随机过程-习题-第6章
西安交通大学汪荣鑫随机过程第二版课后答案

随机过程习题解答第一章习题解答1.设随机变量X 服从几何分布,即:(),0,1,2,kP X k pqk ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtk k X k f t E ee pq ∞===∑ =()1jt k jtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑(其中 0(1)nnnn n n nx n x x ∞∞∞====+-∑∑∑)令 0()(1)nn S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰同理 2(1)2kkkk k k k k kx k x kx x ∞∞∞∞=====+--∑∑∑∑令2()(1)kk S x k x ∞==+∑ 则211()(1)(1)xkk kk k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为(2) 其期望和方差;(3)证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则 (2)'1()(0)Xp E X fjb∴==(4)若(,)i i X p b Γ 1,2i = 则同理可得:()()i i P X b f t b jt∑=∑-3、设ln (),()(kZ F X E Zk =并求是常数)。
X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数; (2)ln (),()(kZ F X E Z k =并求是常数)。
解(1)11{()}{()}[()]P F x y P x F y F F y y --<=<==(01y ≤≤) ∴00()0111y F y yy y <⎧⎪=≤≤⎨⎪>⎩∴()F x 在区间[0,1]上服从均匀分布()F x ∴的特征函数为11001()(1)jtx jtx jt X e f t e dx e jt jt ===-⎰ (2)ln ()()()[]jtz jt F x Z f t E e E e ===1ln 01jt ye dy ⋅⎰=111jty dy jt =+⎰4、设12n X X X ,,相互独立,且有相同的几何分布,试求1nkk X =∑的分布。
第6章 窄带随机过程

Z (t ) B(t ) cos[ (t )], 其中 B( t ) 0, ( t ) t ( t ) 。 0
上 海 大 学 通 信 学 院
表达式1: Z ( t ) B( t ) cos[ 0 t ( t )],
B( t ) 0, ( t ) 0 t ( t ) 表达式2: Z ( t ) X ( t ) cos 0 t Y ( t ) sin 0 t
上 海 大 学 通 信 学 院
二、解析信号与希尔伯特变换*
1. 解析信号的引入
S ( f ) s(t )e j 2 f t dt R( f ) jI ( f ) 时域实信号S(t)
S ( f )满足共轭对称性,即,
R( f ) R( f ), 偶函数 S ( f ) S ( f ) I ( f ) I ( f ), 奇函数
上 海 大 学 通 信 学 院
2.解析信号的构造
对给定的时域实信号s(t),设构造的时域复信号为
ˆ(t ) z( t ) s( t ) js
ˆ(t ) 为一由s(t)构造的信号,其构造方法可为, 其中,s
s( t )
即,
h( t )
ˆ s( t )
z( t ) s( t ) js( t ) h( t )
ˆ ( t ) 的互相关函数满足: X
T
T
R X ( t , t )dt
性质5. 平稳随机过程X(t)和其对应的Hilbert变换
ˆ ( ) ˆ RX X ( ) R ( ), R ( ) R ˆ ˆ X X XX
上 海 大 学 通 信 学 院
(完整版)上海大学随机过程第六章习题及答案

第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间;(2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =L 为相互独立的随机变量序列,则 (1){,1,2,}i Y i =L 是否为Markov 链? (2)令1nn ii X Y ==∑,问{,1,2,}iX i =L 是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================L L L L L因此,{,1,2,}n Y n =L 是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++L 为1n U -的函数,记为1112(),n n n n f U X U U U --=+++L 为n U 的函数,记为().n n f U 由于12,,,,n U U U L L 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U L L 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑L L L因此{,1,2,}n X n =L 是马尔可夫链.3 设,1,2,i X i =L 是相互独立的随机变量,且使得(),0,1,i j P X j a j ===L ,如果max{,1,2,,1}n i X X i n >=-L ,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值. (1)证明,{,1,2,}n R n =L 是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =L 是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P tn i i ===++=⎩⎨⎧≤>ij i j a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j i j iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。
