线性代数赵树嫄所有定理共24页文档

合集下载

赵树源线性代数线性代数第1讲

赵树源线性代数线性代数第1讲
a a a 1 j1 2 j2 3 j3 j1j2j3为三级排列, 当j1j2j3取遍了3级排列时, 即得到三阶行列式的所有项(不包含符号), 共为3!=6项.
24
(2) 每一项的符号是, 当这一项中元素的 行标按自然数顺序排列后, 如果对应的列 标构成的排列是偶排列则取正号, 是奇排 列则取负号. 如在上述二阶行列式中, 当 N(j1j2)为偶数时取正号, 为奇数时取负号; 在上述三阶行列式中, 当N(j1j2j3)为偶数 时取正号, 为奇数时取负号.
13
例如, 排列23154中, 2在1前面, 3在1前面, 5在4 前面, 共有3个逆序, 即
N(23154)=3, 所以23154为奇排列. 排列12…n的逆序数是零, 是偶排列. 例如, 由1,2,3这3个数码组成的3个数码组成的 3级排列共有3!=6种. 其排列情况可列成表.
14
表1-1
排列 123 132 213 231 312 321
22
(1) 二阶行列式表示所有不同的行不同的 列的两个元素乘积的代数和. 两个元素的 乘积可以表示为
a a 1 j1 2 j2 j1j2为2级排列, 当j1j2取遍了2级排列(12, 21) 时, 即得到二阶行列式的所有项(不包含符 号), 共为2!=2项.
23
三阶行列式表示所有位于不同的行不同 的列的3个元素乘积的代数和. 3个元素 的乘积可以表示为
6
画线法记忆
a11
a12
a13
a21
a22
a23
a31
a32
a33
+ +
+
7
例1. 1 23 4 0 5 1 0 6 + 2 5 (1) + 3 4 0 1 0 6 1 5 0 2 4 6 3 0 (1) 10 48 58

人民大2024赵树嫄《线性代数(第六版)》PPT第四章 特征值问题和矩阵的对角化

人民大2024赵树嫄《线性代数(第六版)》PPT第四章 特征值问题和矩阵的对角化
第四章
1
本章介绍矩阵的特征值、特征向量以及矩阵对 角化的问题。
2
第一节 矩阵的特征值与特征向量
(一) 矩阵的特征值 定义 设 A 是一个 n 阶方阵,如果存在一个数 , 以及一个非零 n 维列向量 ,使得
A
则称 为矩阵 A 的特征值,而 称为矩阵 A 的属于 特征值 的特征向量。
说明: 1、特征值问题是针对方阵而言的; 2、特征向量必须是非零向量; 3、特征向量既依赖于矩阵A,又依赖于特征值λ。
的特征向量。
证 (2) A 0 A( A ) A(0 ) 0 ( A ) 0(0 ) ,
即 A2 20 ,
重复这个过程, 可得 A3 30 , , Am 0m .
27
性质2 设 0 是矩阵 A 的特征值, 是相应的特征向量,则
(1) k0 是kA 的特征值(k 是任意常数);
26
性质2 设 0 是矩阵 A 的特征值, 是相应的特征向量,则
(1) k0 是kA 的特征值(k 是任意常数);
(2) m0 是 Am 的特征值(m 是正整数);
(3) 当 A 可逆时,0 0 ,且01 是A1 的特征值.
且 仍然是矩阵kA 、Am 、A1 的相应于特征值k0 、m0 、
1 0
2 1 1 解 | E A | 0 2 0
4 1 3
( 2)2( 1) 0 ,
所以A的特征值为 1 2(二重根), 2 1 .
21
2 1 1 | E A | 0 2 0 , 1 2(二重根), 2 1 .
4 1 3
4

1
2 ,2 E
A
0
1 0
1 4 0 0
3
特征值与特征向量的计算方法:

