since the goal of movement must be the law of the forecast track could take to improve the tracking precision, this article uses the square of the linear prediction method and prediction method.Analysis of the relevant matching algorithm to track the tracking accuracy and speed; contrast do not use templates and template updates with the new tracking the progress and differences in the experiment proved that the tracking algorithm with trajectory prediction and templates to a large extent with the new frame to improve tracking,Improved tracking accuracy, which has strong anti-noise performance.Key words: Target tracking ,Target Detection ,Trajectory Prediction,Template Update第一章绪论本章首先讨论了目标跟踪的研究背景和意义;介绍了目标跟踪在国外的研究现状;接着讨论了目标跟踪研究中面临的困难和待解决的问题;最后介绍了本文的主要工作和总体结构。

1.1课题研究背景和意义运动目标跟踪在军事、智能监控、人机界面、虚拟现实、运动分析等许多领域有着广泛的应用前景,在科学和工程中有着重要的研究价值,吸引了国外越来越多研究者的兴趣。

图像序列中的运动目标跟踪,就是在各帧图像中检测出各个独立运动的目标,或是用户感兴趣的运动区域(如人体、车辆等),并且提取目标的位置信息,得到各个目标的运动轨迹。

其实质是通过对传感器获取的图像序列进行分析,得到目标在每帧图像中的位置、速度及加速度等特征参数。

图1-1目标跟踪原理图国外学者对目标跟踪算法进行了大量深入的研究,取得了令人瞩目的研究成果。

但是,现有的目标跟踪算法大多受限于特定的应用背景,跟踪算法还有待于进一步研究和深化,研究一种具有鲁棒性和实时性、适用性强的目标跟踪方法依然面临着巨大挑战。

目前,运动目标跟踪算法的主要难点有:复杂背景下的运动目标提取、目标之间的相互遮挡以及目标与背景之间的遮挡、阴影处理、多摄像机的数据融合等。

尤其是遮挡和阴影问题,它们普遍存在于现实环境中,严重影响跟踪算法的可靠性和适用性。

本文重点研究了序列图像的几种常用跟踪方法。

1.2国外研究现状目标跟踪就是通过对摄像机获得的图像序列进行分析,计算出目标在每帧图像上的二维位置坐标,并根据不同的特征值,将图像序列中不同帧之间同一运动目标关联起来,得到各个运动目标完整的运动轨迹,即在连续的图像序列中建立运动目标的对应关系。

目前,国外学者提出了许多不同的跟踪算法和跟踪系统,可以按照不同的划分依据对跟踪算法进行不同的分类:就跟踪对象而言,可以分为车辆跟踪、人体跟踪或人体部分跟踪(如跟踪手、脸、头和脚等身体部分)等;就跟踪目标个数而言,可以分为单目标跟踪和多目标跟踪;就跟踪视角而言,可以分为单摄像机的单一视角、多摄像机的多视角和全方位视角;还可以通过摄像机类型(红外摄像机、可见光摄像机)、摄像机状态(运动、固定)、跟踪空间(二维、三维)和跟踪环境(室、室外)等方面来进行分类。

相关文档
最新文档