上海大学随机过程第六章习题与答案

第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间; (2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =L 为相互独立的随机变量序列,则(1){,1,2,}i Y i =L 是否为Markov 链? (2)令1nn ii X Y ==∑,问{,1,2,}iX i =L 是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================L L L L L因此,{,1,2,}n Y n =L 是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++L 为1n U -的函数,记为1112(),n n n n f U X U U U --=+++L 为n U 的函数,记为().n n f U 由于12,,,,n U U U L L 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U L L 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑L L L因此{,1,2,}n X n =L 是马尔可夫链.3 设,1,2,i X i =L 是相互独立的随机变量,且使得(),0,1,i j P X j a j ===L ,如果max{,1,2,,1}n i X X i n >=-L ,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n 产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值.(1)证明,{,1,2,}n R n =L 是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =L 是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P t n i i ===++=⎩⎨⎧≤>i j ij a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j ij iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。
2012-2013秋季学期《随机过程》第六章习题

中科院研究生院2012~2013第一学期 随机过程讲稿 孙应飞第六章 高斯过程(维纳过程) 习题1、 设有随机过程Y ,∞<<−=t X t t 0,1)(2X 是正态随机变量,期望为0,方差为。
2X σ(1) 过程Y 是否正态过程?是否平稳过程?均需说明理由;)(t (2) 过程,在均方可积意义下是否存在?存在的话,试求其相关函数。
0,)()(0>=∫t ds s Y t Z t2、 设是初值为零的标准布朗运动,令0,)(≥t t B 10)],1/([)1()(<≤−−=t t t B t t ξ,的常数,试求随机过程0,0),12>≥−a t at η()(=−e B e t at )(t ξ和)(t η的均值函数和相关函数,并说明)(t ξ和)(t η是否是正态过程。
3、 设是标准的布朗运动,试求与的相关系数,其中:。
}0,)({≥t t B 1≤≤t )(t B ∫10)(du u B 04、 已知是初值为0的标准布朗运动,求在0),(>t t B 0)1(=B 时的条件概率分布密度函数。
)10()(<<t t B 5、 已知是初值为零的标准布朗运动,令0,)(≥t t B b t B a t +=)()(ξ,b at B t +=)()(η,其中常数a ,t 。
试分析此两随机过程的前二阶矩是否相同?此两过程是否同分布?说明理由。
0>b ,0>0≥6、 设{为零初值的标准布朗运动,试求:}0),(≥t t B (1) 在的条件下,的条件概率密度函数,其中t ;01)(x t B =)(2t B 12t >(2) 布朗运动的对称性,即证明:当 t 时,有0,00>>t 2/1})()({})()({00000000==≤+==>+x t B x t t B P x t B x t t B P ;(3) 令:T })(,0:inf{a t B t t a =>=a ,T 表示布朗运动首次到达a 的时刻,当时,试求T 的分布函数。
随机过程-习题解答电子科技大学陈良均

在独立同分布的随机变量序列中,当样本量趋于无穷时,无论总体分布是什么,样本均 值的分布趋近于正态分布。
05
随机过程的估计与预测
参数估计
矩估计法
利用随机过程的数学期望、方差等矩特征,通过 样本矩来估计参数。
