基于机器视觉的工件识别和定位文献综述
《基于机器视觉的工件识别与定位系统的设计与实现》

《基于机器视觉的工件识别与定位系统的设计与实现》一、引言随着工业自动化和智能制造的快速发展,工件识别与定位技术在生产线上扮演着越来越重要的角色。
传统的工件识别与定位方法往往依赖于人工操作,不仅效率低下,而且容易出现误差。
因此,基于机器视觉的工件识别与定位系统应运而生,其通过计算机视觉技术实现对工件的快速、准确识别和定位,极大地提高了生产效率和产品质量。
本文将介绍一个基于机器视觉的工件识别与定位系统的设计与实现。
二、系统需求分析本系统的主要目标是实现对工件的快速、准确识别和定位。
为了满足这一目标,系统需要具备以下功能:1. 图像采集:通过高分辨率摄像头实时采集工件图像。
2. 图像处理:对采集的图像进行预处理,如去噪、二值化等,以便于后续的识别和定位。
3. 特征提取:从预处理后的图像中提取出工件的特有特征,如形状、颜色、尺寸等。
4. 识别与定位:根据提取的特征信息,对工件进行识别和定位。
5. 输出结果:将识别和定位结果以可视化形式输出,便于操作人员查看。
三、系统设计1. 硬件设计硬件部分主要包括摄像头、计算机等设备。
摄像头负责实时采集工件图像,计算机则负责图像处理、特征提取、识别与定位等任务。
此外,为了确保系统的稳定性和可靠性,还需要考虑设备的选型和安装方式。
2. 软件设计软件部分主要包括图像处理算法、特征提取算法、识别与定位算法等。
这些算法需要以高效、稳定的方式在计算机上运行,因此需要选择合适的编程语言和开发工具。
此外,为了方便操作人员使用,还需要开发一个友好的人机交互界面。
四、关键技术实现1. 图像处理与预处理图像处理是机器视觉系统的核心部分之一。
首先,需要使用图像处理算法对采集的图像进行预处理,如去噪、二值化等,以提高图像的质量和识别率。
这些预处理操作可以有效减少图像中的干扰信息,突出工件的特有特征。
2. 特征提取与匹配特征提取是工件识别与定位的关键步骤。
通过提取工件的特有特征,如形状、颜色、尺寸等,可以实现对工件的快速、准确识别。
《基于视觉检测的机器人按需求搬移工件系统研究》范文

《基于视觉检测的机器人按需求搬移工件系统研究》篇一一、引言随着科技的快速发展,自动化与机器人技术成为了现代工业制造中的关键要素。
尤其在需要重复、繁琐、高精度的搬运工作中,机器人系统逐渐成为提高生产效率、降低人工成本、保障作业质量的重要工具。
基于视觉检测的机器人按需求搬移工件系统更是成为现代工业生产中不可或缺的组成部分。
本文将详细研究基于视觉检测的机器人按需求搬移工件系统的设计、原理及应用,以期为相关研究与应用提供参考。
二、视觉检测机器人系统概述基于视觉检测的机器人按需求搬移工件系统是一种集成了图像处理、机器视觉、运动控制等技术的自动化系统。
该系统通过视觉传感器捕捉工件的位置、形状、大小等信息,再通过控制系统指挥机器人完成精确的搬运工作。
该系统具有高效率、高精度、高灵活性等特点,能够适应各种复杂的生产环境。
三、系统设计及原理1. 硬件设计基于视觉检测的机器人按需求搬移工件系统的硬件主要包括视觉传感器、机器人本体、控制器等部分。
视觉传感器负责捕捉工件的信息,机器人本体负责执行搬运工作,控制器则负责协调各部分的工作。
(1) 视觉传感器:采用高分辨率的摄像头,能够捕捉工件的细节信息。
同时,通过图像处理技术,将图像信息转化为机器人可识别的数据。
(2) 机器人本体:采用先进的运动控制技术,能够根据视觉传感器的信息,快速准确地完成搬运工作。
(3) 控制器:采用高性能的计算机或专用控制器,负责协调视觉传感器和机器人本体的工作,实现整个系统的控制。
2. 软件设计软件部分主要包括图像处理算法、机器视觉算法、运动控制算法等。
(1) 图像处理算法:通过图像处理技术,将摄像头捕捉的图像信息转化为数字信号,便于机器人识别。
