2019年怀柔区初三二模数学试卷及答案
2019学年北京市怀柔区中考二模数学试卷【含答案及解析】

2019学年北京市怀柔区中考二模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是().A.4 B.0 C.-2 D.-42. 2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13 100 000人,创历史新高.将数字13 100 000用科学记数法表示为().A.13.1×106 B.1.31×107 C.1.31×108 D.0.131×1083. 正八边形的内角和等于().A.720° B.1080° C.1440° D.1880°4. 下列各式计算正确的是().A. B. C. D.5. 以下问题,不适合用普查方法的是().A.了解某种酸奶中钙的含量B.了解某班学生的课外作业时间C.公司招聘职员,对应聘人员的面试C.旅客上飞机前的安检6. 一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外其余都相同,从口袋中随机摸一个球,则摸到红球的概率为().A. B. C. D.7. 如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为().A.15m B.25m C.30m D.20m8. 在四边形中,AB∥DC , AD∥BC,如果添加一个条件,即可推出该四边形是矩形,那么这个条件可以是().A. B. C. D.9. 一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是().A.m>1 B.m=1 C.m≤1 D.m<110. 小丽早上从家出发骑车去上学,途中想起忘了带昨天晚上完成的数学作业,于是打电话让妈妈马上从家里送来,同时小丽也往回骑,遇到妈妈后停下说了几句话,接着继续骑车去学校.设小丽从家出发后所用时间为t,小丽与学校的距离为S.下面能反映S与t的函数关系的大致图象是().二、填空题11. 如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有_______性.12. 分解因式x3-9x=__________.13. 矩形,菱形,正方形都是特殊的四边形,它们具有很多共性,如___________.(填一条即可)14. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为__________.15. 观察下列一组坐标:(a,b),(a,c),(b,c),(b,a),(c,a),(c,b),(a,b),(a,c)…… ,它们是按一定规律排列的,那么第9个坐标是,第2015个坐标是.16. 已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为__________.三、解答题17. 如图,点C,D在线段BF上,,,BC=DE.求证:AC=FE.四、计算题18. 计算:.五、解答题19. 解不等式组:20. 先化简,再求值:,其中.六、计算题21. 列方程或方程组解应用题:周末小明和爸爸准备一起去商场购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商场都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价30元,茶杯每只定价5元,且两家都有优惠.甲商场买一送一大酬宾(买一把茶壶送一只茶杯);乙商场全场九折优惠.小明的爸爸需茶壶5把,茶杯若干只(不少于5只).当去两家商场付款一样时,求需要购买茶杯的数量.22. 大星发超市进了一批成本为8元/个的文具盒。
北京市怀柔区2019-2020学年第二次中考模拟考试数学试卷含解析

北京市怀柔区2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.a4+a2=a4B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2D.b6÷b2=b32.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是()A.-1 B.-C.D.–π4.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=( )A.1 B.2 C.3 D.45.2-的相反数是A.2-B.2 C.12D.12-6.下列四个几何体中,左视图为圆的是()A.B.C.D.7.如图,若a∥b,∠1=60°,则∠2的度数为()A.40°B.60°C.120°D.150°8.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()用水量x(吨) 3 4 5 6 7频数 1 2 5 4﹣x xA.平均数、中位数B.众数、中位数C.平均数、方差D.众数、方差9.据统计,2018年全国春节运输人数约为3 000 000 000人,将3 000 000 000用科学记数法表示为()A.0.3×1010B.3×109C.30×108D.300×10710.如图所示几何体的主视图是( )A.B.C.D.11.如图是测量一物体体积的过程:步骤一:将180 mL的水装进一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().A.10 cm3以上,20 cm3以下B.20 cm3以上,30 cm3以下C.30 cm3以上,40 cm3以下D.40 cm3以上,50 cm3以下12.如图是某零件的示意图,它的俯视图是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm.14.在△ABC 中,MN ∥BC 分别交AB ,AC 于点M ,N ;若AM=1,MB=2,BC=3,则MN 的长为_____.15.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为_____度. 16.分解因式:244m m ++=___________.17.已知边长为5的菱形ABCD 中,对角线AC 长为6,点E 在对角线BD 上且1tan 3EAC ∠=,则BE 的长为__________.18.已知点P (3,1)关于y 轴的对称点Q 的坐标是(a+b ,﹣1﹣b ),则ab 的值为_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在四边形ABCD 中,AB=BC=1,CD=3,DA=1,且∠B=90°,求:∠BAD 的度数;四边形ABCD 的面积(结果保留根号).20.(6分)如图1,在平面直角坐标系中,O 为坐标原点,抛物线y=ax 2+bx+3交x 轴于B 、C 两点(点B 在左,点C 在右),交y 轴于点A ,且OA=OC ,B (﹣1,0). (1)求此抛物线的解析式;(2)如图2,点D 为抛物线的顶点,连接CD ,点P 是抛物线上一动点,且在C 、D 两点之间运动,过点P 作PE ∥y 轴交线段CD 于点E ,设点P 的横坐标为t ,线段PE 长为d ,写出d 与t 的关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,连接BD ,在BD 上有一动点Q ,且DQ=CE ,连接EQ ,当∠BQE+∠DEQ=90°时,求此时点P 的坐标.21.(6分)2018年4月份,郑州市教育局针对郑州市中小学参与课外辅导进行调查,根据学生参与课外辅导科目的数量,分成了:1科、2科、3科和4科,以下简记为:1、2、3、4,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)本次被调查的学员共有人;在被调查者中参加“3科”课外辅导的有人.(2)将条形统计图补充完整;(3)已知郑州市中小学约有24万人,那么请你估计一下参与辅导科目不多于2科的学生大约有多少人.22.(8分)如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.(1)求证:四边形ABCD是平行四边形;(2)若AB=BE=2,sin∠ACD=3,求四边形ABCD的面积.23.(8分)某车间的甲、乙两名工人分别同时生产500只同一型号的零件,他们生产的零件y(只)与生产时间x(分)的函数关系的图象如图所示.根据图象提供的信息解答下列问题:(1)甲每分钟生产零件_______只;乙在提高生产速度之前已生产了零件_______只;(2)若乙提高速度后,乙的生产速度是甲的2倍,请分别求出甲、乙两人生产全过程中,生产的零件y (只)与生产时间x (分)的函数关系式;(3)当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产.24.(10分)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点()0,3C-,A 点的坐标为()1,0-.(1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,直接写出使QBC ∆为直角三角形的点Q 的坐标.25.(10分)如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ 与MN 平行,河岸MN 上有A 、B 两个相距50米的凉亭,小亮在河对岸D 处测得∠ADP=60°,然后沿河岸走了110米到达C 处,测得∠BCP=30°,求这条河的宽.(结果保留根号)26.(12分)(1)(a ﹣b )2﹣a (a ﹣2b )+(2a+b )(2a ﹣b )(2)(m ﹣1﹣81m +)2269m m m m-++. 27.(12分) 某品牌牛奶供应商提供A ,B ,C ,D 四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:根据合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,逐一计算判断即可.详解:根据同类项的定义,可知a4与a2不是同类项,不能计算,故不正确;根据积的乘方,等于个个因式分别乘方,可得(x2y)3=x6y3,故正确;根据完全平方公式,可得(m-n)2=m2-2mn+n2,故不正确;根据同底数幂的除法,可知b6÷b2=b4,不正确.故选B.点睛:此题主要考查了合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,熟记并灵活运用是解题关键.2.D【解析】【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.B【解析】【分析】根据两个负数,绝对值大的反而小比较.【详解】解:∵−>−1>−>−π,∴负数中最大的是−.故选:B.【点睛】本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.4.B【解析】【分析】根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.【详解】∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,ACD CBEADC CEB AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE−CD=3−1=2,故答案选:B.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.5.B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.6.A【解析】【分析】根据三视图的法则可得出答案.【详解】解:左视图为从左往右看得到的视图,A.球的左视图是圆,B.圆柱的左视图是长方形,C.圆锥的左视图是等腰三角形,D.圆台的左视图是等腰梯形,故符合题意的选项是A.【点睛】错因分析较容易题.失分原因是不会判断常见几何体的三视图. 7.C【解析】如图:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故选C.点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.8.B【解析】【分析】由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.【详解】∵6吨和7吨的频数之和为4-x+x=4,∴频数之和为1+2+5+4=12,则这组数据的中位数为第6、7个数据的平均数,即=5,∴对于不同的正整数x,中位数不会发生改变,∵后两组频数和等于4,小于5,∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.故选B.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.9.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【详解】解:根据科学计数法的定义可得,3 000 000 000=3×109,故选择B.【点睛】本题考查了科学计数法的定义,确定n的值是易错点.10.C【解析】【分析】从正面看几何体,确定出主视图即可.【详解】解:几何体的主视图为故选C.【点睛】本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.11.C【解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x,则有3300180 4300180 xx-⎧⎨-⎩<>解得30<x<1.故一颗玻璃球的体积在30cm3以上,1cm3以下.故选C.点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x 的取值范围.12.C【解析】【分析】物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.【详解】从上面看是一个正六边形,里面是一个没有圆心的圆.故答案选C.【点睛】本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.二、填空题:(本大题共6个小题,每小题4分,共24分.)132【解析】【分析】设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为圆形纸片的直径,则OB=2222AB=cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.【详解】解:设圆锥的底面圆的半径为r,连结AB,如图,∵扇形OAB的圆心角为90°,∴∠AOB=90°,∴AB为圆形纸片的直径,∴AB=4cm,∴OB=2222AB=cm,∴扇形OAB的弧AB的长=90222π⋅⋅=π,∴2πr=2π,∴r=22(cm).故答案为2.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.14.1【解析】【详解】∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案为1.15.130【解析】 分析:n 边形的内角和是()2180n -⋅︒,因而内角和一定是180度的倍数.