线性代数3-3(第四版)赵树嫄

线性代数3-3(第四版)赵树嫄

设1(1 2) 2(1/2 2) 有122 由此可得 1220 即1 2线性相关
《线性代数》 (第四版)教学课件
首页 上一页 下一页 结束
(二)关于线性组合与线性相关的定理
定理37 向量组1 2 s(s2)线性相关的充分必要条件是 其 中至少有一个向量是其余s1个向量的线性组合 定理38 如果向量组1 2 s 线性相关 而1 2 s线性无 关 则向量可由向量组1 2 s线性表示且表示法唯一 举例 任何一个向量 (a1 a2 an) 都可由初始单位向量组 1(1 0 0) 2(0 1 0) n(0 0 1)唯一地线性表 示 即 a11a22 ann
《线性代数》 (第四版)教学课件
首页
上一页
下一页
结束
例5 证明 如果向量组 线性无关 则向量组 亦线性无关 证 设有一组数k1 k2 k3使 k1()k2()k3()0 成立 整理得 (k1k3)(k1k2)(k2k3)0 因为向量组 线性无关 故
k k3 0 1 0 k1 k2 k2 k3 0 该方程组的系数行列式D20
提示
1 0 1 D 1 1 0 20 0 1 1
所以该方程组只有零解k1k2k30 从而 线性无关
《线性代数》 (第四版)教学课件
首页
上一页
《线性代数》 (第四版)教学课件
首页 上一页 下一页 结束
定理39 设有两个向量组 1 2 s (A) 及 1 2 t (B) 向量组(B)可由向量组(A)线性表示 如果st 则向量组(B)线性 相关
举例 定理又可以叙述为 如果向量组(B)可由向量组(A)线性表 示 且向量组(B)线性无关 则ts
《线性代数》 (第四版)教学课件

3-2_向量与向量组的线性组合(赵树嫄)

3-2_向量与向量组的线性组合(赵树嫄)
例1 零向量是任何一组同维向量的线性组合. 0 0 1 0 2 0 s
例2 向量组 1 , 2 , n中的任一向量 j (1 j n)
都是此向量组 1 , 2 , n的线性组合 . j 0 1 0 2 1 j 0n
a1 a2 (a1 , a2 ,, an ) a n
T
定义2 若干个同维数的列向量(或同维数的行向量) 所组成的集合叫做向量组. 例如 矩阵A (a ij )mn 有n个m维列向量 aj an a1 a 2 a11 a12 a1 j a1n a 21 a 22 a 2 j a 2 n A a a a a mj mn m1 m 2 向量组
= (a1, a2, , an)
− = (− a1, − a2, , − an)
向量的运算
注1: 不同维数的零 向量是不相等的.
设 = ( a1, a2, , an), = ( b1, b2, , bn),
(1) 向量的相等 = ai = b i (2) 向量的加法 (i =1, 2, , n)
向量与的和:
+ = ( a1+ b1 , a2+ b2, , an +bn) − = ( a1 − b1 , a2 − b2, , an −bn)
(3) 数乘向量
数与向量 的乘积:
= (a1, a2, , an)
n维向量空间 定义2 所有n维实向量的集合记为Rn, 称Rn为实n 维向量空间,它是指在Rn中定义了加法及数乘这两 种运算,并且这两种运算满足以下8条规律: (1) + = + (5) (k+l) = k +l (2) +( + ) = ( + )+ (6) k( + ) = k +k (3) +0 = (7) (kl) =k (l) (4) +( ) = 0 (8) 1 =

赵树嫄-《线性代数(第五版)》第一章 行列式

赵树嫄-《线性代数(第五版)》第一章 行列式

(二) n 阶行列式
a11 a12 a13 D a21 a22 a23 a11a22a33 a12a23a31 a13a21a32
a31 a32 a33 a13a22a31 a11a23a32 a12a21a33
(1) 三阶行列式共有 3! = 6 项. (2) 每项都是位于不同行不同列的三个元素的乘积. (3) 每项的正负号都取决于位于不同行不同列的三个
a12a31b2 a11a22b3 a12a21b3 a11a23a32 a12a21a33 a13a22a31
10
x3

b1a21a32 a11a22a33
a22a31b1 a11a32b2 a12a23a31 a13a21a32

a12a31b2 a11a22b3 a11a23a32 a12a21a33

(a12a31 a11a32 ) x2
(a13a31 a11a33 ) x3
a31b1 a11b3
(a22 )
(a22a31 a21a32 ) x2 (a23a31 a21a33 ) x3 a31b2 a21b3 a12
x3

b1a21a32 a22a31b1 a11a32b2 a11a22a33 a12a23a31 a13a a21 32
1 1 1
0 1 1
1 2 1
1 2 2
D2 2 1 3 10, D3 2 1 1 5,
1 0 1
1 1 0
故方程组的解为
x1