(2) 机器视觉算法:利用机器视觉技术,对数字信号进行处理,识别出工件的位置、形状、大小等信息。
(3) 运动控制算法:根据机器视觉算法得到的信息,通过运动控制算法指挥机器人完成精确的搬运工作。
四、系统应用及优势基于视觉检测的机器人按需求搬移工件系统在各个行业中有着广泛的应用。
《基于机器视觉的工件识别与定位系统的设计与实现》

《基于机器视觉的工件识别与定位系统的设计与实现》一、引言随着工业自动化和智能制造的快速发展,工件识别与定位技术在生产线上扮演着越来越重要的角色。
传统的工件识别与定位方法往往依赖于人工操作,不仅效率低下,而且容易出错。
因此,基于机器视觉的工件识别与定位系统应运而生。
本文将介绍一种基于机器视觉的工件识别与定位系统的设计与实现方法。
二、系统设计1. 硬件设计本系统主要由工业相机、光源、工控机等硬件组成。
其中,工业相机负责捕捉工件图像,光源提供合适的光照条件,工控机则负责图像处理和系统控制。
(1) 工业相机:选用高分辨率、高帧率的工业相机,以保证图像的清晰度和实时性。
(2) 光源:根据工件的特点和图像处理需求,选择合适的光源类型和布置方式,如环形光、同轴光等,以获得良好的图像质量。
(3) 工控机:选用性能稳定的工控机,搭载高性能的图像处理算法,实现工件的快速识别和定位。
2. 软件设计本系统的软件部分主要包括图像处理算法和控制系统。
(1) 图像处理算法:采用机器视觉算法对图像进行处理,包括图像预处理、特征提取、模式匹配等步骤。
其中,特征提取是关键环节,通过提取工件的形状、颜色、纹理等特征,实现工件的准确识别。
(2) 控制系统:控制系统负责协调各个硬件设备的工作,包括相机的触发、光源的开关、工件的抓取等。
同时,控制系统还需要与上位机进行通信,接收上位机的指令并反馈系统状态。
三、算法实现1. 图像预处理图像预处理是机器视觉系统的重要环节,主要包括图像滤波、二值化、边缘检测等步骤。
通过对图像进行预处理,可以消除噪声、提高信噪比,为后续的特征提取和模式匹配做好准备。
2. 特征提取特征提取是工件识别的关键环节。
本系统采用基于深度学习的特征提取方法,通过训练神经网络模型,自动学习工件的形状、颜色、纹理等特征。
在提取特征时,需要选择合适的特征描述符和特征匹配算法,以实现工件的准确识别。
3. 模式匹配模式匹配是工件定位的关键步骤。
《基于机器视觉的工件识别与定位系统的设计与实现》

《基于机器视觉的工件识别与定位系统的设计与实现》一、引言随着工业自动化和智能制造的快速发展,工件识别与定位技术在生产线上扮演着越来越重要的角色。
传统的人工识别与定位方式不仅效率低下,而且易受人为因素的影响。
因此,基于机器视觉的工件识别与定位系统应运而生,其通过计算机视觉技术实现对工件的快速、准确识别与定位,从而提高生产效率和质量。
本文将介绍一种基于机器视觉的工件识别与定位系统的设计与实现。
二、系统设计1. 硬件设计本系统硬件部分主要包括工业相机、光源、工控机等。
其中,工业相机负责捕捉工件图像,光源提供合适的照明条件,以保证图像质量,工控机则负责图像处理和算法运行。
硬件设备需具备高稳定性、高精度和高速度的特点,以满足生产线上的实时性要求。
2. 软件设计软件部分主要包括图像预处理、工件识别和工件定位三个模块。
图像预处理模块负责对原始图像进行去噪、增强等处理,以提高图像质量。
工件识别模块通过训练好的机器学习模型对预处理后的图像进行识别,提取出工件的特征信息。
工件定位模块则根据识别结果,确定工件在图像中的位置信息。
三、算法实现1. 图像预处理图像预处理是工件识别与定位的前提。
本系统采用去噪、二值化、边缘检测等算法对原始图像进行处理,以提高图像质量和特征提取的准确性。
其中,去噪算法用于消除图像中的噪声干扰,二值化算法将图像转化为黑白二值图像,便于后续的特征提取和识别。
2. 工件识别工件识别是本系统的核心部分。
本系统采用深度学习算法训练机器学习模型,实现对工件的快速、准确识别。