而多边形的内角一定大于0,并且小于180度,因而内角和除去一个内角的值,这个值除以180度,所得数值比边数要小,小的值小于1.详解:设多边形的边数为x ,由题意有(2)1802750x o o ,-⋅= 解得51718x =, 因而多边形的边数是18,则这一内角为()1821802750130.-⨯-=o o o故答案为130点睛:考查多边形的内角和公式,熟记多边形的内角和公式是解题的关键.16.()22m +【解析】【分析】直接利用完全平方公式分解因式得出答案.【详解】解:244m m ++=()22m +,故答案为()22m +.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.17.3或1【解析】【分析】菱形ABCD 中,边长为1,对角线AC 长为6,由菱形的性质及勾股定理可得AC ⊥BD ,BO=4,分当点E 在对角线交点左侧时(如图1)和当点E 在对角线交点左侧时(如图2)两种情况求BE 得长即可.【详解】解:当点E在对角线交点左侧时,如图1所示:∵菱形ABCD中,边长为1,对角线AC长为6,∴AC⊥BD,BO=222253AB AO-=-=4,∵tan∠EAC=133OE OEOA==,解得:OE=1,∴BE=BO﹣OE=4﹣1=3,当点E在对角线交点左侧时,如图2所示:∵菱形ABCD中,边长为1,对角线AC长为6,∴AC⊥BD,222253AB AO-=-,∵tan∠EAC=133OE OEOA==,解得:OE=1,∴BE=BO﹣OE=4+1=1,故答案为3或1.【点睛】本题主要考查了菱形的性质,解决问题时要注意分当点E在对角线交点左侧时和当点E在对角线交点左侧时两种情况求BE得长.18.2【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出ab的值即可.【详解】∵点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),∴a+b=-3,-1-b=1;解得a=-1,b=-2,∴ab=2.故答案为2.【点睛】本题考查了关于x 轴,y 轴对称的点的坐标,解题的关键是熟练的掌握关于y 轴对称的点的坐标的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)135BAD ∠=︒;(2)212ABC ADC ABCD S S S ∆∆+=+=四边形 【解析】 【分析】(1)连接AC ,由勾股定理求出AC 的长,再根据勾股定理的逆定理判断出△ACD 的形状,进而可求出∠BAD 的度数;(2)由(1)可知△ABC 和△ADC 是Rt △,再根据S 四边形ABCD =S △ABC +S △ADC 即可得出结论.【详解】解:(1)连接AC ,如图所示:∵AB=BC=1,∠B=90°∴22112+=又∵AD=1,3∴ AD 2+AC 2=3 CD 232=3即CD 2=AD 2+AC 2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC 和△ADC 是Rt △,∴S 四边形ABCD =S △ABC +S △ADC =1×1×12×12=122+ . 【点睛】 考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(1)y=﹣x 2+2x+3;(2)d=﹣t 2+4t ﹣3;(3)P (52,74). 【解析】【分析】(1)由抛物线y=ax 2+bx+3与y 轴交于点A ,可求得点A 的坐标,又OA=OC ,可求得点C 的坐标,然后分别代入B,C 的坐标求出a ,b ,即可求得二次函数的解析式;(2)首先延长PE 交x 轴于点H ,现将解析式换为顶点解析式求得D (1,4),设直线CD 的解析式为y=kx+b ,再将点C (3,0)、D (1,4)代入,得y=﹣2x+6,则E (t ,﹣2t+6),P (t ,﹣t 2+2t+3),PH=﹣t 2+2t+3,EH=﹣2t+6,再根据d=PH ﹣EH 即可得答案;(3)首先,作DK ⊥OC 于点K ,作QM ∥x 轴交DK 于点T ,延长PE 、EP 交OC 于H 、交QM 于M ,作ER ⊥DK 于点R ,记QE 与DK 的交点为N ,根据题意在(2)的条件下先证明△DQT ≌△ECH ,再根据全等三角形的性质即可得ME=4﹣2(﹣2t+6),QM= t ﹣1+(3﹣t ),即可求得答案.【详解】解:(1)当x=0时,y=3,∴A (0,3)即OA=3,∵OA=OC ,∴OC=3,∴C (3,0),∵抛物线y=ax 2+bx+3经过点B (﹣1,0),C (3,0) ∴309330a b a b -+=⎧⎨++=⎩, 解得:12a b =-⎧⎨=⎩, ∴抛物线的解析式为:y=﹣x 2+2x+3;(2)如图1,延长PE 交x 轴于点H ,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),设直线CD的解析式为y=kx+b,将点C(3,0)、D(1,4)代入,得:430k bk b+=⎧⎨+=⎩,解得:26kb=-⎧⎨=⎩,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如图2,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME ,∵DQ=CE ,∠DTQ=∠EHC 、∠QDT=∠CEH ,∴△DQT ≌△ECH ,∴DT=EH ,QT=CH ,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t ﹣1+(3﹣t ),4﹣2(﹣2t+6)=t ﹣1+(3﹣t ),解得:t=52, ∴P (52,74). 【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的相关知识点.21.(1)50,10;(2)见解析.(3)16.8万【解析】【分析】(1)结合条形统计图和扇形统计图中的参加“3科”课外辅导人数及百分比,求得总人数为50人;再由总人数减去参加“1科”,“2科”,“4科”课外辅导人数即可求出答案.(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,由扇形统计图可知参加“4科”课外辅导人数占比为10%,故参加“4科”课外辅导人数的有5人. (3)因为参加“1科”和“2科”课外辅导人数占比为152050+,所以全市参与辅导科目不多于2科的人数为24×152050+ =16.8(万). 【详解】解:(1)本次被调查的学员共有:15÷30%=50(人),在被调查者中参加“3科”课外辅导的有:50﹣15﹣20﹣50×10%=10(人),故答案为50,10;(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,在被调查者中参加“4科”课外辅导的有:50×10%=5(人),补全的条形统计图如右图所示;(3)24×152050+ =16.8(万), 答:参与辅导科目不多于2科的学生大约有16.8人.【点睛】本题考察了条形统计图和扇形统计图,关键在于将两者结合起来解题.22.(1)证明见解析;(2)S 平行四边形ABCD 3.【解析】试题分析:(1)根据平行四边形的性质得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根据平行线的判定得出AD ∥BC ,根据平行四边形的判定推出即可;(2)证明△ABE 是等边三角形,得出AE=AB=2,由直角三角形的性质求出CE 和DE ,得出AC 的长,即可求出四边形ABCD 的面积.试题解析:(1)∵AB ∥CD ,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC ,∴∠ADC+∠BCD=180°,∴AD ∥BC ,∵AB ∥CD ,∴四边形ABCD 是平行四边形;(2)∵sin ∠ACD=32,∴∠ACD=60°, ∵四边形ABCD 是平行四边形,∴AB ∥CD ,CD=AB=2,∴∠BAC=∠ACD=60°,∵AB=BE=2,∴△ABE 是等边三角形,∴AE=AB=2,∵DE ⊥AC ,∴∠CDE=90°﹣60°=30°,∴CE=12CD=1,∴33AC=AE+CE=3, ∴S 平行四边形ABCD =2S △ACD 3 23.(1)25,150;(2)y 甲=25x (0≤x≤20),()()15010=503501017x x y x x ⎧≤≤⎪⎨-<≤⎪⎩乙;(3)x =14,150 【解析】【详解】解:(1)甲每分钟生产50020=25只; 提高生产速度之前乙的生产速度=755=15只/分, 故乙在提高生产速度之前已生产了零件:15×10=150只;(2)结合后图象可得:甲:y 甲=25x (0≤x≤20);乙提速后的速度为50只/分,故乙生产完500只零件还需7分钟,乙:y 乙=15x (0≤x≤10),当10<x≤17时,设y 乙=kx +b ,把(10,150)、(17,500),代入可得:10k +b =150,17k +b =500,解得:k =50,b =−350,故y 乙=50x−350(10≤x≤17).综上可得:y 甲=25x (0≤x≤20);()()15010=503501017x x y x x ⎧≤≤⎪⎨-<≤⎪⎩乙; (3)令y 甲=y 乙,得25x =50x −350,解得:x =14,此时y 甲=y 乙=350只,故甲工人还有150只未生产.24.(1)223y x x =--;(2)P 点坐标为315,24⎛⎫- ⎪⎝⎭, 758;(3)Q ⎛ ⎝⎭或⎛ ⎝⎭或()1,2或()1,4-.【解析】【分析】(1)根据待定系数法把A 、C 两点坐标代入2y x bx c =++可求得二次函数的解析式;(2)由抛物线解析式可求得B 点坐标,由B 、C 坐标可求得直线BC 解析式,可设出P 点坐标,用P 点坐标表示出四边形ABPC 的面积,根据二次函数的性质可求得其面积的最大值及P 点坐标;(3)首先设出Q 点的坐标,则可表示出QB 2、QC 2和BC 2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三种情况,求解即可.【详解】解:(1)∵A(-1,0),()0,3C -在2y x bx c =++上,103b c c -+=⎧∴⎨=-⎩,解得23b c =-⎧⎨=-⎩, ∴二次函数的解析式为223y x x =--;(2)在223y x x =--中,令0y =可得2023x x -=-,解得3x =或1x =-,()3,0B ∴,且()0,3C -,∴经过B 、C 两点的直线为3y x =-,设点P 的坐标为()223x x x --,,如图,过点P 作PD x ⊥轴,垂足为D ,与直线BC 交于点E ,则(),3E x x -,ABC BCP ABPC S S S ∆∆=+Q 四边形()211433322x x =⨯⨯+-⨯239622x x =-++23375228x ⎛⎫=-+ ⎪⎝⎭, ∴当32x =时,四边形ABPC 的面积最大,此时P 点坐标为315,24⎛⎫- ⎪⎝⎭, ∴四边形ABPC 的最大面积为758; (3)()222314y x x x =--=--Q ,∴对称轴为1x =,∴可设Q 点坐标为()1,t ,()3,0B Q ,()0,3C -,()2222134BQ t t ∴=-+=+,()222213610CQ t t t =++=++,218BC =, QBC ∆Q 为直角三角形,∴有90BQC ∠=︒、90CBQ ∠=︒和90BCQ ∠=︒三种情况,①当90BQC ∠=︒时,则有222BQ CQ BC +=,即22461018t t t ++++=,解得3172t -=或317t --=,此时Q 点坐标为317⎛-+ ⎝⎭或317⎛-- ⎝⎭; ②当90CBQ ∠=︒时,则有222BC BQ CQ +=,即22418610t t t ++=++,解得2t =,此时Q 点坐标为()1,2;③当90BCQ ∠=︒时,则有222BCCQ BQ +=,即22186104t t t +++=+,解得4t =-,此时Q 点坐标为()1,4-;综上可知Q点的坐标为317 1,2⎛⎫-+⎪⎪⎝⎭或3171,2⎛⎫--⎪⎪⎝⎭或()1,2或()1,4-.【点睛】本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.25.303米.【解析】试题分析:根据矩形的性质,得到对边相等,设这条河宽为x米,则根据特殊角的三角函数值,可以表示出ED和BF,根据EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.试题解析:作AE⊥PQ于E,CF⊥MN于F.∵PQ∥MN,∴四边形AECF为矩形,∴EC=AF,AE=CF.设这条河宽为x米,∴AE=CF=x.在Rt△AED中,60ADP∠=oQ,3.tan603AEED x∴===o∵PQ∥MN,30.CBF BCP∴∠=∠=o∴在Rt△BCF中,3.tan303CFBF x===o∵EC=ED+CD,AF=AB+BF,3110503.3x x+=+解得30 3.x=∴这条河的宽为.26.(1)24a ;(2)233m m m +- 【解析】试题分析:(1)先去括号,再合并同类项即可;(2)先计算括号里的,再将除法转换在乘法计算.试题解析:(1)(a ﹣b )2﹣a (a ﹣2b )+(2a+b )(2a ﹣b )=a 2﹣2ab+b 2﹣a 2+2ab+4a 2﹣b 2=4a 2;(2)228691)1m m m m m m-+--÷++(. =2(1)(1)8(1)1(3)m m m m m m -+-+⨯+- =229(1)1(3)m m m m m -+⨯+- =2(3)(3)(1)1(3)m m m m m m +-+⨯+- =233m mm +-.27.(1)150人;(2)补图见解析;(3)144°;(4)300盒.【解析】【分析】(1)根据喜好A 口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A 、B 、D 三种喜好不同口味牛奶的人数,求出喜好C 口味牛奶的人数,补全统计图.再用360°乘以喜好C 口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A 、B 口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有30÷20%=150人; (2)C 类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.。
10.答案-怀柔区2019年初三数学二模

2分
移项,得 3x x 6 1.
合并同类项,得 2x 5 .……………………………………………………
3分
系数化为 1,得 x
5 .………………………………………………………
2
4分
经检验,原方程的解为
x
5 .………………………………………………
5分
2
19. 证明:∵ E 为 AB中点 , CE⊥ AB于点 E,
ax 2 (3 a)x 3(a
3 0) ,解得 x 1=1, x2 = a . 与 y 轴交于( 0,3 )
把 a=1 代入 y ax 2 (3 a) x 3( a 0) . 解得 y x 2 4x 3 .
令 y=0,∴ x1=1, x2=3.