最小二乘估计法
通过最小化误差的平方和来估计参数,常用的有 普通最小二乘法和加权最小二乘法。
泊松过程
总结词
泊松过程是一种随机过程,其中事件 的发生是相互独立的,且具有恒定的 发生率。
详细描述
泊松过程描述了在单位时间内发生事 件的次数,其中事件的发生是相互独 立的,且具有恒定的发生率。这种过 程在物理学、工程学、统计学等领域 有广泛应用。
随机漫步
总结词
随机漫步是一种随机过程,其中每一步 都是随机的,且与前一步无关。
信号的滤波与预测
要点一
信号滤波
利用滤波器对随机信号进行处理,提取出所需频率成分, 抑制噪声和其他干扰。
要点二
信号预测
基于随机过程理论,利用历史数据对未来信号进行预测, 提高信号处理的准确性和可靠性。
信号的检测与估计
信号检测
在存在噪声和干扰的情况下,利用随机过程理论,检测 出有用的信号,提高信号检测的灵敏度和抗干扰能力。
参数估计
通过分析随机信号的统计特性,估计出信号的某些参数 ,如频率、相位等,为进一步处理和应用提供依据。
感谢您的观看
THANKS
06
随机过程在信号处理中的应 用
信号的随机模型化
信号的随机模型化
01
将信号表示为随机过程,以便更好地理解和分析信号的特性。
随机信号的统计特性
02
研究随机信号的均值、方差、相关函数等统计特性,以描述信
(完整版)随机过程习题答案

(完整版)随机过程习题答案随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的⼀维概率密度、均值和相关函数。
解因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的⼀维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的⼀维概率密度及),(),(21t t R t EX X 。
解对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的⼀维概率密度xtt x f t x f Y 1)ln ();(-=,0>t)(][)]([)(dy y f e eE t X E t m yt tY X相关函数+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X 2.3 若从0=t 开始每隔21秒抛掷⼀枚均匀的硬币做实验,定义随机过程=时刻抛得反⾯时刻抛得正⾯t t t t t X ,2),cos()(π试求:(1))(t X 的⼀维分布函数),1(),21(x F x F 和;(2))(t X 的⼆维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,⽅差 )1(),(22X Xt σσ。
随机过程-方兆本-第三版-课后习题答案

习题4以下如果没有指明变量t 的取值范围,一般视为R t ∈,平稳过程指宽平稳过程。
1. 设Ut t X sin )(=,这里U 为)2,0(π上的均匀分布.(a ) 若 ,2,1=t ,证明},2,1),({ =t t X 是宽平稳但不是严平稳, (b ) 设),0[∞∈t ,证明}0),({≥t t X 既不是严平稳也不是宽平稳过程. 证明:(a )验证宽平稳的性质,2,1,0)cos (2121)sin()sin()(2020==-=•==⎰t Ut tdU Ut Ut E t EX ππππ))cos()(cos(21)sin (sin ))(),((U s t U s t E Us Ut E s X t X COV ---=•=t U s t s t U s t s t πππ21}])[cos(1])[cos(1{212020•+++--= s t ≠=,021Ut Esin ))(),((2==t X t X COV (b) ,)),2cos(1(21)(有关与t t t t EX ππ-=.)2sin(8121DX(t)有关,不平稳,与t t tππ-=2. 设},2,1,{ =n X n 是平稳序列,定义 ,2,1},,2,1,{)(==i n X i n 为,,)1(1)1()2(1)1(---=-=n n n n n n X X X X X X ,证明:这些序列仍是平稳的. 证明:已知,)(),(,,2t X X COV DX m EX t t n n n γσ===+2121)1(1)1()1(2)(,0σγσ≡+=-==-=--n n n n n n X X D DX EX EX EX)1()1()(2),(),(),(),(),(),(111111)1()1(++--=+--=--=--+-+-++--+++t t t X X COV X X COV X X COV X X COV X X X X COV X X COV n t n n t n n t n n t n n n t n t n n t n γγγ显然,)1(n X 为平稳过程.同理可证, ,,)3()2(n n X X 亦为平稳过程.3.设1)nn k k k k Z a n u σ==-∑这里k σ和k a 为正常数,k=1,....n; 1,...n u u 是(0,2π)上独立均匀分布随机变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
|.设有n 维随机矢量)(21n ξξξξτ =服从正态分布,各分量的均值为n i a E i ,,2,1, ==ξ,其协方差矩阵为⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=2222222000000σσσσσσσa a a B试求其特征函数。
