抽象函数解题方法与技巧
抽象函数题的解法与技巧

抽象函数题的解法及技巧随着高考改革的不但深入,对基本初等函数中的抽象函数部分考查又有所提高,其题型包括抽象函数的定义域值域问题,抽象函数的单调性和奇偶性问题,求解析式及对称性问题,现就结合着近几年高考出现的体型对抽象函数部分题的解法及技巧总结如下,供备考同学们参考使用。
类型一:求抽象函数的定义域。
例题1.(2013高考大纲版数学(理))已知函数f(x )的定义域为(-1,0),则函数f (2x-1)的定义域为 (A)(-1,1) (B)(-1,21) (C)(-1,0) (D)(21,1) 解析:因为原函数的定义域为(﹣1,0),所以﹣1<2x ﹣1<0,解得﹣1<x <.所以则函数f (2x ﹣1)的定义域为(-1,21).故选B . 变式1:已知f (2x-1)定义域是[]2,1,则函数)(x f 的定义域为 答案:[1,3]变式2:已知已知f(2x-1)定义域是[]2,1,则函数)12(+x f 的定义域为 答案:[0,1] 解题技巧:抽象函数是没有解析式的函数,解决此类问题的方法是抓住这种类型题的本质,像例题1这种题型的本质是解不等式,变式1题型的本质就是求函数的值域,变式2这种题型的本质就是解不等式和求值域的结合。
解决这类问题的技巧搞清本质抓住两个小括号的范围要对应起来,是解决的技巧所在。
类型二:抽象函数的求值问题:例2.对任意实数x,y ,均满足f(2x +y)=2[f 2)(x ]+f(y)且f (1)≠0,则f2014)=_______. 解析:这种求较大自变量对应的函数值,一般从找周期或递推式着手:令x=1,y=n ,得f (n+1)=f (n )+22)]1([f , 令x=0,y=1,得f(0+12)=f(0)+2f[(1)]2, 令x=y=0,得:f(0)=0,∴f(1)=21,即f (n+1)-f (n )=21,f (n )=2n,所以,f(2014)=22014=1007. 解题技巧:抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。
高考抽象函数技巧全总结[1]
![高考抽象函数技巧全总结[1]](https://img.taocdn.com/s3/m/5f9972543b3567ec102d8ad9.png)
高考抽象函数技巧全总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211x f x x =++,求()f x .解:设1x u x =+,则1u x u=-∴2()2111u u f u uu-=+=--∴2()1x f x x-=-2.凑合法:在已知(())()f g x h x =即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x xx+=+,求()f x解:∵22111()()(1)(f x x x x xxx+=+-+=11|||1||x xx =+≥∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
抽象函数解题方法与技巧

抽象函数的解题技巧1.换元法换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x, 求f(x)解:令u=1+sinx,则sinx=u-1 (0≤u ≤2),则f(u)=-u 2+3u+1 (0≤u ≤2)故f(x)=-x 2+3x+1 (0≤u ≤2)2.方程组法运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。
例2..232|)x (f :|,x )x 1(f 2)x (f ),)x (f ,x ()x (f y ≥=-=求证且为实数即是实数函数设 解:02)x (xf 3 x ,x1)x (f 2)x1(f ,x x 12=++=-与已知得得代换用 .232|)x (f |,024)x (9f 02≥∴≥⨯-≥∆得由例3.f(x).1),x 0(x ,x 1)x1x (f )x (f 求且已知≠≠+=-+ 解:(1)1),x 0(x x 1)x1x (f )x (f ≠≠+=-+且 ,x1x 1)x 1x 1x 1x (f )x 1x (f :x x 1-x -+=---+-得代换用 :x )1(x-11 (2) .x 1x 2)x 11(f )x 1-x f( 得中的代换再以即-=-+ (3) .x1x 2)x (f )x -11f( ,x 111)x111x 11(f )1x 1(f --=+-+=---+-即 1)x 0(x x2x 21x x )x (f :2)2()3()1(223≠≠---=-+且得由 3.待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。
