乘法公式(基础)知识讲解

合集下载

乘法知识点公式总结

乘法知识点公式总结

乘法知识点公式总结一、乘法知识点总结1. 乘法的基本概念乘法是数学中的基本运算法则之一,它是将两个数相乘得到积的过程。

在乘法运算中,我们把要相乘的两个数分别称为乘数和被乘数,它们的乘积称为积。

例如,3 × 4 = 12,其中3和4分别是乘数和被乘数,12是它们的积。

2. 乘法的性质(1)交换律:a × b = b × a乘法的交换律是指乘数和被乘数的位置可以交换,积不变。

例如,3 × 4 = 4 × 3 = 12。

(2)结合律:(a × b) × c = a × (b × c)乘法的结合律是指乘数之间可以结合起来,先乘两个数再乘第三个数的积等于先乘第二个数再乘这个积。

(3)分配律:a × (b + c) = a × b + a × c乘法对加法的分配律是指一个数乘一个括号中的两个数,等于这个数分别乘这两数后再加和。

(4)单位元:任何数乘以1等于它本身。

a × 1 = a, 1 × a = a。

3. 乘法的运算法则(1)乘法的口诀乘法的口诀是指用来记忆乘法表的方法,例如1乘到9的乘法口诀表为:```1 × 1 = 1 1 ×2 = 2 1 ×3 = 3 ... 1 × 9 = 92 × 1 = 2 2 × 2 = 4 2 ×3 = 6 ... 2 × 9 = 18...9 × 1 = 9 9 × 2 = 18 9 × 3 = 27 ... 9 × 9 = 81```通过口诀表,可以帮助孩子们快速记忆乘法表。

(2)乘法的计算方法乘法的计算方法有竖式、横式等多种,不同的计算方法适用于不同的题目,掌握多种计算方法可以帮助孩子更加灵活地运用乘法知识。

乘法公式方法讲解

乘法公式方法讲解

乘法公式方法讲解乘法是数学中的基本运算之一,它用来计算两个数(被称为乘积的结果)相乘的结果。

乘法公式方法是学习乘法的一种重要方式,它能帮助我们更好地理解乘法运算的本质和规律。

本文将介绍乘法公式方法的基本概念和常见技巧,并给出一些实例加以说明。

1.分解法:将一个复杂的乘法运算转化为一组简单的部分乘积的加法运算。

比如,将一个两位数与一个两位数相乘,可以将其分解为十位数与个位数分别相乘的部分乘积的和。

举例:24×56=(20×50)+(20×6)+(4×50)+(4×6)=1000+120+200+24=13442.同位数相乘法:将两个具有相同位数的数相乘,可以将其视为个位数相乘所得的部分乘积的和,并根据位数的不同进行乘法和加法运算。

举例:23×23=(20×20)+(20×3)+(3×20)+(3×3)=400+60+60+9=5293.同因数相乘法:如果两个数具有相同的因数,可以将其因数提取出来,再进行乘法运算。

这可以简化计算过程,并减少错误的可能性。

举例:25×36=(5×5)×(6×6)=25×36=9004.差的平方法:如果两个数之间的差是一个完全平方数,可以利用这个完全平方数来简化计算。

这种方法可以减小乘法的位数,使计算更容易。

举例:43×47=(45–2)×(45+2)=(45×45)–(2×2)=2025–4=20241.面积计算:乘法公式方法可以用来计算矩形、正方形、长方形、圆等形状的面积。