具体而言,我们使用卷积神经网络(CNN)对大量工件图像进行训练,提取出工件的特征信息,并建立特征库。
在识别过程中,系统将预处理后的图像与特征库中的特征信息进行比对,找出最匹配的工件类型。
3. 工件定位工件定位是在识别的基础上,确定工件在图像中的具体位置。
本系统采用模板匹配算法实现工件定位。
具体而言,我们首先在特征库中选取与待定位工件相似的模板图像,然后在预处理后的图像中搜索与模板图像相匹配的区域,从而确定工件的位置信息。
基于机器视觉的工件识别和定位文献综述

基于机器视觉的工件识别和定位文献综述基于机器视觉的工件识别和定位文献综述1.前言1.1工业机器人的现状与发展趋势机器人作为一种最典型的应用范围广、技术附加值高的数字控制装备,在现代先进生产制造业中发挥的作用越来越重要,机器人技术的发展将会对未来生产和社会发展起到强有力的推动作用。
《2l 世纪日本创建机器人社会技术发展战略报告》指出,“机器人技术与信息技术一样,在强化产业竞争力方面是极为重要的战略高技术领域。
培育未来机器人产业是支撑 2l 世纪日本产业竞争力的产业战略之一,具有非常重要的意义。
”研发工业机器人的初衷是为了使工人能够从单调重复作业、危险恶劣环境作业中解脱出来,但近些年来,工厂和企业引进工业机器人的主要目的则更多地是为了提高生产效率和保证产品质量。
因为机器人的使用寿命很长,大都在 10 年以上,并且可以全天后不间断的保持连续、高效地工作状态,因此被广泛应用于各行各业,主要进行焊接、装配、搬运、加工、喷涂、码垛等复杂作业。
伴随着工业机器人研究技术的成熟和现代制造业对自动生产的需要,工业机器人越来越被广泛的应用到现代化的生产中。
现在机器人的价格相比过去已经下降很多,并且以后还会继续下降,但目前全世界范围的劳动力成本都有所上涨,个别国家和地区劳动力成本又很高,这就给工业机器人的需求提供了广阔的市场空间,工业机器人销量的保持着较快速度的增长。
工业机器人在生产中主要有机器人工作单元和机器人工作生产线这两种应用方式,并且在国外,机器人工作生产线已经成为工业机器人主要的应用方式。
以机器人为核心的自动化生产线适应了现代制造业多品种、少批量的柔性生产发展方向,具有广阔的市场发展前景和强劲生命力,已开发出多种面向汽车、电气机械等行业的自动化成套装备和生产线产品。
在发达国家,机器人自动化生产线已经应用到了各行各业,并且已经形成一个庞大的产业链。
像日本的 FANUC、MOTOMAN,瑞典的 ABB、德国的 KUKA、意大利的COMAU 等都是国际上知名的被广泛用于自动化生产线的工业机器人。
《基于机器视觉的工业机器人搬运目标识别及定位技术研究》范文

《基于机器视觉的工业机器人搬运目标识别及定位技术研究》篇一一、引言随着科技的不断进步,工业自动化水平逐步提高,特别是在搬运领域,机器视觉与工业机器人技术的结合成为了新的研究热点。
机器视觉能够有效地进行目标识别与定位,极大地提高了工业搬运的效率和精度。
本文旨在探讨基于机器视觉的工业机器人搬运目标识别及定位技术的相关研究。
二、研究背景随着中国制造业的转型升级,对于提高生产效率、降低成本和提高产品质量的诉求愈发强烈。
因此,越来越多的企业开始将工业机器人与机器视觉技术进行整合,用于自动化生产线中物料的搬运、检测和定位等环节。
在众多应用场景中,搬运目标的识别与定位是提高效率的关键因素之一。
三、机器视觉在工业机器人搬运中的应用机器视觉技术通过图像处理和模式识别等方法,实现对目标物体的识别和定位。
在工业机器人搬运中,机器视觉的应用主要体现在以下几个方面:1. 目标识别:通过图像处理技术,对目标物体进行特征提取和分类,实现目标的准确识别。
2. 定位:通过分析图像中的特征点或特征线,确定目标物体的位置和姿态。
3. 路径规划:根据目标物体的位置和姿态信息,为工业机器人规划出最优的搬运路径。