解:n 元正态分布的特征函数为}21exp{),,,(21][Bt t t j t t t n '-'=μφξn i a E i ,,2,1, ==ξ ),,,(21n t t t t =' ,则>∑=='ni ijat t j 1μ()()),,,(2122322222121'++='n n t tt t t a t t a t t Bt t σσσσσσ=22223232222221221σσσσσσn t t a t t t a t t t ++++++ =∑∑-=+=+1121122n i i i ni i a t t t σσ∴]21exp[)]21(exp[),,,(112112221][∑∑-=+=--=n i i i ni i i n a t t t jat t t t σσφξ. 设n 维正态分布随机矢量)(21n T ξξξξ =各分量的均值为i E i =ξ,n i ,3,2,1=,各分量间的协方差为n i m i m n b i m ,3,2,1,|,|,=--=设有随机变量∑==ni i 1ξη,求的特征函数。
[解:易得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n ξξξη 21]111[2)1(][][11+===∑∑==n n i E E ni n i i ξη 协方差矩阵为: ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=n nn n n n n n n n321312211121B所以 ]111[]111['⋅⋅= B ηD =223n n +由于高斯分布的随机变量的线形组合依旧是高斯分布的,所以η的特征函数为:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+=2456822)1(exp )(t n n n t n n j t ηΦ设有三维正态分布随机矢量)(321ξξξξ=T ,其各分量的均值为零,即0][=i E ξ)3,2,1(=i ,其协方差矩阵为⎪⎪⎪⎭⎫ ⎝⎛=333231232221131211b b b b b b b b b B {其中,2332211σ===b b b ,试求:(1)[]321ξξξE(2)[]232221ξξξE (3))])()([(223222221σξσξσξ---E 解:(1) 由教材467P 页可看出()()3,2,1,,,,321321=Φ-=∂Φ∂i t t t u t t t t i i()()()j i j i t t t u u t t t b t t t t t j i ij ji ≠=Φ+Φ-=∂∂Φ∂且3,2,1,,,,,,,3213213212,&()()()()()()()3213211232133123213213211233212133213123213213,,,,,,,,,,,,t t t u u u u b u b u b t t t u u u t t t u b t t t u b t t t u b t t t t t t Φ-++=Φ-Φ+Φ+Φ=∂∂∂Φ∂ 其中:()321,,t t t Φ为零均值的三元正态分布随机变量321,,ξξξ的特征函数()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=Φ∑=3132121exp ,,k k k u t t t t∑==31i i ki k t b u令0321===t t t ,则()3,2,1,0,10,0,0===Φk u k ,所以[]()()0,,032132133213213=∂∂∂Φ∂====-t t t t t t t t t jE ξξξ(2)设()321123213312u u u u b u b u b N -++=,则()()3213213213,,,,t t t N t t t t t t Φ=∂∂∂Φ∂《21333123321333123312321233122321222132312221133112321111231312123131222213332122231133221132132222u u b u u b u u b b b b b t Nu u b u u b u u b b b b b t Nu u b u u b u u b b b b b t Nb b b b b b b b b b b b t t t N---+=∂∂---+=∂∂---+=∂∂++++=∂∂∂∂()()()()()()()2313123322110132321223132123213212321321303213213023222132164,,,,,,,,,,,,321321321b b b b b b t N t t t t t t N t t t t t t N t t t t t t t t t t t N t t t t t t N t t t t t t t t t t t t t t t -=⎪⎪⎭⎫ ⎝⎛∂∂∂∂Φ∂+∂∂∂∂Φ∂+∂∂∂∂Φ∂+Φ∂∂∂∂=∂∂∂Φ∂=∂∂∂Φ∂========= []()()()()231312332211023222132162322214,,63216b b b b b b jt t t t t t jE t t t -=∂∂∂Φ∂=--===ξξξ(3)()()()[]()()()()[]()2121122221222121122122112221121222112121122122221214,2,,t