通过将长度和宽度或半径相乘,可以得到它们的面积。

例如,矩形的面积=长×宽。

2.数量计算:乘法公式方法可以用来计算多个相同数量的物品的总数。

例如,如果有4个包含6只苹果的箱子,可以使用乘法公式方法计算总苹果数=4×6=24只。

乘法公式基础知识讲解

乘法公式基础知识讲解

乘法公式基础知识讲解乘法是数学中的一个基本运算,它用于将两个或多个数值相乘,得到乘积。

在乘法中,我们使用乘法公式来进行计算和简化表达式。

乘法公式是指一些常见的数学规律,可以帮助我们更快地计算乘法运算。

乘法公式的基础知识包括乘法法则、乘法表以及乘法的分配律、结合律和交换律。

1.乘法法则:乘法法则是数学中最基本的乘法概念,它规定了如何将两个数相乘以及如何确定乘积的符号。

乘法法则包括以下几个要点:-两个正数相乘的结果仍然是正数。

-两个负数相乘的结果是正数。

-正负数相乘的结果是负数。

2.乘法表:乘法表是一种表格,用于显示两个数相乘的结果。

乘法表的基本结构是将每个数与其他数相乘,并将结果填入表格中。

乘法表的最常见形式是九九乘法表,其中列出了1到9的乘法结果。

乘法表的使用可以帮助学生记忆乘法结果,并加深对乘法运算的理解。

3.乘法的分配律:乘法的分配律是乘法公式中的一个重要概念,它用于将一个数与两个或多个数相乘。

分配律规定了乘法在加法和减法中的运算规则,它表明:-a×(b+c)=a×b+a×c-(b+c)×a=b×a+c×a这意味着要计算一个数与两个或多个数的和的乘积时,我们可以先分别将这些数与该数相乘,然后将乘积相加。

同样,要计算一个数与两个或多个数的差的乘积时,我们可以先分别将这些数与该数相乘,然后将乘积相减。

4.乘法的结合律:乘法的结合律是乘法公式中的另一个重要概念,它规定了乘法在连续相乘中的运算规则,它表明:-(a×b)×c=a×(b×c)这意味着在连续相乘的运算中,无论我们按照什么顺序进行乘法运算,最终得到的结果都是相同的。

5.乘法的交换律:乘法的交换律是乘法公式中的最后一个重要概念,它规定了两个数相乘的运算规则,它表明:-a×b=b×a这意味着无论我们按照什么顺序进行乘法运算,最终得到的结果都是相同的。

(完整版)乘法公式和因式分解知识点

(完整版)乘法公式和因式分解知识点

乘法公式和因式分解(一)、知识点:1、单项式乘单项式:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

2、单项式乘多项式:单项式与多项式相乘,用单项式乘多项式的的每一项,再把所得的积相加。

m(a+b-c)=ma+mb-mc3、多项式乘多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

(a+b)(c+d)=ac+ad+bc+bd(二)、知识要点 1、乘法公式2、因式分解因式分解:(1)把一个多项式写成几个整式的积的形式叫做多项式的因式分解。

注、公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。

(2)多项式的乘法与多项式因式分解的区别简单地说:乘法是积化和,因式分解是和化积。

3、因式分解的方法: (1)、提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

(2)、运用公式法:运用乘法公式把一个多项式因式分解的方法叫运用公式法。

(3)、分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. (4)、十字相乘法:有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法。

简单的说十字相乘法就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

注意:十字相乘法不是适合所有二次三项式,只有在一次项系数和二次项系数以及常数项存在一种特殊关系时才能用,这个特殊关系我们通过例题来说明: 注意:我们在用十字相乘法之前一定要根据第一步判断是否能用十字相乘法。