例4.已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x 2-4x,求f(x).解:由已知得f(x)是二次多项式,设f(x)=ax 2+bx+c (a ≠0)代入比较系数得过且过:a=1,b= -2,c= -1,f(x)=x 2-2x-1.4.赋值法有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。
抽象函数问题求解的常用方法

抽象函数问题求解的常用方法
高中数学中,抽象函数的解题方法主要包括以下几个方面:
1.确定定义域和值域:抽象函数的定义域和值域是解题的基础,需要根据题目中给出的条件进行确定。
2.运用函数性质:抽象函数和一般的函数一样,具有诸如奇偶性、周期性、单调性等函数性质。
在解题过程中,可以根据这些性质进行分析和推导,从而得出结论。
3.运用复合函数的性质:抽象函数可能会出现复合函数的形式,运用复合函数的性质可以将抽象函数化简,从而更加方便进行分析和计算。
4.利用函数的图像特征:抽象函数的图像特征包括零点、极值、拐点等,在解题过程中可以结合图像特征进行分析,进一步确定函数的性质和变化趋势。
需要注意的是,抽象函数作为高中数学中的一个较为高级的知识点,需要学生掌握一定的数学基础和思维方法,例如函数图像的绘制、导数和微积分等知识。
因此,在学习抽象函数时,需要逐步扩充自己的数学知识面,并不断提高自己的数学思维能力和分析能力。
解抽象函数的常用方法

解 令 :Y=0,则 0)=l/ 0)+ 0),.’. 0)=0.
令 Y= 一 ,则 )+ 一 ):0,.。._厂(一X)= 一 ),
. ‘ . -厂( )是 奇 函数 ,
设 XI< 2.则 厂(x2)一,( 1)=_厂( 2一 1),
’ ’ .
>0√
)<0,.’. 2一 l>0√I 2一 I)<0,
例 2 定 义 在 R 上 的 函 数 ’(X)满 足 f( +Y)+1=
f(x)+,(y) ÷)-0,且 >÷时 )<0.
(1)设 a = n)(n∈N‘),求数 列 的前 项 和 S . (2)判 断 -厂( )的单 调 性 ,并 证 明. 分 析 对 于 一 次 函 数 f( )= +6( ≠0)有 f( )+ y)= +Y)+6成 立 ,分 析 本 题 条 件 ,该 题 是 以 函 数 ,( )=2x+1为 模 型命 制 的.
抽象 ,从抽象到具体的辩证关系.下面略举数例加 以说明.
一 、 以正 比例 函数 为 模 型 例 1 已知 ,( )是 定 义在 R 上 的 函数 ,对 任 意 的 ,y∈
R,都 有 f( +Y)=I厂( )+f(,,),且 当 >0 时 ,f( )<0,
,(1):一2.当 一3≤ ≤3时,函数 )是 否存在最 大值?若
小 结 :抽 象 函数 都 是 以 中 学 阶 段 所 学 的 基 本 函 数 为 背
景.解题时 ,若 能根 据题 设中抽象 函数 的性 质寻求抽 象 函数
的特殊模型 ,灵活 变通 ,便可 寻找 到解 决 『n】题的 突破 口 ,其
解题策略通常是 :(1)利用 函数 的定 义来 解题 ;(2)利用 函
n)= 一l+(n—1)·(一2)= 一2n+1,
(完整版)抽象函数解题方法与技巧

抽象函数解题方法与技巧函数的周期性:1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x -a)(或f(x -2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数;2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a -b|的周期函数;3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a -b|的周期函数;4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a -b|的周期函数;5、若函数y=f(x)满足f(a+x)=f(a -x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ;6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ⎛⎫+= ⎪⎝⎭或()1()f x a f x ⎛⎫+=-⎪⎝⎭或,则y=f(x)是周期为2|a|的周期函数; 7、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数;8、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。