∴抛物线与 x 轴的交点坐标是( 1,0 ),( 3,0 ) . …………………………… 2 分
等. (答案不唯一,只要理由充足即可得分)
25. ( 1) 1 m0 …………………………… 16
1分
n
1
( 2) m1 m0 2
……………………………
( 3) 如图…………………………… 4 分 ( 4) 1.1 …………………………… 6 分
. …………………………… 3分
6分
3
26. 解:( 1) y
∴ CE的长为 4 或 6. …………………………… 7 分
28. 解:( 1)① 4,2 …………………………… 2 分
② A 1…………………………… 3 分
6分
A
G
M
B
(2)∵ O到直线 y
3 x b 的距离是 9. ∴ b
63
3
∴ 6 3 b 6 3 ………………………… 5 分
北京市怀柔区2019年中考数学模拟试卷(含答案)

北京市怀柔区2019年中考数学模拟试卷一.选择题(满分16分,每小题2分)1.下列现象中,可以用“两点之间,线段最短”来解释的是()A.把弯曲的公路改直,就能缩短路程B.植树的时候只要定出两棵树的位置,就能确定同一行树所在的直线C.利用圆规可以比较两条线段的长短关系D.用两个钉子就可以把木条固定在墙上2.若代数式有意义,则x的取值是()A.x=2B.x≠2C.x=3D.x≠﹣33.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.4.数轴上有A,B,C,D四个点,其中绝对值相等的点是()A.点A与点D B.点A与点C C.点B与点C D.点B与点D 5.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.某校七(二)班班长统计了今年1﹣8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了折线统计图,下列说法错误的是()A.阅读量最多的是8月份B.阅读量最少的是6月份C.3月份和5月份的阅读量相等D.每月阅读量超过40本的有5个月7.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息有:①甲队挖掘30m时,用了3h;②挖掘6h时甲队比乙队多挖了10m;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x=4.其中一定正确的有()A.1个B.2个C.3个D.4个8.某水果超市为了吸引顾客来店购物,设立了一个如图所示的可以自由转动的转盘,开展有奖购物活动.顾客购买商品满200元就能获得一次转动转盘的机会,当转盘停止时,指针落在“一袋苹果”的区域就可以获得“一袋苹果”的奖品;指针落在“一盒樱桃”的区域就可以获得“一盒樱桃”的奖品.下表是该活动的一组统计数据:落在“一袋苹果”区域的频率下列说法不正确的是()A .当n 很大时,估计指针落在“一袋苹果”区域的频率大约是0.70B .假如你去转动转盘一次,获得“一袋苹果”的概率大约是0.70C .如果转动转盘2 000次,指针落在“一盒樱桃”区域的次数大约有600次D .转动转盘10次,一定有3次获得“一盒樱桃”二.填空题(共8小题,满分16分,每小题2分)9.比较大小: (选用<、=、>填空) 10.一个多边形的每一个外角为30°,那么这个多边形的边数为 .11.如果a 2﹣a ﹣1=0,那么代数式(a ﹣)的值是 .12.如图所示,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △BDE :S 四边形DECA 的值为 .13.如图,若在象棋盘上建立平面直角坐标系xOy ,使“帥”的坐标为(﹣1,﹣2),“馬”的坐标为(2,﹣2),则“兵”的坐标为 .14.一组数据2,x ,1,3,5,4,若这组数据的中位数是3,则这组数据的方差是 . 15.明代大数学家程大位著的《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问郡多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个和笔套5个,怎样安排笔管或笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,则可列方程为:.16.如图,在平面直角坐标系xOy中,点A的坐标为(4,﹣3),且OA=5,在x轴上确定一点P,使△AOP为等腰三角形.(1)写出一个符合题意的点P的坐标;(2)请在图中画出所有符合条件的△AOP.三.解答题(共12小题,满分68分)17.(5分)计算:()﹣2﹣+(﹣4)0﹣cos45°.18.(5分)解不等式组19.(5分)如图,在10×10的网格中,有一格点三角形ABC.(说明:顶点都在网格线交点处的三角形叫做格点三角形)(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A′B′C′,请直接画出平移后的△A′B′C′;(2)将△A′B'C'绕点C顺时针旋转90°,得到△A″B″C′,请直接画出旋转后的△A″B″C′.(友情提醒:别忘了标上相应的字母!)(3)在第(2)小题的旋转过程中,点A′所经过的路线长(结果保留π).20.(5分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围.(2)是否存在实数k,使得x1x2﹣x12﹣x22=﹣16成立?若存在,请求出k的值;若不存在,请说明理由.21.(5分)如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.22.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.23.(5分)如图,P是⊙O直径BA延长线上一点,过P作PC切⊙O于C,连接AC、BC,若P A=AO=2,(1)求PC的长,求AC的长;(2)求tan∠PCA的值及△P AC的面积.24.(6分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制如下:甲:78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙:93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据按如下(表格)分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70﹣79分为生产技能良好,60﹣69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下(表格)表所示:得出结论:(1)请补充表格1:a=,b=.(2)估计乙部门生产技能优秀的员工人数为;(3)可以推断出部门员工的生产技能水平较高,理由为:①;②.(从两个不同的角度说明你推断的合理性)25.(5分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是、;(2)当点P运动的路程x=4时,△ABP的面积为y=;(3)求AB的长和梯形ABCD的面积.26.(7分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.27.(7分)如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B 沿顺时针方向旋转90°后得到△CBE.(1)求∠DCE的度数.(2)AB=4,AD:DC=1:3时,求DB的长.28.(8分)如图,一次函数y=﹣x+6的图象分别交y轴、x轴交于点A、B,点P从点B 出发,沿射线BA以每秒1个单位的速度出发,设点P的运动时间为t秒.(1)点P在运动过程中,若某一时刻,△OP A的面积为6,求此时P的坐标;(2)在整个运动过程中,当t为何值时,△AOP为等腰三角形?(只需写出t的值,无需解答过程)参考答案一.选择题1.下列现象中,可以用“两点之间,线段最短”来解释的是()A.把弯曲的公路改直,就能缩短路程B.植树的时候只要定出两棵树的位置,就能确定同一行树所在的直线C.利用圆规可以比较两条线段的长短关系D.用两个钉子就可以把木条固定在墙上【分析】根据两点之间,线段最短解答.【解答】解:A、把弯曲的公路改直,就能缩短路程,是根据两点之间,线段最短解释,正确;B、植树的时候只要定出两棵树的位置,就能确定同一行树所在的直线是根据两点确定一条直线解释,错误;C、利用圆规可以比较两条线段的长短关系是根据线段的大小比较解释,错误;D、用两个钉子就可以把木条固定在墙上是根据两点确定一条直线解释,错误;故选:A.【点评】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.2.若代数式有意义,则x的取值是()A.x=2B.x≠2C.x=3D.x≠﹣3【分析】根据分式有意义分母不等于0列式计算,求出x的取值范围即可得解.【解答】解:由题意得,x+3≠0,解得x≠﹣3.故选:D.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)如果分式无意义,那么分母为零;(2)如果分式有意义,那么分母不为零;(3)如果分式的值为零,那么分子为零且分母不为零.反之也成立.3.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D 符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.数轴上有A,B,C,D四个点,其中绝对值相等的点是()A.点A与点D B.点A与点C C.点B与点C D.点B与点D 【分析】根据数轴上绝对值相等的点到原点的距离相等,判断出数轴上有A,B,C,D 四个点,其中绝对值相等的点是哪两个点即可.【解答】解:∵点B与点C到原点的距离相等,∴数轴上有A,B,C,D四个点,其中绝对值相等的点是点B与点C.故选:C.【点评】此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是要明确:数轴上绝对值相等的点到原点的距离相等.5.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.某校七(二)班班长统计了今年1﹣8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了折线统计图,下列说法错误的是()A.阅读量最多的是8月份B.阅读量最少的是6月份C.3月份和5月份的阅读量相等D.每月阅读量超过40本的有5个月【分析】根据折线统计图中的数据,可判断各选项.【解答】解:由图可得:阅读量最多的是8月份,是83本,A正确;阅读量最少的是6月份,是28本,B正确;3月份的阅读量为58,5月份的阅读量为58,故阅读量相等,C正确;阅读量超过40本的有6个月,D错误;故选:D.【点评】本题主要考查了折线统计图,属于基础题.7.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息有:①甲队挖掘30m时,用了3h;②挖掘6h时甲队比乙队多挖了10m;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x=4.其中一定正确的有()A.1个B.2个C.3个D.4个【分析】根据函数图象可以判断题目中的各个小题是否正确,从而可以解答本题.【解答】解:由图象可得,甲队挖掘30m时,用的时间为:30÷(60÷6)=3h,故①正确,挖掘6h时甲队比乙队多挖了:60﹣50=10m,故②正确,前两个小时乙队挖得快,在2小时到6小时之间,甲队挖的快,故③错误,设0≤x≤6时,甲对应的函数解析式为y=kx,则60=6k,得k=10,即0≤x≤6时,甲对应的函数解析式为y=10x,当2≤x≤6时,乙对应的函数解析式为y=ax+b,,得,即2≤x≤6时,乙对应的函数解析式为y=5x+20,则,得,即开挖后甲、乙两队所挖河渠长度相等时,x=4,故④正确,由上可得,一定正确的是①②④,故选:C.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想和数形结合的思想解答.8.某水果超市为了吸引顾客来店购物,设立了一个如图所示的可以自由转动的转盘,开展有奖购物活动.顾客购买商品满200元就能获得一次转动转盘的机会,当转盘停止时,指针落在“一袋苹果”的区域就可以获得“一袋苹果”的奖品;指针落在“一盒樱桃”的区域就可以获得“一盒樱桃”的奖品.下表是该活动的一组统计数据:落在“一袋苹果”区域的频率下列说法不正确的是()A.当n很大时,估计指针落在“一袋苹果”区域的频率大约是0.70B.假如你去转动转盘一次,获得“一袋苹果”的概率大约是0.70C.如果转动转盘2 000次,指针落在“一盒樱桃”区域的次数大约有600次D.转动转盘10次,一定有3次获得“一盒樱桃”【分析】根据图表可求得指针落在“一袋苹果”区域的概率,另外概率是多次实验的结果,因此不能说转动转盘10次,一定有3次获得“一盒樱桃”.【解答】解:A、频率稳定在0.7左右,故用频率估计概率,指针落在“一袋苹果”区域的频率大约是0.70,故A选项正确;由A可知B、转动转盘一次,获得“一袋苹果”的概率大约是0.70,故B选项正确;C、指针落在“一盒樱桃”区域的概率为0.30,转动转盘2000次,指针落在“一盒樱桃”区域的次数大约有2000×0.3=600次,故C选项正确;D、随机事件,结果不确定,故D选项正确.故选:D.【点评】本题要理解用面积法求概率的方法.注意概率是多次实验得到的一个相对稳定的值.二.填空题(共8小题,满分16分,每小题2分)9.比较大小:<(选用<、=、>填空)【分析】先根据立方根的定义计算=2,再化为,根据被开方数越大值越大进行比较.【解答】解:∵=2=,,∴<, 故答案为:<.【点评】本题考查了实数大小的比较,将两个根式化为根指数相同的式子是关键. 10.一个多边形的每一个外角为30°,那么这个多边形的边数为 12 .【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.11.如果a 2﹣a ﹣1=0,那么代数式(a ﹣)的值是 1 .【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵a 2﹣a ﹣1=0,即a 2﹣a =1,∴原式=•=•=a (a ﹣1)=a 2﹣a =1,故答案为:1【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.12.如图所示,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △BDE :S 四边形DECA 的值为 1:15 .【分析】根据题意得到BE :EC =1:3,证明△BED ∽△BCA ,根据相似三角形的性质计【解答】解:∵S △BDE :S △CDE =1:3,∴BE :EC =1:3,∵DE ∥AC ,∴△BED ∽△BCA ,∴S △BDE :S △BCA =()2=1:16, ∴S △BDE :S 四边形DECA =1:15,故答案为:1:15.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.13.如图,若在象棋盘上建立平面直角坐标系xOy ,使“帥”的坐标为(﹣1,﹣2),“馬”的坐标为(2,﹣2),则“兵”的坐标为 (﹣3,1) .