四、目标识别及定位技术研究针对工业机器人搬运的目标识别及定位技术,本文主要研究以下几个方面的内容:1. 图像预处理:通过对图像进行去噪、增强等处理,提高图像的质量,为后续的特征提取和分类提供基础。
2. 特征提取与分类:通过深度学习等技术,对图像中的特征进行提取和分类,实现对目标物体的准确识别。
3. 定位算法研究:研究基于特征点、特征线或模板匹配等不同的定位算法,提高定位的精度和效率。
4. 路径规划算法:根据目标物体的位置和姿态信息,结合工业机器人的运动学模型,规划出最优的搬运路径。
五、实验与分析为了验证本文所提方法的有效性,我们进行了以下实验:1. 实验环境与设备:搭建了基于机器视觉的工业机器人搬运系统实验平台,包括工业相机、工业机器人、计算机等设备。
基于机器视觉的产品检测技术研究文献综述

基于机器视觉的产品检测技术研究文献综述基于机器视觉的产品识别检测技术研究摘要:机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标特征,如面积、数量、位置,再根据预设的允许度和其他条件输出结果,包括尺寸、个数、合格/不合格、标识有无等,实现自动识别功能。
机器视觉的研究是从20世纪代中期开始代已形成几个重要研究分支:目标制导的图像处理、图像处理和分析的并行运算、序列图像分析和运动参量求值、视觉知识的表示、视觉系统的知识库等。
关键词:机器视觉;CCD相机;图像处理;产品检测。
引言机器视觉就是用机器代替人眼来做测量和判断,它是一项综合技术,其中包括数字图像处理技术、控制技术、电光源照明技术、光学成像技术、传感技术、模拟与数字视频技术等,机器视觉更强调实用性,要求能够适应工业生产中恶略的环境,要有通用的工业接口。
电视摄像技术的成熟与计算机技术的发展使得机器视觉研究成为可能,它作为早期人工智能的一部分,由于技术条件的限制进展缓慢。
后来在随着计算机技术的快速发展,机器视觉的研究得到了迅速发展在国外,机器视觉的应用普及主要体现在半导体及电子行业,机器视觉系统在产品检测方面已经得到了广泛的应用。
在中国机器视觉技术应用开始与代,目前国内机器视觉大多为外国品牌,不过随着机器视觉的应用,国内公司技术上已经逐渐成熟。
与此同时,随着配套基础设施建设的完善,技术、资金的积累,各行各业对机器视觉技术的工业自动化、智能化需求开始广泛出现。
国内高校校、研究所和企业在这个领域进行了积极探索和大胆尝试,这都将促进工业检测自动化技术向智能化发展。
一、机器视觉1.机器视觉的概念机器视觉被定义为用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。
一个典型的工业机器视觉应用系统包括光源、光学系统、图像采集系统、数字图像处理与智能判断决策模块和机械控制执行模块。
基于机器视觉的物体识别与定位技术研究

基于机器视觉的物体识别与定位技术研究随着人工智能技术的快速发展,机器视觉作为其中的重要领域之一,在实际应用中日益受到广泛关注。
基于机器视觉的物体识别与定位技术作为机器视觉的核心内容之一,具有广泛的应用前景和研究价值。
本文将围绕物体识别与定位技术的研究进行探讨,详细介绍其背景、关键技术和应用场景。
背景介绍物体识别与定位技术是指让计算机通过摄像机等设备对所观测到的场景中的物体进行识别,并通过定位方法确定物体在场景中的位置。
这项技术在自动驾驶、物流仓储、智能安防等领域有着广泛的应用。
传统的物体识别和定位技术主要基于图像特征和图像匹配算法,存在着对光照、视角、背景等条件的依赖性,限制了其在复杂环境下的效果。
而基于机器视觉的物体识别与定位技术通过深度学习方法,可以更好地解决这些问题,具有更好的稳定性和准确性。
关键技术1. 深度学习:深度学习是当前物体识别与定位技术中最重要的技术手段之一。
通过深度学习的方法,可以提取图像的高层次特征,进而用于物体识别和定位。