(7、8应掌握具体推导方法,如7) 函数图像的对称性: 1、若函数y=f(x)满足f(a+x)=f(b -x),则函数y=f(x)的图像关于直线2a b x +=对称;2、若函数y=f(x)满足f(x)=f(2a -x)或f(x+a)=f(a -x),则函数y=f(x)的图像关于直线x=a 对称;3、若函数y=f(x)满足f(a+x)+f(b -x)=c ,则y=f(x)的图像关于点,22a b c +⎛⎫⎪⎝⎭成中心对称图形; 4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a -x,2b -y)=0; 5、形如()0,ax by c ad bc cx d+=≠≠+的图像是双曲线,由常数分离法 d ad ad a x b ba c c c y d d c c x c x c c ⎛⎫+-+-+ ⎪⎝⎭==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭知:对称中心是点,d a c c ⎛⎫- ⎪⎝⎭;6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b -x)的图像关于直线2b a x -=对称;7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。
抽象函数技巧总结(学生用)

高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211x f x x =++,求()f x .2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x+=+,求()f x3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x .二、利用函数性质,解()f x 的有关问题1.判断函数的奇偶性:例7 已知()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠,求证()f x 为偶函数。
2.确定参数的取值范围例8:奇函数()f x 在定义域(-1,1)内递减,求满足2(1)(1)0f m f m -+-<的实数m 的取值范围。
3.解不定式的有关题目例9:如果()f x =2ax bx c ++对任意的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小抽象函数解法1、线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数。
抽象函数的解题策略

抽象函数的解题策略1.理解抽象函数:首先,应该了解抽象函数的定义,它是指一个函数不涉及具体的参数值,而是做出一般性的抽象,表达一般行为的形式。
2.掌握函数的概念:除了理解抽象函数的定义外,还需要掌握函数的概念,它被定义为一个参数变量到另一个输出值的关系,一般分为变量和参数,参数是可以改变的。
3.熟悉函数的几种类型:熟悉函数的几种类型,有一元函数、双元函数、多元函数以及化简函数,以及还有抽象函数等,仔细分析各种函数,理解抽象函数的特点,并利用这些特点解决问题。
4.理解函数运算:函数运算是关于函数关系的常见解决方案,其中包括函数的求值、常见函数的图像因素、单调及其他运算,要想解决抽象函数的问题,需要理解这些函数的运算,充分利用数学知识找出最佳的解决方案。
5.利用特殊工具解决特殊问题:特殊工具包括特定编程语言,如C 语言或Matlab,还有函数图像分析等,然后利用这些特殊工具来解决抽象函数的问题。
6.通过图像因素处理:利用图像因素处理的方法,可以解决抽象函数的复杂性及其他问题,因此,当需要解决抽象函数问题时,可采用图像因素处理的方法进行解决。
7.建立抽象模型:抽象模型是指通过不涉及具体数字的方法来描述函数,可以利用单位跳变模型、皮克定理以及关于解析函数分析的常见方法,结合抽象模型,可以很好的解决抽象函数问题。
8.利用算法工具:在解决抽象函数的问题时,可以采取算法的方式来解决,在算法方面,包括基本的数学归纳法、分式法、牛顿迭代法、区间分割法、差值拟合法等,可以利用算法工具求解抽象函数的问题。