【分析】直接利用已知点坐标得出原点的位置进而得出答案.【解答】解:如图所示:“兵”的坐标为:(﹣3,1).故答案为:(﹣3,1).【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.14.一组数据2,x ,1,3,5,4,若这组数据的中位数是3,则这组数据的方差是 .【分析】先根据中位数的定义求出x 的值,再求出这组数据的平均数,最后根据方差公式S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]进行计算即可.【解答】解:∵按从小到大的顺序排列为1,2,3,x ,4,5,若这组数据的中位数为3,∴这组数据的平均数是(1+2+3+3+4+5)÷6=3,∴这组数据的方差是:[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=,故答案为:.【点评】本题考查了中位数和方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2];中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).15.明代大数学家程大位著的《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问郡多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个和笔套5个,怎样安排笔管或笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,则可列方程为:.【分析】设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,根据题意列出方程组解答即可.【解答】解:设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,根据题意可得:,故答案为:,【点评】本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程组,再求解.16.如图,在平面直角坐标系xOy中,点A的坐标为(4,﹣3),且OA=5,在x轴上确定一点P,使△AOP为等腰三角形.(1)写出一个符合题意的点P的坐标答案不唯一,如:(﹣5,0);(2)请在图中画出所有符合条件的△AOP.【分析】(1)根据等腰三角形的性质即可求解;(2)可分三种情况:①AO=AP;②AO=PO;③AP=PO;解答出即可.【解答】解:(1)一个符合题意的点P的坐标答案不唯一,如:(﹣5,0);(2)如图所示:故答案为:答案不唯一,如:(﹣5,0).【点评】本题主要考查了作图﹣复杂作图、等腰三角形的判定和坐标与图形的性质,注意讨论要全面,不要遗漏.三.解答题(共12小题,满分68分)17.(5分)计算:()﹣2﹣+(﹣4)0﹣cos45°.【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【解答】解:原式=4﹣3+1﹣×=2﹣1=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(5分)解不等式组【分析】分别求出两个不等式的解集,再求其公共解集.【解答】解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.【点评】本题考查一元一次不等式组的解法,求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.(5分)如图,在10×10的网格中,有一格点三角形ABC.(说明:顶点都在网格线交点处的三角形叫做格点三角形)(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A′B′C′,请直接画出平移后的△A′B′C′;(2)将△A′B'C'绕点C顺时针旋转90°,得到△A″B″C′,请直接画出旋转后的△A″B″C′.(友情提醒:别忘了标上相应的字母!)(3)在第(2)小题的旋转过程中,点A′所经过的路线长π(结果保留π).【分析】(1)将三个顶点分别向右平移5个单位,再向上平移2个单位得到对应点,再首尾顺次连接即可得;(2)作出点A′,B′绕点C顺时针旋转90°得到的对应点,再首尾顺次连接可得;(3)根据弧长公式计算可得.【解答】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,△A″B″C′即为所求.(3)∵A′C′==,∠A′C′A″=90°,∴点A′所经过的路线长为=π,故答案为:π.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是熟练掌握旋转和平移变换的定义和性质,并据此得出变换后的对应点,也考查了弧长公式.20.(5分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围.(2)是否存在实数k,使得x1x2﹣x12﹣x22=﹣16成立?若存在,请求出k的值;若不存在,请说明理由.【分析】(1)根据判别式的意义得到△=(2k+1)2﹣4(k2+2k)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=2k+1,x1x2=k2+2k,再把x1x2﹣x12﹣x22=﹣16变形为﹣(x1+x2)2+3x1•x2=﹣16,所以﹣(2k+1)2+3(k2+2k)=﹣16,然后解方程后利用(1)中的范围确定满足条件的k的值.【解答】解:(1)根据题意得△=(2k+1)2﹣4(k2+2k)≥0,解得k≤;(2)根据题意得x1+x2=2k+1,x1x2=k2+2k,∵x1x2﹣x12﹣x22=﹣16.∴x1x2﹣[(x1+x2)2﹣2x1x2]=﹣16,即﹣(x1+x2)2+3x1•x2=﹣16,∴﹣(2k+1)2+3(k2+2k)=﹣16,整理得k2﹣2k﹣15=0,解得k1=5(舍去),k2=﹣3.∴k=﹣3.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.21.(5分)如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.【分析】根据等腰三角形的性质和三角形的内角和得到∠C=50°,进而得到∠BAC=80°,由∠BAD=55°,得到∠DAE=25°,由DE⊥AD,进而求出结论.【解答】解:∵AB=AC,∴∠B=∠C,∵∠B=50°,∴∠C=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠BAD=55°,∴∠DAE=25°,∵DE⊥AD,∴∠ADE=90°,∴∠DEC=∠DAE+∠ADE=115°.【点评】本题主要考查了等腰三角形的性质,三角形的内角和定理,垂直定义,熟练应用等腰三角形的性质是解题的关键.22.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.【分析】(1)把点A 坐标分别代入反比例函数y =,一次函数y =x +b ,求出k 、b 的值,再把点B 的坐标代入反比例函数解析式求出n 的值,即可得出答案;(2)求出直线AB 与y 轴的交点C 的坐标,分别求出△ACO 和△BOC 的面积,然后相加即可;(3)根据A 、B 的坐标结合图象即可得出答案.【解答】解:(1)把A 点(1,4)分别代入反比例函数y =,一次函数y =x +b , 得k =1×4,1+b =4, 解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =的图象上, ∴n ==﹣1;(2)如图,设直线y =x +3与y 轴的交点为C , ∵当x =0时,y =3, ∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.23.(5分)如图,P是⊙O直径BA延长线上一点,过P作PC切⊙O于C,连接AC、BC,若P A=AO=2,(1)求PC的长,求AC的长;(2)求tan∠PCA的值及△P AC的面积.【分析】(1)连接OC,根据P A=AO=2,可知PO=2OC,所以∠P=30°,所以∠POC =60°,从而可知△AOC是等边三角形,根据等边三角形的性质可知AC=2,最后根据含30度角的直角三角形求出OP,即可得出结论;(2)由(1)易知∠PCA=30°,从而可求出tan∠PCA,易知CA是△PCO的中线,所以△P AC的面积等于△PCO的面积的一半.【解答】解:(1)连接OC,∵PC是⊙O的切线,∴∠PCO=90°,∵AB是⊙O的直径,∴∠ACB=90°,∵P A=AO=CO=2,∴PO=2+2=4,∴PO=2OC,∴∠P=30°,∴∠POC=60°,∴△AOC是等边三角形,∴AC=2,在Rt△OCP中,OP=2OC=4,根据勾股定理得,PC=2(2)由(1)可知:∠ACO=60°,∠PCO=90°,∴∠PCA=30°,∴tan∠PCA=;∵A是PO的中点,∴CA是△PCO的中线,∵△PCO的面积为:×2×=2,∴△P AC的面积为:×2=.【点评】本题考查圆的综合问题,涉及三角形面积公式,含30度角的直角三角形的性质,锐角三角函数,勾股定理等知识,需要学生灵活运用所学知识.24.(6分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制如下:甲:78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙:93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据按如下(表格)分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70﹣79分为生产技能良好,60﹣69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下(表格)表所示:得出结论:(1)请补充表格1:a=7,b=10.(2)估计乙部门生产技能优秀的员工人数为240;(3)可以推断出甲部门员工的生产技能水平较高,理由为:①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.(从两个不同的角度说明你推断的合理性)【分析】(1)根据收集数据填写表格即可求解;(2)用乙部门优秀员工人数除以20乘以400即可得出答案;(3)根据情况进行讨论分析,理由合理即可.【解答】解:(1)由题意知a=7、b=10,故答案为:7、10;(2)故估计乙部门生产技能优秀的员工人数为×400=240(人).故答案为:240;(3)可以推断出甲部门员工的生产技能水平较高,理由为:①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.【点评】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.25.(5分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是x、y;(2)当点P运动的路程x=4时,△ABP的面积为y=16;(3)求AB的长和梯形ABCD的面积.【分析】(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB 的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.【解答】解:(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y,故答案为:x,y;(2)由图可得,当点P运动的路程x=4时,△ABP的面积为y=16,故答案为:16;(3)根据图象得:BC=4,此时△ABP为16,∴AB•BC=16,即×AB×4=16,解得:AB=8;由图象得:DC=9﹣4=5,=×BC×(DC+AB)=×4×(5+8)=26.则S梯形ABCD【点评】此题考查了动点问题的函数图象,弄清函数图象上的信息是解本题的关键.26.(7分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共。
2019北京市怀柔区中考数学模拟试题及答案

2019北京市怀柔区中考模拟数学一.选择题(满分16分,每小题2分)1.下列现象中,可以用“两点之间,线段最短”来解释的是()A.把弯曲的公路改直,就能缩短路程B.植树的时候只要定出两棵树的位置,就能确定同一行树所在的直线C.利用圆规可以比较两条线段的长短关系D.用两个钉子就可以把木条固定在墙上2.若代数式有意义,则x的取值是()A.x=2 B.x≠2 C.x=3 D.x≠﹣3 3.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.4.数轴上有A,B,C,D四个点,其中绝对值相等的点是()A.点A与点D B.点A与点C C.点B与点C D.点B与点D 5.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.某校七(二)班班长统计了今年1﹣8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了折线统计图,下列说法错误的是()A.阅读量最多的是8月份B.阅读量最少的是6月份C.3月份和5月份的阅读量相等D.每月阅读量超过40本的有5个月7.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息有:①甲队挖掘30m时,用了3h;②挖掘6h时甲队比乙队多挖了10m;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x=4.其中一定正确的有()A.1个B.2个C.3个D.4个8.某水果超市为了吸引顾客来店购物,设立了一个如图所示的可以自由转动的转盘,开展有奖购物活动.顾客购买商品满200元就能获得一次转动转盘的机会,当转盘停止时,指针落在“一袋苹果”的区域就可以获得“一袋苹果”的奖品;指针落在“一盒樱桃”的区域就可以获得“一盒樱桃”的奖品.下表是该活动的一组统计数据:落在“一袋苹果”区域的频率A.当n很大时,估计指针落在“一袋苹果”区域的频率大约是0.70B.假如你去转动转盘一次,获得“一袋苹果”的概率大约是0.70C.如果转动转盘2 000次,指针落在“一盒樱桃”区域的次数大约有600次D.转动转盘10次,一定有3次获得“一盒樱桃”二.填空题(共8小题,满分16分,每小题2分)9.比较大小:(选用<、=、>填空)10.一个多边形的每一个外角为30°,那么这个多边形的边数为.11.如果a2﹣a﹣1=0,那么代数式(a﹣)的值是.12.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S四边形DECA的值为.13.如图,若在象棋盘上建立平面直角坐标系xOy,使“帥”的坐标为(﹣1,﹣2),“馬”的坐标为(2,﹣2),则“兵”的坐标为.14.一组数据2,x,1,3,5,4,若这组数据的中位数是3,则这组数据的方差是.15.明代大数学家程大位著的《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问郡多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个和笔套5个,怎样安排笔管或笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,则可列方程为:.16.