D1 D

1,
x2

D2 D

2,
x3

线性代数(赵树嫄)第1章行列式

线性代数(赵树嫄)第1章行列式

1
0 1 5 1 1 3 4 7 1
§1.2 n阶行列式 引例 n元线性方程组(方程个数=未知量个数)
a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2n xn b2 .......... ......... an1 x1 an2 x2 ann xn bn
N (n(n 1)L 21) (n 1) (n 2) 1
定理1.2. n个数码共有n!个排列,其中奇偶排列各占 n! 一半, 各为 . 2 (二) n阶行列式的定义

定义1.2 用n2个元素aij (i , j 1,2, , n)排成的数表
a11 a21 a n1 a12 a22 an 2 a1n a2 n ann
aij中i称为行标, j称为列标, aij
竖排称为列 , 其中横排称为行,
(i , j )元
表示该元素处在第 i行第j列, 处在行列的交叉处 , 有时也记为
a11 a 21 a 31
a12 a 22 a 32
a 23 a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 a 33
6 2 8
主对角线及其主对角线方向上的三个元素的乘 副对角线及其副对角线方向上的三个元 积 带正号, 素的乘积 带负号, 所得六项的代数和就是三阶行列 式的展开式.
例5
a, b R, a , b 满足什么条件时有
a b 0 b a 0 0 1 0 1

a b 0 2 a b a 0 b2 1 0 1

线性代数人大(赵树

线性代数人大(赵树

例4 证明上三角行列式
a11 0 D 0 a12 a1n a22 a2 n a11a22 ann 0
证: 由定义
和式中,只有当
D ( 1) ( j1 j2 jn ) a1 j1 a2 j2 anjn
ann
jn n, jn1 n 1,, j2 2, j1 1时,
x1 3 x2 5 例1 解二元线性方程组 4 x1 3 x2 5
解: 方程组未知量的系数所构成的二阶行列式
D
1 3 4 3
3 ( 3) 4 15 0
1 5 4 5
方程组有惟一解.又
D1
5 3 5 3
30 , D2
15
分析:
a11 a 21 a 31 a12 a 22 a 32 a13 a 23 a11a 22a 33 a12a 23a 31 a13a 21a 32 a 33 a13a 22a 31 a12a 21a 33 a11a 23a 32
( 1)
( j1 j2 j3 )
于是方程组的解为
D3 15 D1 55 D2 20 x1 11,x2 4, x3 3. D 5 D 线性代数 5 D 5 9
思考与练习(三阶行列式) 1 1 1
1.解方程 1 2 1 x
x 1 6 2 x1 x 2 3 x 3 5 2.解线性方程组 3 x1 x 2 5 x 3 5 4x x x 9 2 3 1
于是方程组的解为
D1 30 D2 15 x1 2,x2 1. D 15 D 15 线性代数
6
(2)三阶行列式
主对角线法

赵树嫄微积分极限与连续PPT课件

赵树嫄微积分极限与连续PPT课件

有 | an
1|
1, 100
给定 1 , 1000
只要
n
1000时,有
|
an
1
|
1, 1000
给定 1 , 10000
只要
n
10000时,

|
an
1
|
1, 10000
任意给定 0,

N
1
,
只要
n N 时,
恒有| an 1| 成立.
第7页/共135页
定义 如果对于任意给定的正数 ε (不论它多么小),
至 多 只 有 有 限 个( N个) 落 在 其 外。
第9页/共135页
用数列极限的定义证明极限。
例1 证 明 l i m[1 (1)n1 ] 1.
n
n

| an
1|
|1
(1)n1 n
1|
1 n

任给
0,
欲பைடு நூலகம்| an 1 | ,
只要1 ,
n
或n 1,

N
1
,
则当n N 时,
就 有| 1 (1)n1 1 | , 即 得 证
定理2 收敛的数列必定有界。
注1 有界性是数列收敛的必要条件,不是充分条件。
有界数列不一定收敛. 注2 无界数列必定发散。
例如:xn (1)n.
例如:xn 2n.
第12页/共135页
性质3 收敛数列的保号性
定理3 设 ln im an a,且a 0 (a 0),那么存在 正整数N 0,当n N时,都有an 0 (an 0).
第一节 数列的极限
(一) 数列概念 割圆术
我国古代数学家刘徽在《九章算术注》利用圆内接正多边形计算圆 面积的方法--割圆术,就是极限思想在几何上的应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档