9.结合实际:最后,解决抽象函数的问题时,还可以结合实际情况,借鉴或者组合已有方法,根据实际情况及需求来抽象通用解决方案,使得解决问题更加简单、高效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽象函数解题方法与技巧函数的周期性:1、定义在x ∈R 上的函数y=fx ,满足fx+a=fx -a 或fx -2a=fxa >0恒成立,则y=fx 是周期为2a 的周期函数;2、若y=fx 的图像关于直线x=a 和x=b 对称,则函数y=fx 是周期为2|a -b|的周期函数;3、若y=fx 的图像关于点a,0和b,0对称,则函数y=fx 是周期为2|a -b|的周期函数;4、若y=fx 的图像有一个对称中心Aa,0和一条对称轴x=ba ≠b ,则函数y=fx 是周期为4|a -b|的周期函数;5、若函数y=fx 满足fa+x=fa -x ,其中a>0,且如果y=fx 为奇函数,则其周期为4a ;如果y=fx 为偶函数,则其周期为2a ;6、定义在x ∈R 上的函数y=fx ,满足fx+a=-fx ()1()f x a f x ⎛⎫+= ⎪⎝⎭或()1()f x a f x ⎛⎫+=-⎪⎝⎭或,则y=fx 是周期为2|a|的周期函数;7、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=fx 是周期为4a 的周期函数;8、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=fx 是周期为2a 的周期函数;7、8应掌握具体推导方法,如7 函数图像的对称性:1、若函数y=fx 满足fa+x=fb -x ,则函数y=fx 的图像关于直线2a b x +=对称;2、若函数y=fx 满足fx=f2a -x 或fx+a=fa -x ,则函数y=fx 的图像关于直线x=a 对称;3、若函数y=fx 满足fa+x+fb -x=c ,则y=fx 的图像关于点,22a b c +⎛⎫⎪⎝⎭成中心对称图形; 4、曲线fx,y=0关于点a,b 的对称曲线的方程为f2a -x,2b -y=0; 5、形如()0,ax by c ad bc cx d+=≠≠+的图像是双曲线,由常数分离法 ()()()()()()()1111212112()()11f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++d ad ad a x b ba c c c y d d c c x c x c c ⎛⎫+-+-+ ⎪⎝⎭==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭知:对称中心是点,d a c c ⎛⎫- ⎪⎝⎭;6、设函数y=fx 定义在实数集上,则y=fx+a 与y=fb -x 的图像关于直线2b a x -=对称;7、若函数y=fx 有反函数,则y=fa+x 和y=f -1x+a 的图像关于直线y=x+a 对称;一、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f1+sinx=2+sinx+cos 2x , 求fx二、方程组法 运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题;例2..232|)(:|,)1(2)(),)(,(≥=-=x f x x f x f x f x f(x)y 求证且为实数即是实数函数设三、待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题; 例3.已知fx 是二次函数,且fx+1+fx -1=2x 2-4x ,求fx .四、赋值法有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决; 例4.对任意实数x,y ,均满足fx+y 2=fx+2fy 2且f1≠0,则f2001=_______. 例5.已知fx 是定义在R 上的不恒为零的函数,且对于任意的实数a,b 都满足 fab=afb+bfa. 1求f0,f1的值;2判断fx 的奇偶性,并证明你的结论;五、转化法 通过变量代换等数学手段将抽象函数具有的性质与函数的单调性等定义式建立联系,为问题的解决带来极大的方便.例6.设函数fx 对任意实数x,y ,都有fx+y=fx+fy ,若x>0时fx<0,且f1= -2, 求fx 在-3,3上的最大值和最小值;例7.定义在R +上的函数fx 满足: ①对任意实数m ,fx m =mfx ; ②f2=1. 1求证:fxy=fx+fy 对任意正数x,y 都成立; 2证明fx 是R +上的单调增函数; 3若fx+fx -3≤2,求x 的取值范围;六、递推法 对于定义在正整数集N 上的抽象函数,用递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解.例8.已知fx 是定义在R 上的函数,f1=1,且对任意x ∈R 都有fx+5≥fx+5,fx+1≤fx+1;若gx=fx+1-x ,则g2002=_________.