深度学习模型中的卷积神经网络(Convolutional Neural Network,CNN)被广泛应用于图像特征的提取,其具有较好的图像识别能力。
2. 特征提取与表示:物体识别与定位技术中的关键问题之一是提取图像的有效特征,并将其表示为能够用于分类和定位的向量。
除了深度学习模型中的卷积层用于特征提取外,还可以使用一些网络结构,如SIFT、HOG等常见的特征描述子来提取图像的局部特征。
3. 目标检测与定位:目标检测是物体识别与定位技术中的核心内容,其目的是在图像中准确地定位出目标物体的位置。
基于机器视觉的物体识别与定位技术中常用的目标检测算法有Faster R-CNN、YOLO、SSD等。
这些算法通过对图像进行全局或局部的特征提取和定位来实现物体的检测与定位。
应用场景1. 自动驾驶:自动驾驶技术中的物体识别与定位技术是非常关键的。
通过摄像头等设备对道路上的车辆、行人、交通标志等物体进行识别和定位,可以帮助自动驾驶系统做出准确的决策和规划。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于机器视觉的工件识别和定位文献综述1.前言1.1工业机器人的现状与发展趋势机器人作为一种最典型的应用范围广、技术附加值高的数字控制装备,在现代先进生产制造业中发挥的作用越来越重要,机器人技术的发展将会对未来生产和社会发展起到强有力的推动作用。
《2l 世纪日本创建机器人社会技术发展战略报告》指出,“机器人技术与信息技术一样,在强化产业竞争力方面是极为重要的战略高技术领域。
培育未来机器人产业是支撑2l 世纪日本产业竞争力的产业战略之一,具有非常重要的意义。
”研发工业机器人的初衷是为了使工人能够从单调重复作业、危险恶劣环境作业中解脱出来,但近些年来,工厂和企业引进工业机器人的主要目的则更多地是为了提高生产效率和保证产品质量。
因为机器人的使用寿命很长,大都在10 年以上,并且可以全天后不间断的保持连续、高效地工作状态,因此被广泛应用于各行各业,主要进行焊接、装配、搬运、加工、喷涂、码垛等复杂作业。
伴随着工业机器人研究技术的成熟和现代制造业对自动生产的需要,工业机器人越来越被广泛的应用到现代化的生产中。
现在机器人的价格相比过去已经下降很多,并且以后还会继续下降,但目前全世界范围的劳动力成本都有所上涨,个别国家和地区劳动力成本又很高,这就给工业机器人的需求提供了广阔的市场空间,工业机器人销量的保持着较快速度的增长。
工业机器人在生产中主要有机器人工作单元和机器人工作生产线这两种应用方式,并且在国外,机器人工作生产线已经成为工业机器人主要的应用方式。
以机器人为核心的自动化生产线适应了现代制造业多品种、少批量的柔性生产发展方向,具有广阔的市场发展前景和强劲生命力,已开发出多种面向汽车、电气机械等行业的自动化成套装备和生产线产品。
在发达国家,机器人自动化生产线已经应用到了各行各业,并且已经形成一个庞大的产业链。
像日本的FANUC、MOTOMAN,瑞典的ABB、德国的KUKA、意大利的COMAU 等都是国际上知名的被广泛用于自动化生产线的工业机器人。
这些产品代表着当今世界工业机器人的最高水平。
我国的工业机器人前期发展比较缓慢。
当将被研发列入国家有关计划后,发展速度就明显加快。
特别是在每次国家的五年规划和“863”计划的重点支持下,我国机器人技术的研究取得了重大发展。
在机器人基础技术和关键技术方面都取得了巨大进展,科技成果已经在实际工作中得到转化。
以沈阳新松机器人为代表的国内机器人自主品牌已迅速崛起并逐步缩小与国际品牌的技术差距。
机器人涉及到多学科的交叉融合,涉及到机械、电子、计算机、通讯、控制等多个方面。
在现代制造业中,伴随着工业机器人应用范围的扩大和机器人技术的发展,机器人的自动化、智能化和网络化的程度也越来越高,所能实现的功能也越来越多,性能越来越好。
机器人技术的内涵已变为“灵活应用机器人技术的、具有实在动作功能的智能化系统。