我们在分解常数项和二次项系数时变化多端,目的是交叉相乘之和要等于一次项系数,如何分配常数项和二次项系数要根据情况而定。

七年级数学乘法公式知识点

七年级数学乘法公式知识点

七年级数学乘法公式知识点在七年级的数学学习中,乘法公式是数学中十分重要和基础的知识点。

本文将就七年级数学乘法公式的内容进行详细的论述,力图使读者能够深入理解乘法公式的相关知识。

1. 基础概念首先,我们需要明确乘法公式的基础概念。

在数学中,乘法公式是指用于计算两个或多个数的乘积。

乘法公式中包含多个要素,如乘数、被乘数和积,它们三者之间的关系为:乘数×被乘数=积。

在七年级数学学习中,乘法公式中乘数和被乘数都是整数或分数,而积可以是一个整数或分数,也可以是一个代数式。

2. 乘法的交换律其次,七年级数学中学习的第一个乘法公式是乘法的交换律。

乘法的交换律指的是:两个数相乘,交换两个数的顺序,乘积不变。

具体来说,对于任意的两个数a和b,都有a×b=b×a。

比如说,对于两个数7和3,7×3=21,同时3×7也等于21。

这说明乘法具有交换律,即乘积的大小不受乘数顺序影响。

3. 乘法的结合律接着,第二个乘法公式是乘法的结合律。

乘法的结合律指的是:三个或多个数相乘,可以任意改变它们的相对位置,乘积不变。

具体来说,对于任意的三个数a、b和c,都有(a×b)×c=a×(b×c)。

比如说,对于三个数2、3和4,(2×3)×4=24,同时2×(3×4)也等于24。

这说明乘法具有结合律,即乘积的大小不受因子的相对位置影响。

4. 乘法的分配律然后,第三个乘法公式是乘法的分配律。

乘法的分配律指的是:一个数与两个或两个以上的数相加或相减的和或差,可先将这个数与每一个加数或减数分别相乘,再把它们的积相加或相减。

具体来说,对于任意的三个数a、b和c,都有a×(b+c)=a×b+a×c和a×(b-c)=a×b-a×c。

比如说,对于三个数2、3和4,2×(3+4)=14,而2×3+2×4也等于14。

乘法公式知识讲解

乘法公式知识讲解

乘法公式知识讲解乘法公式是指在数学中用于求解乘法运算的规则。

它们是数学中最基本也是最重要的公式之一,常用于求解各种复杂的乘法运算,可以大大简化计算过程。

在这篇文章中,我将详细介绍乘法公式的相关知识,并为大家提供一些实例来帮助理解。

首先,我们来讨论最基本的乘法公式,即两个数的乘法。

设有两个数a和b,它们的乘积可以表示为a × b或ab。

在乘法中,我们通常使用乘号(×)或圆点(·)来表示乘法运算。

下面是一些常见的乘法公式:1.乘法交换律:a×b=b×a乘法交换律表示,两个数相乘的结果与两个数的顺序无关。

例如,3×4=4×3=122.乘法结合律:(a×b)×c=a×(b×c)乘法结合律表示,三个数相乘的结果与它们的运算顺序无关。

例如,(2×3)×4=2×(3×4)=243.数值相同的乘法:a×a=a^2数值相同的乘法表示,一个数与其自身相乘的结果可以用该数的平方来表示。

例如,4×4=4^2=16接下来,我们将进一步讨论乘法公式的应用。

1.乘法分配律:a×(b+c)=(a×b)+(a×c)乘法分配律是乘法中的一个重要规则。

它表示一个数乘以两个数的和等于该数分别乘以这两个数后的和。

例如,2×(3+4)=(2×3)+(2×4)=142.幂与乘法:a^m×a^n=a^(m+n)幂与乘法表示,两个具有相同底数的幂相乘,底数不变,指数相加。

例如,2^3×2^4=2^(3+4)=2^7=1283.倒数乘法:a×(1/a)=1倒数乘法表示一个数与其倒数相乘的结果等于1、例如,5×(1/5)=14.零乘法:a×0=0零乘法表示任何数与0相乘的结果都是0。

乘法公式知识点梳理

乘法公式知识点梳理

乘法公式知识点梳理乘法公式是数学中常用的一种运算法则,它用于求解数的乘积。

乘法公式包含了一些常用的模式,可以提高计算乘法的效率。

以下是对乘法公式的知识点进行梳理。

一、基本乘法公式1.乘法的结合律:乘法满足结合律,即a*(b*c)=(a*b)*c,任意三个数的乘法运算结果不受括号位置的影响。

2.乘法的交换律:乘法满足交换律,即a*b=b*a,任意两个数的乘法运算结果不受顺序的影响。

3.乘零律:任何数与零相乘,结果为零,即a*0=0。

4.乘一律:任何数与一相乘,结果为其本身,即a*1=a。

5.乘法分配律:乘法满足分配律,即a*(b+c)=a*b+a*c,用于将括号内部的乘法运算分布到括号外的加法运算中。

二、特殊乘法公式1.平方:一个数自身乘以自身等于它的平方,即a*a=a^22.相同数相乘:相同的两个数相乘,结果等于这个数的平方,即a*a=a^23.倍数相乘:任意数与它的倍数相乘,结果等于这个数乘以倍数,即a*n=n*a。