模型法模型法是指通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法; 应掌握下面常见的特殊模型:=_____________ 例11.设定义在R 上的函数fx ,满足当x>0时,fx>1,且对任意x,y ∈R ,有fx+y=fxfy,f1=2 1解不等式f3x -x 2>4;2解方程fx 2+12fx+3=f2+1 例12.已知函数fx 对任何正数x,y 都有fxy=fxfy ,且fx ≠0,当x>1时,fx<1;试判断fx 在0,+∞上的单调性,并说明理由;函数性质练习1. 已知函数为偶函数,则的值是A. B. C. D.2. 若偶函数在上是增函数,则下列关系式中成立的是)127()2()1()(22+-+-+-=m m x m x m x f m 1234)(x f (]1,-∞-A. B.C. D.3. 如果奇函数在区间 上是增函数且最大值为,那么在区间上是A. 增函数且最小值是B. 增函数且最大值是C. 减函数且最大值是D. 减函数且最小值是4. 设是定义在上的一个函数,则函数在上一定是 A. 奇函数 B. 偶函数 C. 既是奇函数又是偶函数 D. 非奇非偶函数5. 下列函数中,在区间上是增函数的是A. B. C. D. 6. 函数是A. 是奇函数又是减函数B. 是奇函数但不是减函数C. 是减函数但不是奇函数D. 不是奇函数也不是减函数7. 设奇函数的定义域为,若当时,的图象如右图,则不等式的解是8. 函数________________.9. 已知,则函数的值域是.10. 若函数是偶函数,则的递减区间是 .11. 下列四个命题 1; 2函数是其定义域到值域的映射;)2()1()23(f f f <-<-)2()23()1(f f f <-<-)23()1()2(-<-<f f f )1()23()2(-<-<f f f )(x f [3,7]5)(x f []3,7--5-5-5-5-)(x f R )()()(x f x f x F --=R ()0,1x y =x y -=3xy 1=42+-=x y )11()(+--=x x x x f )(x f []5,5-[0,5]x ∈)(x f ()0f x <2y x =+[0,1]x ∈y =2()(2)(1)3f x k x k x =-+-+)(x f ()f x =3函数的图象是一直线;4函数的图象是抛物线,其中正确的命题个数是____________.12. 已知函数的定义域为,且同时满足下列条件:1是奇函数;2在定义域上单调递减;3求的取值范围.抽象函数解题方法与技巧函数的周期性:1、定义在x ∈R 上的函数y=fx ,满足fx+a=fx -a 或fx -2a=fxa >0恒成立,则y=fx 是周期为2a 的周期函数;2、若y=fx 的图像关于直线x=a 和x=b 对称,则函数y=fx 是周期为2|a -b|的周期函数;3、若y=fx 的图像关于点a,0和b,0对称,则函数y=fx 是周期为2|a -b|的周期函数;4、若y=fx 的图像有一个对称中心Aa,0和一条对称轴x=ba ≠b ,则函数y=fx 是周期为4|a -b|的周期函数;5、若函数y=fx 满足fa+x=fa -x ,其中a>0,且如果y=fx 为奇函数,则其周期为4a ;如果y=fx 为偶函数,则其周期为2a ;6、定义在x ∈R 上的函数y=fx ,满足fx+a=-fx ()1()f x a f x ⎛⎫+= ⎪⎝⎭或()1()f x a f x ⎛⎫+=-⎪⎝⎭或,则y=fx 是周期为2|a|的周期函数;7、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=fx 是周期为4a 的周期函数;8、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=fx 是周期为2a 的周期函数;7、8应掌握具体推导方法,如7 函数图像的对称性:1、若函数y=fx 满足fa+x=fb -x ,则函数y=fx 的图像关于直线2a b x +=对称;2、若函数y=fx 满足fx=f2a -x 或fx+a=fa -x ,则函数y=fx 的图像关于直线x=a 对称;2()y x x N =∈22,0,0x x y x x ⎧≥⎪=⎨-<⎪⎩()f x ()1,1-()f x ()f x 2(1)(1)0,f a f a -+-<a ()()()()()()()1111212112()()11f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++3、若函数y=fx 满足fa+x+fb -x=c ,则y=fx 的图像关于点,22a b c +⎛⎫⎪⎝⎭成中心对称图形; 4、曲线fx,y=0关于点a,b 