”目前,工业机器人技术正在向智能机器和智能系统的方向发展,其发展趋势主要为:结构的模块化和可重构化;控制技术的开放化、PC 化和网络化;伺服驱动技术的数字化和分散化;多传感器融合技术的实用化;工作环境设计的优化和作业的柔性化以及系统的网络化和智能化等方面。
1.2机器视觉在工业机器人中的应用工业机器人是FMS(柔性加工)加工单元的主要组成部分,它的灵活性和柔性使其成为自动化物流系统中必不可少的设备,主要用于物料、工件的装卸、分捡和贮运。
目前在全世界有数以百万的各种类型的工业机器人应用在机械制造、零件加工和装配及运输等领域,不过这些应用都是基于先精确的示教后运行,而且工作环境都是预先安排好的,所以机器人能成功地抓取物体。
但是我们知道很多情况下特别是流水线的场合工件的位姿常常是不固定的,实际目标物体的位姿与理想目标物体位姿总是有偏差的,这种偏差哪怕很小就会导致机器人操作任务的失败。
这种由于环境的变化而导致机器人不能很好地完成任务的情况极大地限制了机器人的实际应用范围。
随着现代生产制造技术的进步,进一步提高生产线的柔性的要求也日益迫切,对工业机器人系统应用领域、灵活性和自主性要求也越来越高,而机器人具备一定自主性的前提是对自身环境有一定的了解,这迫使人们增加传感器来提高机器人对环境的感知能力,在这方面,视觉、接近觉、触觉和力觉具有重大的作用。
其中机器人视觉被认为是机器人最重要的感觉能力,从智能机器人的研究实例中,也能清除地看到这一点。
视觉是人类观察世界和认知世界的重要手段。
据统计表明,人类从外部世界获得的信息约有80%的信息是通过视觉或视觉传感器而获取的,这既说明了视觉信息量大,也表明了人类对视觉信息有较高的利用率,同时也体现了人类视觉功能的重要性。
机器人视觉是模拟人类视觉在机器人上的体现。
采用视觉传感器比采用其他传感器来获取工作环境及工件信息还有以下几方面的优势:首先,机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,在提高生产的柔性和自动化程度方面有着重要的作用;其次,即使在丢失了绝大部分的信息后,其所提供的关于周围环境的信息仍然比激光雷达与超声波更多更准确;最后,视觉的采样周期比超声波和激光雷达短,这也意味着视觉系统的实时性要好,所以更适合工件的在线检测、识别、定位等。
由于具有以上这些优点,基于视觉的智能机器人具有广阔的发展空间。
因而使用视觉来提高机器人的智能水平,具有重要的现实意义和研究价值。
1.3国外基于视觉的工业机器人发展历史机器人视觉技术是20 世纪80 年代发展起来的新兴技术,它的产生和发展是与机器视觉和机器人技术的发展密不可分的。
近年来,机器人视觉技术已成为高技术领域一个重要的研究课题,它为可行走机器人、装配机器人、抓取机器人以及其他种类机器人解决视觉问题提供了技术基础。
它将使传统的工业生产面貌发生巨大变化,对人类社会的生活和生产产生深远的影响。
目前国内外都在竞相开展有关机器人视觉的基础理论、基本技术以及应用方面的研究工作。
机器视觉是一个相当新且发展十分迅速的研究领域,并成为计算机科学的重要研究领域之一。
机器视觉是在50 年代从统计模式识别开始的,当时的工作主要集中在二维图像的分析和识别上,如光学字符识别、工件表面、纤维图片和航空图片的分析和解释。
60 年代,Roberts 通过计算机程序从数字图像中提取出诸如立方体、楔形体、棱柱体等多面体的三维结构,并对物体形状及物体的空间关系进行描述。
Roberts的研究工作开创了以理解三维场景为目的的三维机器视觉的研究。
Roberts 的创造性研究给人们以极大的启发,到了70 年代,已经出现了一些视觉应用系统。
1954年,美国的George C.Devol设计并制作了世界上第一台机器人实验装置。
60年代机器人产品正式问世,机器人技术开始形成。