如图,在平面直角坐标系xOy中,点A的坐标为(4,﹣3),且OA=5,在x轴上确定一点P,使△AOP为等腰三角形.(1)写出一个符合题意的点P的坐标;(2)请在图中画出所有符合条件的△AOP.三.解答题(共12小题,满分68分)17.(5分)计算:()﹣2﹣+(﹣4)0﹣cos45°.18.(5分)解不等式组19.(5分)如图,在10×10的网格中,有一格点三角形ABC.(说明:顶点都在网格线交点处的三角形叫做格点三角形)(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A′B′C′,请直接画出平移后的△A′B′C′;(2)将△A′B'C'绕点C顺时针旋转90°,得到△A″B″C′,请直接画出旋转后的△A″B″C′.(友情提醒:别忘了标上相应的字母!)(3)在第(2)小题的旋转过程中,点A′所经过的路线长(结果保留π).20.(5分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围.(2)是否存在实数k,使得x1x2﹣x12﹣x22=﹣16成立?若存在,请求出k的值;若不存在,请说明理由.21.(5分)如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.22.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.23.(5分)如图,P是⊙O直径BA延长线上一点,过P作PC切⊙O于C,连接AC、BC,若PA=AO=2,(1)求PC的长,求AC的长;(2)求tan∠PCA的值及△PAC的面积.24.(6分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制如下:甲:78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙:93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据按如下(表格)分数段整理、描述这两组样本数据:为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下(表格)表所示:=,=.(2)估计乙部门生产技能优秀的员工人数为;(3)可以推断出部门员工的生产技能水平较高,理由为:①;②.(从两个不同的角度说明你推断的合理性)25.(5分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是、;(2)当点P运动的路程x=4时,△ABP的面积为y=;(3)求AB的长和梯形ABCD的面积.26.(7分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.27.(7分)如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺时针方向旋转90°后得到△CBE.(1)求∠DCE的度数.(2)AB=4,AD:DC=1:3时,求DB的长.28.(8分)如图,一次函数y=﹣x+6的图象分别交y轴、x轴交于点A、B,点P从点B出发,沿射线BA以每秒1个单位的速度出发,设点P的运动时间为t秒.(1)点P在运动过程中,若某一时刻,△OPA的面积为6,求此时P的坐标;(2)在整个运动过程中,当t为何值时,△AOP为等腰三角形?(只需写出t的值,无需解答过程)数学试题答案一.【分析】根据两点之间,线段最短解答.【解答】解:A、把弯曲的公路改直,就能缩短路程,是根据两点之间,线段最短解释,正确;B、植树的时候只要定出两棵树的位置,就能确定同一行树所在的直线是根据两点确定一条直线解释,错误;C、利用圆规可以比较两条线段的长短关系是根据线段的大小比较解释,错误;D、用两个钉子就可以把木条固定在墙上是根据两点确定一条直线解释,错误;故选:A.【点评】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.2.【分析】根据分式有意义分母不等于0列式计算,求出x的取值范围即可得解.【解答】解:由题意得,x+3≠0,解得x≠﹣3.故选:D.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)如果分式无意义,那么分母为零;(2)如果分式有意义,那么分母不为零;(3)如果分式的值为零,那么分子为零且分母不为零.反之也成立.3.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.【分析】根据数轴上绝对值相等的点到原点的距离相等,判断出数轴上有A,B,C,D四个点,其中绝对值相等的点是哪两个点即可.【解答】解:∵点B与点C到原点的距离相等,∴数轴上有A,B,C,D四个点,其中绝对值相等的点是点B与点C.故选:C.【点评】此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是要明确:数轴上绝对值相等的点到原点的距离相等.5.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.【分析】根据折线统计图中的数据,可判断各选项.【解答】解:由图可得:阅读量最多的是8月份,是83本,A正确;阅读量最少的是6月份,是28本,B正确;3月份的阅读量为58,5月份的阅读量为58,故阅读量相等,C正确;阅读量超过40本的有6个月,D错误;故选:D.【点评】本题主要考查了折线统计图,属于基础题.7.【分析】根据函数图象可以判断题目中的各个小题是否正确,从而可以解答本题.【解答】解:由图象可得,甲队挖掘30m时,用的时间为:30÷(60÷6)=3h,故①正确,挖掘6h时甲队比乙队多挖了:60﹣50=10m,故②正确,前两个小时乙队挖得快,在2小时到6小时之间,甲队挖的快,故③错误,设0≤x≤6时,甲对应的函数解析式为y=kx,则60=6k,得k=10,即0≤x≤6时,甲对应的函数解析式为y=10x,当2≤x≤6时,乙对应的函数解析式为y=ax+b,,得,即2≤x≤6时,乙对应的函数解析式为y=5x+20,则,得,即开挖后甲、乙两队所挖河渠长度相等时,x=4,故④正确,由上可得,一定正确的是①②④,故选:C.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想和数形结合的思想解答.8.【分析】根据图表可求得指针落在“一袋苹果”区域的概率,另外概率是多次实验的结果,因此不能说转动转盘10次,一定有3次获得“一盒樱桃”.【解答】解:A、频率稳定在0.7左右,故用频率估计概率,指针落在“一袋苹果”区域的频率大约是0.70,故A选项正确;由A可知B、转动转盘一次,获得“一袋苹果”的概率大约是0.70,故B选项正确;C、指针落在“一盒樱桃”区域的概率为0.30,转动转盘2000次,指针落在“一盒樱桃”区域的次数大约有2000×0.3=600次,故C选项正确;D、随机事件,结果不确定,故D选项正确.故选:D.【点评】本题要理解用面积法求概率的方法.注意概率是多次实验得到的一个相对稳定的值.二.填空题(共8小题,满分16分,每小题2分)9.【分析】先根据立方根的定义计算=2,再化为,根据被开方数越大值越大进行比较.【解答】解:∵=2=,,∴<,故答案为:<.【点评】本题考查了实数大小的比较,将两个根式化为根指数相同的式子是关键.10.【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.11.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵a2﹣a﹣1=0,即a2﹣a=1,∴原式=•=•=a(a﹣1)=a2﹣a=1,故答案为:1【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.12.【分析】根据题意得到BE:EC=1:3,证明△BED∽△BCA,根据相似三角形的性质计算即可.【解答】解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3,∵DE∥AC,∴△BED∽△BCA,∴S△BDE:S△BCA=()2=1:16,∴S△BDE:S四边形DECA=1:15,故答案为:1:15.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.13.【分析】直接利用已知点坐标得出原点的位置进而得出答案.【解答】解:如图所示:“兵”的坐标为:(﹣3,1).故答案为:(﹣3,1).【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.14.【分析】先根据中位数的定义求出x的值,再求出这组数据的平均数,最后根据方差公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]进行计算即可.【解答】解:∵按从小到大的顺序排列为1,2,3,x,4,5,若这组数据的中位数为3,∴x=3,∴这组数据的平均数是(1+2+3+3+4+5)÷6=3,∴这组数据的方差是: [(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=,故答案为:.【点评】本题考查了中位数和方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x﹣)2+…+(x n﹣)2];中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数2(或最中间两个数的平均数).15.【分析】设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,根据题意列出方程组解答即可.【解答】解:设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,根据题意可得:,故答案为:,【点评】本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程组,再求解.16.【分析】(1)根据等腰三角形的性质即可求解;(2)可分三种情况:①AO=AP;②AO=PO;③AP=PO;解答出即可.【解答】解:(1)一个符合题意的点P的坐标答案不唯一,如:(﹣5,0);(2)如图所示:故答案为:答案不唯一,如:(﹣5,0).【点评】本题主要考查了作图﹣复杂作图、等腰三角形的判定和坐标与图形的性质,注意讨论要全面,不要遗漏.三.解答题(共12小题,满分68分)17.【解答】解:原式=4﹣3+1﹣×=2﹣1=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】分别求出两个不等式的解集,再求其公共解集.【解答】解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.【点评】本题考查一元一次不等式组的解法,求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【分析】(1)将三个顶点分别向右平移5个单位,再向上平移2个单位得到对应点,再首尾顺次连接即可得;(2)作出点A′,B′绕点C顺时针旋转90°得到的对应点,再首尾顺次连接可得;(3)根据弧长公式计算可得.【解答】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,△A″B″C′即为所求.(3)∵A′C′==,∠A′C′A″=90°,∴点A′所经过的路线长为=π,故答案为:π.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是熟练掌握旋转和平移变换的定义和性质,并据此得出变换后的对应点,也考查了弧长公式.20.【分析】(1)根据判别式的意义得到△=(2k+1)2﹣4(k2+2k)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=2k+1,x1x2=k2+2k,再把x1x2﹣x12﹣x22=﹣16变形为﹣(x1+x2)2+3x1•x2=﹣16,所以﹣(2k+1)2+3(k2+2k)=﹣16,然后解方程后利用(1)中的范围确定满足条件的k的值.【解答】解:(1)根据题意得△=(2k+1)2﹣4(k2+2k)≥0,解得k≤;(2)根据题意得x1+x2=2k+1,x1x2=k2+2k,∵x1x2﹣x12﹣x22=﹣16.∴x1x2﹣[(x1+x2)2﹣2x1x2]=﹣16,即﹣(x1+x2)2+3x1•x2=﹣16,∴﹣(2k+1)2+3(k2+2k)=﹣16,整理得k2﹣2k﹣15=0,解得k1=5(舍去),k2=﹣3.∴k=﹣3.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.21.【分析】根据等腰三角形的性质和三角形的内角和得到∠C=50°,进而得到∠BAC=80°,由∠BAD=55°,得到∠DAE=25°,由DE⊥AD,进而求出结论.【解答】解:∵AB=AC,∴∠B=∠C,∵∠B=50°,∴∠C=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠BAD=55°,∴∠DAE=25°,∵DE⊥AD,∴∠ADE=90°,∴∠DEC=∠DAE+∠ADE=115°.【点评】本题主要考查了等腰三角形的性质,三角形的内角和定理,垂直定义,熟练应用等腰三角形的性质是解题的关键.22.【分析】(1)把点A坐标分别代入反比例函数y=,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.23.【分析】(1)连接OC,根据PA=AO=2,可知PO=2OC,所以∠P=30°,所以∠POC=60°,从而可知△AOC 是等边三角形,根据等边三角形的性质可知AC=2,最后根据含30度角的直角三角形求出OP,即可得出结论;(2)由(1)易知∠PCA=30°,从而可求出tan∠PCA,易知CA是△PCO的中线,所以△PAC的面积等于△PCO 的面积的一半.【解答】解:(1)连接OC,∵PC是⊙O的切线,∴∠PCO=90°,∵AB是⊙O的直径,∴∠ACB=90°,∵PA=AO=CO=2,∴PO=2+2=4,∴PO=2OC,∴∠P=30°,∴∠POC=60°,∴△AOC是等边三角形,∴AC=2,在Rt△OCP中,OP=2OC=4,根据勾股定理得,PC=2(2)由(1)可知:∠ACO=60°,∠PCO=90°,∴∠PCA=30°,∴tan∠PCA=;∵A是PO的中点,∴CA是△PCO的中线,∵△PCO的面积为:×2×=2,∴△PAC的面积为:×2=.【点评】本题考查圆的综合问题,涉及三角形面积公式,含30度角的直角三角形的性质,锐角三角函数,勾股定理等知识,需要学生灵活运用所学知识.24.【分析】(1)根据收集数据填写表格即可求解;(2)用乙部门优秀员工人数除以20乘以400即可得出答案;(3)根据情况进行讨论分析,理由合理即可.【解答】解:(1)由题意知a=7、b=10,故答案为:7、10;(2)故估计乙部门生产技能优秀的员工人数为×400=240(人).故答案为:240;(3)可以推断出甲部门员工的生产技能水平较高,理由为:①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.