t u u b u u b u u u b b u u b u b b b b t t u u b t t t t t t Φ-+--++-+=Φ+-∂∂∂=∂∂Φ∂()()()[]()()()()[]()3131132321332131132133113231121333113131133122321314,2,,t t u u b u u b u u u b b u u b u b b b b t t u u b t t t t t t Φ-+--++-+=Φ+-∂∂∂=∂∂Φ∂()()()[]()()()()[]()3232232322332232232233223232222333223232233222322324,2,,t t u u b u u b u u u b b u u b u b b b b t t u u b t t t t t t Φ-+--++-+=Φ+-∂∂∂=∂∂Φ∂[]()21222110222121422212,21b b b t t t t E t t +=∂∂Φ∂===ξξ[]()21333110232131423212,31b b b t t t t E t t +=∂∂Φ∂===ξξ ,[]()22333220232232423222,32b b b t t t t E t t +=∂∂Φ∂===ξξ ()()()[][][][][]()()()22321321222313126232221423222321222122322212232222212224b b b b b b E E E E E E E E ++--=-+++++-=---σσξξξσξξξξξξσξξξσξσξσξ另一种方法是利用设有三维正态分布的随机矢量T ξ=[1ξ,2ξ,3ξ]的概率密度为f []ξ(x 1,x 2,x 3)=C )}422(21exp{2321222121x x x x x x x +-+--(1)证明经过线性变换η=A ξ=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---100721021411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321ξξξ 得矢量T η=[321,,ηηη],则321,,ηηη是相互统计独立的随机变量。
(2)求C 值。
(解:2331222121422x x x x x x x +-+-=[x 1,x 2,x 3]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----401015.015.02[x 1,x 2,x 3]TB 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----401015.015.02,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡75.15.015.07212461,B =61 (1)32124111ξξξη--= 37222ξξη-=33ξη=E[21ηη]=E[23713221321412241317221ξξξξξξξξξξ+-+--]=0同样可得:E[31ηη]=0,E[32ηη]=0 所以321,,ηηη是相互统计独立的随机变量 (2) C=212)2(1Bn π=2133)61()2(1π=ππ61】、设有零均值平稳实高斯随机过程)(t ξ,其功率谱密度为其它频率范围)(0)()(2{)(0f f f P S f S ∆<∆==ξ如果对该过程每隔f ∆21秒作一次抽样,得到样本值),0(ξ ),22(),21(ff ∆∆ξξ (1) 写出前面n 个样本点)(t ξ所取值))21(),0((fn ∆-ξξ 的n 维联合概率密度。
(2) 定义随机变量∑-=∆=10)2(1n k n fkn ξη 求概率}{aP P n >η的表示式,α为常数,α>0。
解:(1) 首先由功率谱密度求出自相关函数,参见P345,图5-5结论。
τπτπττππτξf f P f f f S R ∆∆=∆∆⋅∆=2)2sin()2sin()(0`)(t ξ是零均值的、平稳实高斯过程均值向量μ=0,协方差阵1,1,0,)],2()2(cov[,)(-=∆∆==⨯n k i fk f i b b B ik n n ik ξξ其中 由功率谱密度的表达式,我们可以看到,该信号最大频率分量为f ∆,而对该过程的采样频率取为2f ∆,这样所得样本值),0(ξ ),22(),21(ff ∆∆ξξ为相互统计独立的随机变量,其协方差阵B 为对角阵,P R b ii ==)0(ξ,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=P P P B 所求的n 元正态分布的联合概率密度为)}()(21exp{)2(1),,,(121221][μμπξ-'--⋅=-X B X Bx x x f nn=}21exp{)2(112212∑=-⋅ni i n Px Pπ (2) 记∑-=∆=10)2(1n k n f kn ξη=ξa ',其中]111[nn na ='。
根据线性变换前后的关系,得∑-==∆=100)]2([1n k n f kE n E ξη,22nP Ba a ='=ησ.所以,}2exp{2)(222Pn x Pn x f -⋅=πηdx x f dx x f P P P Pn ⎰⎰+∞-∞-+=>αηαηαη)()(}{=. 设有图题6-12所示的接收机。