4.零乘任意数等于零:零与任意数相乘,结果都等于零,即0*a=0。

5.倒数相乘等于一:一个数与它的倒数相乘等于一,即a*(1/a)=16.乘方运算:乘方是指一个数的连乘积的运算,表示为a^n,其中a为底数,n为指数。

乘方运算可以用于表示重复乘法、面积和体积等问题。

三、乘法规律1.指数相加:相同底数的指数相加,底数保持不变,指数相加,即a^m*a^n=a^(m+n)。

2.倍数相乘:两个数的乘积与其中一个因数的倍数相乘,结果等于乘积与该因数相同倍数的乘积,即a*b=(n*a)*b=a*(n*b)。

3.乘方相乘:两个乘方相乘,底数相乘,指数相加,即(a^m)*(a^n)=a^(m+n)。

四、应用举例乘法公式不仅适用于两个数的乘法,还可以用于解决更复杂的问题。

以下是几个与乘法公式相关的应用举例:1.多项式的乘法:多项式的乘法运算可以利用乘法分配律和结合律,将多项式展开成一系列乘法运算的和。

八年级乘法公式知识点归纳

八年级乘法公式知识点归纳

八年级乘法公式知识点归纳八年级是数学学科中非常重要的一年,因为这个年级的学生在学习数学的过程中,开始接触到乘法公式这个庞大而重要的领域。

乘法公式是数学中的一个非常基本的概念,它的学习对于数学知识的掌握具有非常重要的意义。

在这里,我们将对八年级学生需要掌握的乘法公式进行简要的归纳和总结。

一、分配律分配律是乘法公式中非常基础的一个概念。

它的表达式为a(b+c)=ab+ac。

这个公式的意思是,对于任意的一个数a以及两个数b和c,它们之间都具有一定的关系。

具体来说,当a与b+c相乘时,可以分别对b和c进行乘法运算,然后将两个结果加起来,得到的结果就是a与b+c的乘积。

这个公式的应用非常广泛,它不仅可以用来解决各种数学问题,在日常生活中也经常用到。

二、结合律结合律是乘法公式中比较重要的一个概念。

它的表达式为(a*b)*c=a*(b*c)。

这个公式的意思是,对于任意三个数a、b和c,它们可以按照不同的顺序进行乘法运算,但是最终的结果永远是一样的。

具体来说,这个公式可以帮助我们简化复杂的乘法运算,提高计算的效率。

三、乘幂乘幂是乘法公式中比较深奥的一个概念。

它通常用来表示一个数除以另一个数的指数次方。

表达式为a^n=a*a*a...*a^n次方。

这个公式的应用非常广泛,它可以用来求解各种数学问题,例如计算八次方、九次方等等。

四、基本定理基本定理是乘法公式中非常重要的定理之一。

这个定理可以用来分解因数,表达式为a*b=c,其中a和b是c的因数。

这个定理的意思是,任意一个数都可以被分解成两个因数相乘的形式。

这个定理虽然看似简单,但是它对于数学知识的掌握有着非常深远的影响。

五、乘数乘数是乘法公式中非常基础的概念之一。

乘数通常用来表示一个数与另一个数相乘的结果。

这个概念对于数学知识的掌握非常重要,因为在乘法运算中,乘数是非常基础的一部分。

六、倍数倍数是乘法公式中非常基础的概念之一。

倍数通常用来表示一个数是另一个数的几倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法公式(基础)
【学习目标】
1. 掌握平方差公式、完全平方公式的结构特征,并能从广义上理解公式中字母的含义;
2. 学会运用平方差公式、完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘法运算;
3. 能灵活地运用运算律与乘法公式简化运算. 【要点梳理】
要点一、平方差公式
平方差公式:2
2
()()a b a b a b +-=-
两个数的和与这两个数的差的积,等于这两个数的平方差.
要点诠释:在这里,b a ,既可以是具体数字,也可以是单项式或多项式.
抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:
(1)位置变化:如()()a b b a +-+利用加法交换律可以转化为公式的标准型 (2)系数变化:如(35)(35)x y x y +- (3)指数变化:如3
2
3
2()()m n m n +- (4)符号变化:如()()a b a b --- (5)增项变化:如()()m n p m n p ++-+
(6)增因式变化:如2
2
4
4
()()()()a b a b a b a b -+++ 要点二、完全平方公式
完全平方公式:()2
2
2
2a b a ab b +=++
2222)(b ab a b a +-=-
两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.
要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:
()2222a b a b ab +=+-()2
2a b ab =-+
()
()2
2
4a b a b ab +=-+
要点三、添括号法则
添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.
要点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查
添括号是否正确. 要点四、补充公式
2()()()x p x q x p q x pq ++=+++;2
233()()a b a ab b a b ±+=±;
3
3
2
2
3
()33a b a a b ab b ±=±+±;2
2
2
2
()222a b c a b c ab ac bc ++=+++++. 【典型例题】
类型一、平方差公式的应用
1、下列两个多项式相乘,哪些可用平方差公式,哪些不能?能用平方差公式计算的,写出计算结果.
(1)()()2332a b b a --; (2) ()()2323a b a b -++; (3) ()()2323a b a b ---+; (4) ()()2323a b a b +-; (5) ()()2323a b a b ---; (6) ()()2323a b a b +--.
【思路点拨】两个多项式因式中,如果一项相同,另一项互为相反数就可以用平方差公式. 【答案与解析】
解:(2)、(3)、(4)、(5)可以用平方差公式计算,(1)、(6)不能用平方差公式计算. (2) ()()2323a b a b -++=()23b -()2
2a =2
2
94b a -.
(3) ()()2323a b a b ---+=()22a - -()2
3b =2
2
49a b -.
(4) ()()2323a b a b +-=()22a -()2
3b =2
2
49a b -.
(5) ()()2323a b a b ---=()23b --()2
2a =2
2
94b a -.
【总结升华】利用平方差公式进行乘法运算,一定要注意找准相同项和相反项(系数为相反数的同类项). 举一反三:
【变式】计算:(1)3
32222x x y y ⎛⎫⎛⎫
+-
⎪⎪⎝⎭⎝⎭
; (2)(2)(2)x x -+--; (3)(32)(23)x y y x ---.
【答案】
解:(1)原式22
22392244x x y y ⎛⎫⎛⎫
=-=- ⎪ ⎪⎝⎭⎝⎭