【点评】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.25.【分析】(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.【解答】解:(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y,故答案为:x,y;(2)由图可得,当点P运动的路程x=4时,△ABP的面积为y=16,故答案为:16;(3)根据图象得:BC=4,此时△ABP为16,∴AB•BC=16,即×AB×4=16,解得:AB=8;由图象得:DC=9﹣4=5,则S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=26.【点评】此题考查了动点问题的函数图象,弄清函数图象上的信息是解本题的关键.26.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t 的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x+)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.27.【分析】(1)由题意我们知道∠A+∠ACBC=90°,那么我们只要通过全等三角形来得出∠BCE=∠A,就能得出∠DCE=90°的结论;(2)由(1)可得出三角形DEC是个直角三角形,要求DB的长,就必须求出DE的长即可解决问题;【解答】解:解:(1)∵BA=BC,∴∠A=∠BCA=45°,∵△CBE是由△ABD旋转得到的,∴△ABD≌△CBE,∴∠A=∠BCE=45°,∴∠DCE=∠DCB+∠BCE=90°.(2)在等腰直角三角形ABC中,∵AB=4,∴AC=4,又∵AD:DC=1:3,∴AD=,DC=3.由(1)知AD=CE且∠DCE=90°,∴DE2=DC2+CE2=2+18=20,∴DE=2,∵∠ABD=∠CBE,BD=BE,∴∠DBE=∠ABC=90°,∴BD=DE÷cos45°=.【点评】本题考查了旋转性质,勾股定理等知识,本题中利用全等三角形得出线段和角相等是解题的关键.28.【分析】(1)根据坐标轴上点的坐标特征可求得A、B的坐标,用m表示出点P的坐标,利用面积可求得m的值,进一步求得P点坐标;(2)可用t表示出BP、AP的长,分AP=AO、AP=OP和OP=AO三种情况,分别得到关于t的方程,可求得t 的值.【解答】解:(1)当x=0时,y=6,当y=0时,x=8,则A(0,6),B(8,0),AB=10,设点P的坐标为(m,﹣m+6),∵△OPA的面积为6,∴×6×|m|=6,解得:m=±2,∴点P的坐标为(﹣2,)或(2,).(2)由题意可知BP=t,AP=10﹣t,当△AOP为等腰三角形时,有AP=AO、AP=OP和AO=OP三种情况.①当AP=AO时,则有10﹣t=6,解得t=4;或t﹣10=6,解得t=16;②当AP=OP时,过P作PM⊥AO,垂足为M,如图1,则M为AO中点,故P为AB中点,此时t=5;③当AO=OP时,过O作ON⊥AB,垂足为N,过P作PH⊥OB,垂足为H,如图2,则AN=AP=(10﹣t),∵PH∥AO,∴△AOB∽△PHB,∴=,即=,∴PH=t,又∠OAN+∠AON=∠OAN+PBH=90°,∴∠AON=∠PBH,且∠ANO=∠PHB,∴△ANO∽△PHB,∴=,即=,解得t=.或作垂直三线合一,设边,根据勾股定理列等式可解.综上可知当t的值为4、16、5和时,△AOP为等腰三角形.【点评】本题主要考查一次函数的综合应用,涉及知识点有坐标轴上点的坐标特征,等腰三角形的性质,在(2)中分三种情况讨论,考查知识点较多,综合性较强,但所考查知识比较基础,难度适中.。
北京市怀柔区2019-2020学年中考第二次质量检测数学试题含解析

北京市怀柔区2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.△ABC 的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是( )A .13,5B .6.5,3C .5,2D .6.5,23.下列函数中,y 关于x 的二次函数是( )A .y =ax 2+bx+cB .y =x(x ﹣1)C .y=21xD .y =(x ﹣1)2﹣x 2 4.如图,已知点 P 是双曲线 y =2x 上的一个动点,连结 OP ,若将线段OP 绕点 O 逆时针旋转 90°得到线段 OQ ,则经过点 Q 的双曲线的表达式为( )A .y = 3xB .y =﹣ 13xC .y = 13xD .y =﹣3x5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A .众数B .方差C .平均数D .中位数6.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =41°,∠D =30°,斜边AB =4,CD =1.把三角板DCE 绕着点C 顺时针旋转11°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .4 7.若一元二次方程x 2﹣2kx+k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或08.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A -,(2,)B b ,则正方形ABCD 的面积是( )A .13B .20C .25D .349.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD=1,BD=3,那么由下列条件能够判断DE ∥BC 的是( )A .31DE BC =B .DE 1BC 4= C .31AE AC =D .AE 1AC 4= 10.实数a b 、在数轴上的点的位置如图所示,则下列不等关系正确的是( )A .a+b>0B .a-b<0C .a b <0D .2a >2b11.如图所示,在矩形ABCD 中,AB=6,BC=8,对角线AC 、BD 相交于点O ,过点O 作OE 垂直AC 交AD 于点E ,则DE 的长是( )A .5B .32C .74D .154 12.小轩从如图所示的二次函数y=ax 2+bx+c (a≠0)的图象中,观察得出了下面五条信息: ①ab >0;②a+b+c <0;③b+2c >0;④a ﹣2b+4c >0;⑤3a b 2=. 你认为其中正确信息的个数有A.2个B.3个C.4个D.5个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为__米(结果保留根号).14.在平面直角坐标系xOy中,位于第一象限内的点A(1,2)在x轴上的正投影为点A′,则cos∠AOA′=__.15.请写出一个开口向下,并且与y轴交于点(0,1)的抛物线的表达式_________16.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有_____个.17.若1+23xx--有意义,则x的范围是_____.18.如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,抛物线y=ax2+(a+2)x+2(a≠0),与x轴交于点A(4,0),与y轴交于点B,在x 轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求抛物线的解析式;(2)若PN :PM =1:4,求m 的值;(3)如图2,在(2)的条件下,设动点P 对应的位置是P 1,将线段OP 1绕点O 逆时针旋转得到OP 2,旋转角为α(0°<α<90°),连接AP 2、BP 2,求AP 2+232BP 的最小值. 20.(6分)观察下列等式:①1×5+4=32;②2×6+4=42;③3×7+4=52;…(1)按照上面的规律,写出第⑥个等式:_____;(2)模仿上面的方法,写出下面等式的左边:_____=502;(3)按照上面的规律,写出第n 个等式,并证明其成立.21.(6分)已知关于x 的一元二次方程x 2﹣6x+(2m+1)=0有实数根.求m 的取值范围;如果方程的两个实数根为x 1,x 2,且2x 1x 2+x 1+x 2≥20,求m 的取值范围.22.(8分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同,求现在平均每天清雪量. 23.(8分)某农场要建一个长方形ABCD 的养鸡场,鸡场的一边靠墙,(墙长25m )另外三边用木栏围成,木栏长40m .(1)若养鸡场面积为168m 2,求鸡场垂直于墙的一边AB 的长.(2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?24.(10分)先化简,再求值:()()()2(2)5x y x y x y x x y ++-+--,其中21x =,21y =.25.(10分)如图,已知在梯形ABCD 中,355AD BC AB DC AD sinB ∥,===,=,P 是线段BC 上一点,以P 为圆心,PA 为半径的P e 与射线AD 的另一个交点为Q ,射线PQ 与射线CD 相交于点E ,设BP x =.(1)求证:ABP ECP V V ∽;(2)如果点Q 在线段AD 上(与点A 、D 不重合),设APQ V 的面积为y ,求y 关于x 的函数关系式,并写出定义域;(3)如果QED V与QAP V 相似,求BP 的长. 26.(12分)如图,将矩形ABCD 绕点A 顺时针旋转,得到矩形AB′C′D′,点 C 的对应点 C′恰好落在CB 的延长线上,边AB 交边 C′D′于点E .(1)求证:BC =BC′;(2)若 AB =2,BC =1,求AE 的长.27.(12分)已知动点P 以每秒2 cm 的速度沿图(1)的边框按从B ⇒C ⇒D ⇒E ⇒F ⇒A 的路径移动,相应的△ABP 的面积S 与时间t 之间的关系如图(2)中的图象表示.若AB=6 cm,试回答下列问题:(1)图(1)中的BC 长是多少?(2)图(2)中的a 是多少?(3)图(1)中的图形面积是多少?(4)图(2)中的b 是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据轴对称和中心对称的定义去判断即可得出正确答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.【点睛】本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.2.D【解析】【分析】根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为512132+-,【详解】解:如下图,∵△ABC的三条边长分别是5,13,12,且52+122=132, ∴△ABC是直角三角形,其斜边为外切圆直径,∴外切圆半径=132=6.5,内切圆半径=512132+-=2,故选D.【点睛】本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.3.B【解析】【分析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax 2+bx+c (a ,b ,c 为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时, y=ax 2+bx+c= bx+c ,不是二次函数,故不符合题意;B. y=x (x ﹣1)=x 2-x ,是二次函数,故符合题意;C. 21y x的自变量在分母中,不是二次函数,故不符合题意; D. y=(x ﹣1)2﹣x 2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax 2+bx+c (a ,b ,c 为常数,a≠0)的函数叫做二次函数,据此求解即可.4.D【解析】【分析】过P ,Q 分别作PM ⊥x 轴,QN ⊥x 轴,利用AAS 得到两三角形全等,由全等三角形对应边相等及反比例函数k 的几何意义确定出所求即可.【详解】过P ,Q 分别作PM ⊥x 轴,QN ⊥x 轴,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN ,由旋转可得OP=OQ ,在△QON 和△OPM 中,90QNO OMP OQN POMOQ OP ====∠∠︒⎧⎪∠∠⎨⎪⎩, ∴△QON ≌△OPM (AAS ),∴ON=PM ,QN=OM ,设P (a ,b ),则有Q (-b ,a ),由点P 在y=3x上,得到ab=3,可得-ab=-3, 则点Q 在y=-3x 上. 故选D .【点睛】此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键.5.D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.6.A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD 1故选A.考点: 1.旋转;2.勾股定理.7.A【解析】【分析】把x=﹣1代入方程计算即可求出k的值.【详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.8.D【解析】作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,22223534AD AO OD∴=+=+=,∴正方形ABCD的面积是343434=,故选D.9.D【解析】【详解】如图,∵AD=1,BD=3,∴AD1 AB4=,当AE1AC4=时,AD AEAB AC=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根据选项A、B、C的条件都不能推出DE∥BC,故选D.10.C【解析】【分析】根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.【详解】解:由数轴,得b<-1,0<a<1.A、a+b<0,故A错误;B、a-b>0,故B错误;C、ab<0,故C符合题意;D、a2<1<b2,故D错误;故选C.【点睛】本题考查了实数与数轴,利用点在数轴上的位置得出b<-1,0<a<1是解题关键,又利用了有理数的运算.11.C【解析】【分析】先利用勾股定理求出AC的长,然后证明△AEO∽△ACD,根据相似三角形对应边成比例列式求解即可.【详解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=12AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD,∴△AEO∽△ACD,∴AE AO AC AD=,即5 108 AE=,解得,AE=254,∴DE=8﹣254=74,故选:C.【点睛】本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键.12.D【解析】试题分析:①如图,∵抛物线开口方向向下,∴a<1.∵对称轴xb12a3=-=-,∴2b a3=-<1.∴ab>1.故①正确.②如图,当x=1时,y<1,即a+b+c<1.