的对称曲线的方程为f2a -x,2b -y=0; 5、形如()0,ax by c ad bc cx d+=≠≠+的图像是双曲线,由常数分离法 d ad ad a x b ba c c c y d d c c x c x c c ⎛⎫+-+-+ ⎪⎝⎭==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭知:对称中心是点,d a c c ⎛⎫- ⎪⎝⎭;6、设函数y=fx 定义在实数集上,则y=fx+a 与y=fb -x 的图像关于直线2b a x -=对称;7、若函数y=fx 有反函数,则y=fa+x 和y=f -1x+a 的图像关于直线y=x+a 对称;二、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例2. 已知f1+sinx=2+sinx+cos 2x , 求fx解:令u=1+sinx ,则sinx=u -1 0≤u ≤2,则fu=-u 2+3u+1 0≤u ≤2 故fx=-x 2+3x+1 0≤x ≤2二、方程组法 运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题;例2..232|)(:|,)1(2)(),)(,(≥=-=x f x x f x f x f x f(x)y 求证且为实数即是实数函数设解:xx x f x x f x f x x 323)(,1)(2)1(,1--==-联立方程组,得得代换用三、待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题; 例3.已知fx 是多项式函数,且fx+1+fx -1=2x 2-4x ,求fx . 解:由已知得fx 是二次多项式,设fx=ax 2+bx+c a≠0 代入fx+1=ax+12+bx+1+c=ax 2+2a+bx+a+b+c fx -1= ax -12+bx -1+c=ax 2+ b -2ax+a -b+c∴fx+1+ fx -1=2ax 2+2bx+2a+2c=2x 2-4x比较系数得:a=1,b= -2,c= -1 , fx=x 2-2x -1.四、赋值法有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决; 例4.对任意实数x,y ,均满足fx+y 2=fx+2fy 2且f1≠0,则f2001=_______. 解:令x=y=0,得:f0=0,令x=0,y=1,得f0+12=f0+2f12,∵f1≠0 ∴f1= . 令x=n,y=1,得fn+1=fn+2f12=fn+ 即fn+1-fn = 12,故fn = 2n ,f2001= 20012例5.已知fx 是定义在R 上的不恒为零的函数,且对于任意的实数a,b 都满足 fab=afb+bfa. 1求f0,f1的值;2判断fx 的奇偶性,并证明你的结论; 3若f2=2,u n =f2n n ∈N ,求证:u n+1>u n n ∈N . 解:1令a=b=0,得f0=0,令a=b=1,得f1=0.2fx 是奇函数;因为:令a=b=-1,得f -1-1=-f -1-f -1,f -1=0, 故f -x=f -1x= -fx+xf -1= -fx ,故fx 为奇函数. 3先用数学归纳法证明:u n =f2n >0 n ∈N 略五、转化法 通过变量代换等数学手段将抽象函数具有的性质与函数的单调性等定义式建立联系,为问题的解决带来极大的方便.例6.设函数fx 对任意实数x,y ,都有fx+y=fx+fy ,若x>0时fx<0,且f1= -2,求fx 在-3,3上的最大值和最小值;解:令x=y=0,得f0=0,令y=-x ,得f -x+fx=f0=0,即fx 为奇函数. 设x 1<x 2,则x 2-x 1>0,由已知得fx 2-x 1<0,故fx 2=fx 2-x 1+x 1=fx 2-x 1+fx 1< fx 1 所以fx 是R 上的减函数,又f3=f1+f2=3f1=-6,f -3=6 故fx 在-3,3上的最大值为6,最小值为-6.例7.定义在R +上的函数fx 满足: ①对任意实数m ,fx m =mfx ; ②f2=1. 1求证:fxy=fx+fy 对任意正数x,y 都成立; 2证明fx 是R +上的单调增函数; 3若fx+fx -3≤2,求x 的取值范围;解:1令x=2m ,y=2n ,其中m,n 为实数,则fxy=f2m+n =m+nf2=m+n .1212又fx+fy=f2m +f2n =mf2+nf2=m+n ,所以fxy=fx+fy 2证明:设0<x 1<x 2,可令m<n 且使x 1=2m ,x 2=2n 由1得fx 1-fx 2=12x f x ⎛⎫ ⎪⎝⎭=f2m -n=m -nf2=m -n<0故fx 1<fx 2,即fx 是R +上的增函数;3由fx+fx -3≤2及fx 的性质,得fxx -3≤2f2=f4 解得 3<x ≤4;六、递推法 对于定义在正整数集N 上的抽象函数,用递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解.