(2)原式2
2
2
(2)4x x =--=-.
(3)原式22
(32)(23)(32)(32)94x y y x x y x y x y =-+-=+-=-.
2、计算:
(1)59.9×60.1; (2)102×98. 【答案与解析】
解:(1)59.9×60.1=(60-0.1)×(60+0.1)=2
2
600.1-=3600-0.01=3599.99 (2)102×98=(100+2)(100-2)=2
21002-=10000-4=9996.
【总结升华】用构造平方差公式计算的方法是快速计算有些有理数乘法的好方法,构造时可利用两数的平均数,通过两式(两数)的平均值,可以把原式写成两数和差之积的形式.这样可顺利地利用平方差公式来计算.
举一反三:
【变式】用简便方法计算:
(1)899×901+1; (2)99×101×10001; (3)2
2005-2006×2004; 【答案】
解:(1)原式=(900-1)(900+1)+1=2
2
90011-+=810000.
(2)原式=[(100-1)(100+1)]×10001=()
21001-×10001
=(10000-1)×(10000+1)=100000000-1=99999999.
(3)原式=2
2005-(2005+1)(2005-1)=2
2005-(2
2005-2
1)=1.
类型二、完全平方公式的应用
3、计算:
(1)()23a b +; (2)()232a -+; (3)()22x y -; (4)()2
23x y --.
【思路点拨】此题都可以用完全平方公式计算,区别在于是选“和”还是“差”的完全平方公式.
【答案与解析】
解:(1) ()()2
2
2
2
2
332396a b a a b b a ab b +=+⨯⋅+=++.
(2) ()()()222
2
2
3223222334129a a a a a a -+=-=-⨯⨯+=-+.
(3) ()()22
2
2
2
222244x y x x y y x xy y -=-⋅⋅+=-+ .
(4) ()()()()2222
2
2
2323222334129x y x y x x y y x xy y --=+=+⨯⨯+=++.
【总结升华】(1)在运用完全平方公式时要注意运用以下规律:当所给的二项式符号相同时,结果中三项的符号都为正,当所给的二项式符号相反时,结果中两平方项为正,乘积项的符号为负.(2)注意()()22
a b a b --=+之间的转化. 4、计算:(1)2
2002;(2)2
1999.(3)2
999.9. 【答案与解析】
解:(1)()222220022000220002200022=+=+⨯⨯+ =4000000+8000+4=4008004. (2)()222219992000120002200011=-=-⨯⨯+ =4000000-4000+1=3996001.
(3) ()22
2
2
999.910000.11000210000.10.1=-=-⨯⨯+
=1000000-200+0.01=999800.01.
【总结升华】构造完全平方公式计算的方法适合求接近整数的数的平方.
5、已知7a b +=,ab =12.求下列各式的值:
(1) 2
2
a a
b b -+;(2) 2
()a b -.
【答案与解析】
解:(1)∵ 2
2
a a
b b -+=2
2
a b +-ab =()2
a b +-3ab =2
7-3×12=13.
(2)∵ ()2a b -=()2
a b +-4ab =2
7-4×12=1.
【总结升华】由乘方公式常见的变形:①()2a b +-()2a b -=4ab ;②2
2
a b +=()
2
a b +-2ab =()2
a b -+2ab .解答本题关键是不求出,a b 的值,主要利用完全平方公式的整体变换求代数式的值. 举一反三:
【变式】已知2
()7a b +=,2
()4a b -=,求22
a b +和ab 的值.
【答案】
解:由2
()7a b +=,得22
27a ab b ++=; ①
由2()4a b -=,得22
24a ab b -+=. ②
①+②得22
2()11a b +=,∴ 22
112
a b +=
. ①-②得43ab =,∴ 34
ab =
.。

相关文档
最新文档