1961年MIT的Lincoln实验室开始把一个配有接触传感器的遥控操纵器的从动部分与一台计算机连接起来,这样形成的机器人可以凭触觉感知物体的状态。
随后,用电视摄像头作为输入,把计算机图像处理和物体识别技术也引入到机器人系统。
至此,视觉技术正式引入机器人系统。
70年代中期,麻省理工学院(MIT)人工智能(AI)实验室正式开设“机器视觉”课,同时,MIT的AI实验室吸引了国际上许多知名学者参与机器视觉的理论、算法、系统设计的研究。
David Marr教授应邀于1973年到该实验室领导一个以博士生为主体的研究小组。
1977年提出了不同于“积木世界”分析方法的计算视觉理论,该理论在80年代成为机器视觉研究领域中的一个十分重要的理论框架,可以说对机器视觉的全球性研究热潮是从20世纪80年代开始的,到了80年代中期,机器视觉获得了蓬勃发展,新概念、新方法、新理论不断涌现,比如,基于感知特征群的物体识别理论框架、主动视觉理论框架、视觉集成理论框架等。
由于国外对视觉技术的研究以及将其和机器人相结合都起步比较早,因此发展的较好,并且已经出现了一些商品化的计算机视觉系统。
美国在这方面开展的较早,在20世纪70年代,美国GM公司试制了能识别传送带上机械零件的视觉检查系统。
到了80年代,由于微处理器的普及,各行业对视觉系统都表现出了极大的兴趣。
80年代初在国际市场上作为商品出售的一个通用机器人系统PUMA/VC-100,具有识别物体,确定物体位置坐标的能力,其所使用的视觉算法允许在材料加工或装配系统中对工件进行检测。
视觉系统是通过示教训练得到的。
以美国国家科学基金委员会为中心的实用视觉系统的研究飞速发展。
在日本的国家产业政策中,也把大力发展实用视觉系统放在了首要地位,进入90年代以后,在电子、汽车、制药、食品等高效、劳动密集的生产线上,工业视觉系统已是不可缺少的一部分,起到了人眼所不能起的作用,有力地保证了产品质量。
斯坦福研究所早期研制的机器人(Shkey)是一种典型的“眼-车”系统,它的主要功能是在视野范围内识别对象,依靠积累的经验求解行动规划,以及运用逻辑推理的问答能力。
它可以穿行房间,搜索、识别指定的对象,并进行“智能”的操作。
通用汽车公司开发出可以在噪声环境下工作的机器人视觉系统。
Adept 公司是全球知名的工业机器人制造公司,它在研制第一代机器人的时候就考虑了加入视觉系统,因此在二十几年的发展过程中,获得了丰富的经验和比较成熟的技术,使得其成为美国最大的工业机器人制造公司。
经过多年的发展,美国的智能机器人研究已经走在了世界的前列。
日本在借鉴其他国家研究智能机器人方面的经验之后,现在在这方面的研究已经走在了世界的前列。
日立中央研究所研制的具有自主控制功能的智能机器人,可以用来完成按图装配产品的作业。
德国Siemens 公司在工业图像处理方面拥有超过20 年的经验积累,SIMATIC VIDEOMAT 是第一个高性能的单色和彩色图像处理系统,并成为SIMATIC自动化系统中极重要的产品。
而1999 年推出的SIMATIC VS710 是业内第一个智能化的、一体化的、带PROFIBUS 接口的、分布式的灰度级工业视觉系统,它将图像处理器、CCD、1/O 集成在一个小型机箱内,提供PROFIBUS 的联网方式(通讯速率达12Mbps)或集成的UO 和RS232 接口。
OMS 视觉系统,是由原联邦德国制造生产的商业通用系统,它能够完成物体的识别及特征的检测等任务,操作模式可以是交互式的、主动的以及被动的三种,典型的应用是机械零件的分类、装配以及质量控制等。
此外,加拿大、比利时等国,在图像采集、图像处理等方面都具有丰富的经验。
1.4国外机器人制造商生产的视觉工业机器人产品伴随着科技的进步和生产技术的发展,基于机器视觉技术的工业机器人的研究越来越得到广泛的关注,并且已经出现一大批科技成果,并在实际生产中得到了很好的应用。
国外在对基于机器视觉的工业机器人的研究上已经做了很多工作,并且已经有很多突破性成果。