故②正确.③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.④如图,当x=﹣1时,y>1,即a﹣b+c>1,∵抛物线与y轴交于正半轴,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.⑤如图,对称轴b12a3=-=-,则3a b2=.故⑤正确.综上所述,正确的结论是①②③④⑤,共5个.故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,继而可得∠DCB=60°,从而可得AD=CD=100米,AB=AD+DB计算即可得.【详解】∵MN//AB,∠MCA=45°,∠NCB=30°,∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,∵CD⊥AB,∴∠CDA=∠CDB=90°,∠DCB=60°,∵CD=100米,∴AD=CD=100米,∴,故答案为:100+1003.【点睛】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.14.5. 【解析】【分析】依据点A (1,2)在x 轴上的正投影为点A′,即可得到A'O=1,AA'=2,AO=5,进而得出cos ∠AOA′的值.【详解】 如图所示,点A (1,2)在x 轴上的正投影为点A′,∴A'O=1,AA'=2,∴5∴cos ∠AOA′=55A O AO '== 5. 【点睛】 本题主要考查了平行投影以及平面直角坐标系,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.15.221y x x =-++(答案不唯一)【解析】【分析】根据二次函数的性质,抛物线开口向下a<0,与y 轴交点的纵坐标即为常数项,然后写出即可.【详解】∵抛物线开口向下,并且与y 轴交于点(0,1)∴二次函数的一般表达式2y ax bx c =++中,a<0,c=1,∴二次函数表达式可以为:221y x x =-++(答案不唯一).【点睛】本题考查二次函数的性质,掌握开口方向、与y 轴的交点与二次函数二次项系数、常数项的关系是解题的关键.16.1【解析】试题解析:∵袋中装有6个黑球和n 个白球,∴袋中一共有球(6+n )个, ∵从中任摸一个球,恰好是黑球的概率为34, ∴6364n =+, 解得:n=1.故答案为1.17.x≤1.【解析】【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【详解】依题意得:1﹣x≥0且x ﹣3≠0,解得:x≤1.故答案是:x≤1.【点睛】本题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.18.1【解析】【分析】连接OB ,由矩形的性质和已知条件得出△OBD 的面积=△OBE 的面积=12四边形ODBE 的面积,再求出△OCE 的面积为2,即可得出k 的值.【详解】连接OB ,如图所示:∵四边形OABC 是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB 的面积=△OBC 的面积,∵D 、E 在反比例函数y=kx (x>0)的图象上, ∴△OAD 的面积=△OCE 的面积,∴△OBD 的面积=△OBE 的面积=12四边形ODBE 的面积=1, ∵BE=2EC ,∴△OCE 的面积=12△OBE 的面积=2, ∴k=1.故答案为:1.【点睛】本题考查了反比例函数的系数k 的几何意义:在反比例函数y=xk 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是 |k|,且保持不变.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)213222x x -++;(2)m =3;(3145【解析】【分析】(1)本题需先根据图象过A 点,代入即可求出解析式;(2)由△OAB ∽△PAN 可用m 表示出PN ,且可表示出PM ,由条件可得到关于m 的方程,则可求得m 的值;(3)在y 轴上取一点Q ,使2O 3O 2Q P =,可证的△P 2OB ∽△QOP 2,则可求得Q 点坐标,则可把AP 2+32BP 2转换为AP 2+QP 2,利用三角形三边关系可知当A 、P 2、Q 三点在一条线上时,有最小值,则可求出答案.【详解】解:(1)∵A (4,0)在抛物线上,∴0=16a+4(a+2)+2,解得a =﹣12, ∴抛物线的解析式为y =213222x x -++; (2)∵213222y x x =++-∴令x =0可得y =2,∴OB =2,∵OP =m ,∴AP =4﹣m ,∵PM ⊥x 轴,∴△OAB ∽△PAN , ∴OB PN OA PA =, ∴244mPN =-, ∴1PN (4m)2=-, ∵M 在抛物线上,∴PM =21322m m +-+2, ∵PN :MN =1:3,∴PN :PM =1:4,∴2131m m 24(4m)222-++=⨯⨯-, 解得m =3或m =4(舍去);(3)在y 轴上取一点Q ,使2O 3O 2Q P =,如图,由(2)可知P 1(3,0),且OB =2,∴22O 32OP Q OP OB ==,且∠P 2OB =∠QOP 2, ∴△P 2OB ∽△QOP 2,∴22OP 3BP 2=,∴当Q(0,92)时,QP2=232BP,∴AP2+32BP2=AP2+QP2≥AQ,∴当A、P2、Q三点在一条线上时,AP2+QP2有最小值,∵A(4,0),Q(0,92),∴AQ=22942⎛⎫+ ⎪⎝⎭=145,即AP2+32BP2的最小值为145【点睛】本题考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及线段和最小值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,难度相对较大.20.6×10+4=8248×52+4【解析】【分析】(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明.【详解】解:(1)由题目中的式子可得,第⑥个等式:6×10+4=82,故答案为6×10+4=82;(2)由题意可得,48×52+4=502,故答案为48×52+4;(3)第n个等式是:n×(n+4)+4=(n+2)2,证明:∵n×(n+4)+4=n2+4n+4=(n+2)2,∴n×(n+4)+4=(n+2)2成立.【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法.21.(1)m≤1;(2)3≤m≤1.【解析】试题分析:(1)根据判别式的意义得到△=(-6)2-1(2m+1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围.试题解析:(1)根据题意得△=(-6)2-1(2m+1)≥0,解得m≤1;(2)根据题意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤1,所以m的范围为3≤m≤1.22.现在平均每天清雪量为1立方米.【解析】分析:设现在平均每天清雪量为x立方米,根据等量关系“现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同”列分式方程求解.详解:设现在平均每天清雪量为x立方米,由题意,得40003000300 x x=-解得x=1.经检验x=1是原方程的解,并符合题意.答:现在平均每天清雪量为1立方米.点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,注意解分式方程的时候要进行检验. 23.(1)鸡场垂直于墙的一边AB的长为2米;(1)鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值100米1.【解析】试题分析:(1)首先设鸡场垂直于墙的一边AB的长为x 米,然后根据题意可得方程x(40-1x)=168,即可求得x的值,又由墙长15m,可得x=2,则问题得解;(1)设围成养鸡场面积为S,由题意可得S与x的函数关系式,由二次函数最大值的求解方法即可求得答案;解:(1)设鸡场垂直于墙的一边AB的长为x米,则x(40﹣1x)=168,整理得:x1﹣10x+84=0,解得:x1=2,x1=6,∵墙长15m,∴0≤BC≤15,即0≤40﹣1x≤15,解得:7.5≤x≤10,∴x=2.答:鸡场垂直于墙的一边AB 的长为2米.(1)围成养鸡场面积为S 米1,则S=x (40﹣1x )=﹣1x 1+40x=﹣1(x 1﹣10x )=﹣1(x 1﹣10x+101)+1×101=﹣1(x ﹣10)1+100,∵﹣1(x ﹣10)1≤0,∴当x=10时,S 有最大值100.即鸡场垂直于墙的一边AB 的长为10米时,围成养鸡场面积最大,最大值100米1.点睛:此题考查了一元二次方程与二次函数的实际应用.解题的关键是理解题意,并根据题意列出一元二次方程与二次函数解析式.24.9【解析】【分析】根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】()()()2(2)5x y x y x y x x y ++-+--222224455x xy y x y x xy =+++--+9xy =当1x =,1y =时,原式)911= ()921=⨯-91=⨯9=【点睛】本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法.25.(1)见解析;(2)312(4 6.5)y x x =-<<;(3)当5PB =或8时,QED V与QAP V 相似. 【解析】【分析】(1)想办法证明B C APB EPC ∠∠∠∠=,=即可解决问题;(2)作A AM BC ⊥于M ,PN AD ^于N.则四边形AMPN 是矩形.想办法求出AQ 、PN 的长即可解决问题;(3)因为DQ PC P ,所以EDQ ECP V V ∽,又ABP ECP V V ∽,推出EDQ ABP V V ∽,推出ABP △相似AQP V 时,QED V与QAP V 相似,分两种情形讨论即可解决问题; 【详解】(1)证明:Q 四边形ABCD 是等腰梯形,B C ∴∠∠=,PA PQ Q =,PAQ PQA ∴∠∠=,AD BC ∵∥,PAQ APB PQA EPC ∴∠∠∠∠=,=,APB EPC ∴∠∠=,ABP ECP ∴V V ∽.(2)解:作AM BC ⊥于M ,PN AD ^于N.则四边形AMPN 是矩形.在Rt ABM V 中,3sin ,55AM B AB AB ===Q , 34AM BM ∴=,=,43PM AN x AM PN ∴==﹣,==,PA PQ PN AQ ⊥Q =,,224AQ AN x ∴==(﹣),1312(4 6.5)2y AQ PN x x ∴=⋅⋅=-<<.(3)解:DQ PC Q P ,EDQ ECP ABP ECP ∴V V QV V ∽,∽,EDQ ABP ∴V V ∽,ABP ∴V 相似AQP V 时,QED V与QAP V 相似, PQ PA APB PAQ ∠∠Q =,=,∴当BA BP =时,BAP PAQ V V ∽,此时5BP AB ==,当AB AP =时,APB PAQ V V ∽,此时28PB BM ==,综上所述,当PB=5或8时,QED V与△QAP V 相似. 【点睛】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.26.(1)证明见解析;(2)AE=54. 【解析】【分析】(1)连结 AC 、AC′,根据矩形的性质得到∠ABC =90°,即 AB ⊥CC′, 根据旋转的性质即可得到结论;(2)根据矩形的性质得到 AD =BC ,∠D =∠ABC′=90°,根据旋转的性质得到 BC′=AD′,AD =AD′,证得 BC′=AD′,根据全等三角形的性质得到 BE =D′E ,设 AE =x ,则 D′E =2﹣x ,根据勾股定理列方程即可得到结论.【详解】解::(1)连结 AC 、AC′,∵四边形 ABCD 为矩形,∴∠ABC =90°,即 AB ⊥CC′,∵将矩形 ABCD 绕点A 顺时针旋转,得到矩形 AB′C′D′,∴AC =AC′,∴BC =BC′;(2)∵四边形 ABCD 为矩形,∴AD =BC ,∠D =∠ABC′=90°,∵BC =BC′,∴BC′=AD′,∵将矩形 ABCD 绕点 A 顺时针旋转,得到矩形 AB′C′D′,∴AD=AD′,∴BC′=AD′,在△AD′E 与△C′BE中∴△AD′E≌△C′BE,∴BE=D′E,设AE=x,则D′E=2﹣x,在Rt△AD′E 中,∠D′=90°,由勾定理,得x2﹣(2﹣x)2=1,解得x=,∴AE=.【点睛】本题考查了旋转的性质,三角形全等的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.27.(1)8cm(2)24cm2(3)60cm2(4) 17s【解析】【分析】(1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;(2)由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得a的值;(3)分析图形可得,甲中的图形面积等于AB×AF-CD×DE,根据图象求出CD和DE的长,代入数据计算可得答案,(4)计算BC+CD+DE+EF+FA的长度,又由P的速度,计算可得b的值.【详解】(1)由图象知,当t由0增大到4时,点P由B C,∴BC==4×2=8(㎝) ;(2) a=S△ABC=12×6×8=24(㎝2) ;(3) 同理,由图象知CD=4㎝,DE=6㎝,则EF=2㎝,AF=14㎝∴图1中的图象面积为6×14-4×6=60㎝2 ;(4) 图1中的多边形的周长为(14+6)×2=40㎝b=(40-6)÷2=17秒.。
北京市2019年中考二模数学试卷精选汇编:几何综合专题(含答案)