例8.已知fx 是定义在R 上的函数,f1=1,且对任意x ∈R 都有fx+5≥fx+5,fx+1≤fx+1;若gx=fx+1-x ,则g2002=_________.解:由fx+1≤fx+1得fx+5≤fx+4+1≤fx+3+2≤fx+2+3≤fx+1+4 又∵fx+5≥fx+5 ∴fx+5≤fx+1+4 ∴fx+1≤fx+1 又∵fx+1≤fx+1 ∴fx+1=fx+1又∵f1=1 ∴fx=x gx=fx+1-x=1,故g2002=1;模型法模型法是指通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法; 应掌握下面常见的特殊模型:=_____________ 分析:因为函数fx 恒满足f2+x= f2-x ,方程fx=0有5个实根,可以将该函数看成是类似于二次函数y=kx -22为模型引出解题思路,即函数的对称轴是x=2,并且函数在f2=0,其余的四个实数根关于x=2对称 解:因为实数集上的函数fx 恒满足f2+x= f2-x ,方程fx=0有5个实根,所以函数关于直线x=2对称,所以方程的五个实数根也关于直线x=2对称,其中有一个实数根为2,其它四个实数根位于直线x=2两侧,关于直线x=2对称,则这5个根之和为10;例11.设定义在R 上的函数fx ,满足当x>0时,fx>1,且对任意x,y ∈R ,有fx+y=fxfy,f1=2 1解不等式f3x -x 2>4;2解方程fx 2+12fx+3=f2+1 分析:可联想指数函数fx=a x ;解:1先证fx>0,且单调递增,因为fx=fx+0=fxf0,x>0时fx>1,所以f0=1 对于任意x<0,则-x>0,fxf -x=fx -x=f0=1,∴fx=()1f x - ∵-x>0,f -x>1 ∴0<fx<1 综上所述 fx>0 任取x 1,x 2∈R 且x 1<x 2,则x 2-x 1>0,fx 2-x 1>1, 所以fx 1-fx 2=fx 2-x 1+x 1-fx 1=fx 2-x 1fx 1-fx 1=fx 1fx 2-x 1-1>0 所以x ∈R 时,fx 为增函数;不等式f3x -x 2>4可化为3x -x 2>2 解得:{x|1<x<2}2f1=2,f2=4,f3=8,原方程可化为:fx 2+4fx -5=0,解得fx=1或fx=-5舍 由1得x=0;例12.已知函数fx 对任何正数x,y 都有fxy=fxfy ,且fx ≠0,当x>1时,fx<1;试判断fx 在0,+∞上的单调性,并说明理由;分析:可联想幂函数 fx=x n 解:对x ∈R +,有fx=20ff =≥,又fx ≠0,故fx>0设x 1,x 2∈R +,且x 1<x 2,则211x x >,则()()()()()2211211211111x x f x f f x f x x x x f f x f x f x x ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎛⎫⎝⎭⎝⎭===< ⎪⎝⎭所以fx 1>fx 2,故fx 在R +上为减函数;函数性质答案1. B 奇次项系数为2. D3. A 奇函数关于原点对称,左右两边有相同的单调性4. A5. A 在上递减,在上递减,在上递减,6. A为奇函数,而为减函数. 7. 奇函数关于原点对称,补足左边的图象8. 是的增函数,当时,9. 该函数为增函数,自变量最小时,函数值最小;自变量最大时,函数值最大10.11. 1,不存在;2函数是特殊的映射;3该图象是由离散的点组成的;4两个不同的抛物线的两部分组成的,不是抛物线.12. 解:,则,0,20,2m m -==3(2)(2),212f f =--<-<-()()()()F x f x f x F x -=--=-3y x =-R 1y x=(0,)+∞24y x =-+(0,)+∞()(11)(11)()f x x x x x x x f x -=----+=+--=-222,12,01(),2,102,1x x x x f x x x x x -≥⎧⎪-≤<⎪=⎨-≤<⎪⎪<-⎩(](2,0)2,5-[2,)-+∞1,x y ≥-x 1x =-min 2y =-[)0,+∞210,1,()3k k f x x -===-+121x x ≥≤且22(1)(1)(1)f a f a f a -<--=-2211111111a a a a -<-<⎧⎪-<-<⎨⎪->-⎩∴01a <<。