北京市2019年中考二模数学试卷精选汇编:几何综合专题(含答案)几何综合专题【2019东城二模】27.如图,△ABC 为等边三角形,点P 是线段AC 上一动点(点P 不与A,C 重合),连接BP ,过点A 作直线BP 的垂线段,垂足为点D ,将线段AD 绕点A 逆时针旋转60?得到线段AE,连接DE,CE .(1)求证:BD=CE ;(2)延长ED 交BC 于点F ,求证:F 为BC 的中点;(3)若△ABC 的边长为1,直接写出EF 的最大值.27.(1)∵线段AD 绕点A 逆时针旋转60?得到线段AE,∴△ADE 是等边三角形. 在等边△ABC 和等边△ADE 中 AB =ACAD =AE∠BAC =∠DAE =60°∴∠BAD =∠CAE ……………………………………………………1分在△BAD 和△CAE 中AB AC BAD CAE AD AE =??∠=∠??=?∴△BAD ≌△CAE (SAS )……………………………2分∴BD=CE ……………………………………3分(2)如图,过点C 作CG ∥BP 交DF 的延长线于点G ∴∠G =∠BDF∵∠ADE =60°,∠ADB =90° ∴∠BDF =30°∴∠G =30°……………………………………………………4分由(1)可知,BD =CE ,∠CEA =∠BDA∵AD ⊥BP∴∠BDA =90°∴∠CEA =90° ∵∠AED =60°,∴∠CED =30°=∠G ,∴CE =CG∴BD =CG ……………………………………………………5分在△BDF 和△CGF 中BDF G BFD CFG BD CG ∠=∠??∠=∠??=?∴△BDF ≌△CGF (AAS )∴BF =FC即F 为BC 的中点.……………………………………………………6分(3)1……………………………………………………7分【2019西城二模】27. 如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF =AE ,连接DE ,DF ,EF . FH 平分∠EFB 交BD 于点H . (1)求证:DE ⊥DF ;(2)求证:DH =DF :(3)过点H 作HM ⊥EF 于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.EBAE【2019海淀二模】27.已知C 为线段AB 中点,ACM α∠=.Q 为线段BC 上一动点(不与点B 重合),点P 在射线CM 上,连接PA ,PQ ,记BQ kCP =.(1)若60α=?,1k =,①如图1,当Q 为BC 中点时,求PAC ∠的度数;②直接写出PA 、PQ 的数量关系;(2)如图2,当45α=?时.探究是否存在常数k ,使得②中的结论仍成立?若存在,写出k 的值并证明;若不存在,请说明理由.图1 图2 27.(本小题满分7分)(1)①解:在CM 上取点D ,使得CD =CA ,连接AD .∵ 60ACM ∠=?,∴△ADC 为等边三角形.∴60DAC ∠=?.∵C 为AB 的中点,Q 为BC 的中点,∴AC =BC=2BQ . ∵BQ =CP ,∴AC =BC=CD =2CP . ∴AP 平分∠DAC . ∴∠PAC =∠PAD =30°.② PA =PQ .(2)存在k =. 证明:过点P 作PC 的垂线交AC 于点D . ∵45ACM ∠=?,∴ ∠PDC =∠PCD =45°. ∴PC =PD ,∠PDA =∠PCQ =135°.M∵CD=,BQ=,∴CD= BQ.∵AC=BC,∴AD= CQ.∴△PAD≌△PQC.∴PA=PQ.【2019朝阳二模】27.∠MON=45°,点P在射线OM上,点A,B在射线ON上(点B与点O在点A的两侧),且AB=1,以点P为旋转中心,将线段AB逆时针旋转90°,得到线段CD(点C与点A对应,点D与点B 对应).(1)如图,若OA=1,OP,依题意补全图形;(2)若OP AB在射线ON上运动时,线段CD与射线OM有公共点,求OA 的取值范围;(3)一条线段上所有的点都在一个圆的圆内或圆上,称这个圆为这条线段的覆盖圆.若OA=1,当点P在射线OM上运动时,以射线OM上一点Q为圆心作线段CD的覆盖圆,直接写出当线段CD的覆盖圆的直径取得最小值时OP和OQ的长度.【2019丰台二模】27. 如图,在正方形ABCD中, E为BC边上一动点(不与点B,C重合),延长AE到点F,连接BF,且∠AFB=45°.G为DC边上一点,且DG =BE,连接DF.点F关于直线AB的对称点为M,连接AM,BM.(1)依据题意,补全图形;(2)求证:∠DAG =∠MAB;(3)用等式表示线段BM,DF与AD的数量关系,并证明.27. 解:(1)略;.........................1分(2)∵四边形ABCD是正方形,∴AB=AD, ∠ABC =∠BAD=∠ADG=90°.∵BE=DG,∴△ABE≌△ADG.∴∠BAE=∠DAG.∵点F关于直线AB的对称点为M,∴∠BAE=∠MAB.∴∠DAG=∠MAB. ......................3分(3)222BM DF AD+=. ......................4分2证明:连接BD.延长MB交AG的延长线于点N.∵∠BAD=90°, ∠DAG=∠MAB,∴∠MAN=90°.由对称性可知∠M=∠AFB=45°,∴∠N=45°.∴∠M=∠N.∴AM=AN.∵AF=AM,∴AF=AN.∵∠BAN=∠DAF,∴△BAN≌△DAF.∴∠N=∠AFD=45°.∴∠BFD=90°.∴222+=.BF DF BD∵BD=, BM=BF,∴222BM DF AD+=. .........................7分2【2019石景山二模】27.如图,在△ABC中,∠ACB=90°,AC=BC,E为外角∠BCD 平分线上一动点(不与点C重合),点E关于直线BC的对称点为F,连接BE,连接AF并延长交直线BE于点G.(1)求证:AF=BE;(2)用等式表示线段FG,EG与CE的数量关系,并证明.C【2019门头沟二模】27.如图,在等边三角形ABC 中,点D 为BC 边上的一点,点D 关于直线AB 的对称点为点E ,连接AD 、DE ,在AD 上取点F ,使得∠EFD = 60°,射线EF 与AC 交于点G .(1)设∠BAD = α,求∠AGE 的度数(用含α的代数式表示);(2)用等式表示线段CG 与BD 之间的数量关系,并证明.AB CD EFG【2019房山二模】27. 如图,在△ABC中,∠ACB=90°,∠B=4∠BAC. 延长BC到点D,使CD=CB,连接AD,过点D作DE⊥AB于点E,交AC于点F.(1) 依题意补全图形;(2) 求证:∠B=2∠BAD;(3) 用等式表示线段EA,EB和DB之间的数量关系,并证明.A B【2019顺义二模】27.已知:在?ABC 中,90∠=?BAC ,=AB AC .(1)如图1,将线段AC 绕点A 逆时针旋转60?得到AD ,连结CD 、BD ,∠BAC 的平分线交BD 于点E ,连结CE .① 求证:∠=∠AED CED ;② 用等式表示线段AE 、CE 、BD 之间的数量关系(直接写出结果);(2)在图2中,若将线段AC 绕点A 顺时针旋转60?得到AD ,连结CD 、BD ,∠BAC 的平分线交BD 的延长线于点E ,连结CE .请补全图形,并用等式表示线段AE 、CE 、BD 之间的数量关系,并证明.图2图1CB AA B CDE【2019平谷二模】27.在等边三角形ABC外侧作射线AP,∠BAP=α,点B关于射线AP的对称点为点D,连接CD交AP于点E.(1)依据题意补全图形;(2)当α=20°时,∠ADC= °;∠AEC= °;(3)连接BE,求证:∠AEC=∠BEC;(4)当0°<α<60°时,用等式表示线段AE,CD,DE之间的数量关系,并证明.27.(1)如图; (1)(2)∠ADC= 40 °;∠AEC= 60 °; (3)(3)证明:∵点B关于射线AP的对称点为点D,∴△BAE≌△DAE.∴∠BAE=∠DAE=α.∵AD=AB=AC,∴∠ADC=()1806022α-?+=60°-α. (4)∴∠AEC=60°.∵∠AC B=60°,∠ACD=∠ADC=60°-α,∴∠BCE=α.∵∠ABC=60°,∠ABE=∠ADC=60°-α,∴∠BEC=60°. (5)(4)证明:方法一:在CD上截取AF=AE.∵∠AEF=60°,∴△AEF是等边三角形. (6)∴∠AFC=∠AED=120°.∵∠ACD=∠ADC=60°-α,∴△ADE≌△ACF.∴DE=CF.∴CD=2DE+EF.∵AE=EF,∴CD=2DE+AE. (7)方法二:在CD上截取BG=BE.∵∠BEC=60°,∴△BEG是等边三角形. (6)∴∠BGC=∠AED=120°.∵∠BCE=∠DAE=α,∴△BCG≌△DAE.∴AE=CG.∵EG=BE=DE,∴CD=2DE+CG.∴CD=2DE+AE. (7)【2019怀柔二模】27.在四边形ABCD 中,AD ∥BC ,(BC >AD ),∠D=90°,BC=CD=12,∠ABE=45°,若AE=10,求CE 的长.【2019昌平二模】27.在正方形ABCD 中,AC 是一条对角线,点E 是边BC 上的一点(不与点C 重合),连接AE ,将△ABE 沿BC 方向平移,使点B 与点C 重合,得到△DCF ,过点E 作EG ⊥AC 于点G ,连接DG ,FG . (1)如图1,①依题意补全图1;②判断线段FG 与DG 之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD =60°时,求BE 的长.E D C B A。
北京市怀柔区中考数学二模试卷

北京市怀柔区中考数学二模试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.(3分)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A.﹣4B.﹣2C.0D.42.(3分)2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13100000人,创历史新高,将数字13100000用科学记数法表示为()A.13.1×106B.1.31×107C.1.31×108D.0.131×108 3.(3分)正八边形的内角和等于()A.720°B.1080°C.1440°D.1880°4.(3分)下列各式计算正确的是()A.a2+2a3=3a5B.(a2)3=a5C.a6÷a2=a3D.a•a2=a3 5.(3分)以下问题,不适合用普查方法的是()A.了解某种酸奶中钙的含量B.了解某班学生的课外作业时间C.公司招聘职员,对应聘人员的面试D.旅客上飞机前的安检6.(3分)一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外其余都相同,从口袋中随机摸一个球,则摸到红球的概率为()A.B.C.D.7.(3分)如图所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m8.(3分)在四边形ABCD中,AB∥DC,AD∥BC,如果添加一个条件,即可推出该四边形是矩形,那么这个条件可以是()A.∠D=90°B.OH=4C.AD=BC D.Rt△AHB 9.(3分)一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1B.m=1C.m<1D.m≤110.(3分)小丽早上从家出发骑车去上学,途中想起忘了带昨天晚上完成的数学作业,于是打电话让妈妈马上从家里送来,同时小丽也往回骑,遇到妈妈后停下说了几句话,接着继续骑车去学校.设小丽从家出发后所用时间为t,小丽与学校的距离为S.下面能反映S与t的函数关系的大致图象是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.(3分)如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有性.12.(3分)因式分解:x3﹣9x=.13.(3分)矩形、菱形、正方形都是特殊的四边形,它们具有很多共性,如:.(填一条即可)14.(3分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为.15.(3分)观察下列一组坐标:(a,b),(a,c),(b,c),(b,a),(c,a),(c,b),(a,b),(a,c)…,它们是按一定规律排列的,那么第9个坐标是,第2015个坐标是.16.(3分)已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为.三、解答题(本题共30分,每小题5分)17.(5分)如图,点C,D在线段BF上,AB∥DE,AB=DF,BC=DE.求证:AC=FE.18.(5分)计算:.19.(5分)解不等式组:.20.(5分)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.21.(5分)列方程或方程组解应用题:周末小明和爸爸准备一起去商场购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商场都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价30元,茶杯每只定价5元,且两家都有优惠.甲商场买一送一大酬宾(买一把茶壶送一只茶杯);乙商场全场九折优惠.小明的爸爸需茶壶5把,茶杯若干只(不少于5只).当去两家商场付款一样时,求需要购买茶杯的数量.22.(5分)大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?四、解答题(本题共20分,每小题5分)23.(5分)如图,P为等腰△ABC的顶角A的外角平分线上任一点,连接PB,PC.(1)求证:PB+PC>2AB.(2)当PC=2,PB=,∠ACP=45°时,求AB的长.24.(5分)课外阅读是提高学生素养的重要途径.某校为了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间t(小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:50名学生平均每天课外阅读时间统计表类时间t(小人数别时)A t<0.510B0.5≤t<120C1≤t<1.515D t≥1.5a(1)本次调查的样本容量为;(2)求表格中的a的值,并在图中补全条形统计图;(3)该校现有1200名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?25.(5分)已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于点D,DE⊥CB的延长线于点E.(1)求证:DE为⊙O的切线;(2)若∠A=30°,BE=3,分别求线段DE和的长.26.(5分)阅读下面材料:小强遇到这样一个问题:试作一个直角△ABC,使∠C=90°,AB=7,AC+BC=9.小强是这样思考的:如图1,假定直角△ABC已作出,延长AC到点D,使CD =CB,则AD=9,∠D=45°,因此可先作出一个辅助△ABD,再作BD的垂直平分线分别交AD于点C,BD于点E,连接BC,所得的△ABC即为所作三角形.具体做法小强是利用图2中1×1正方形网格,通过尺规作图完成的.(1)请回答:图2中线段AB等于线段.(2)参考小强的方法,解决问题:请在图3的菱形网格中(菱形最小内角为α,边长为a),画出一个△ABC,使∠C=α,AB=6b,AC+BC=8b.(在图中标明字母,不写作法,保留作图痕迹).五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.(7分)已知:抛物线y=x2+bx+c经过点(2,﹣3)和(4,5).(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;(3)在(2)的条件下,当﹣2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围.28.(7分)在△ABC内侧作射线AP,自B,C分别向射线AP引垂线,垂足分别为D,E,M为BC边中点,连接MD,ME.(1)依题意补全图1;(2)求证:MD=ME;(3)如图2,若射线AP平分∠BAC,且AC>AB,求证:MD=(AC﹣AB).29.(8分)阅读理解:学习了三角形全等的判定方法:“SAS”,“ASA”,“AAS”,“SSS”和直角三角形全等的判定方法“HL”后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”即“SSA”的情形进行研究.我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠A=∠D.初步探究:如图1,已知AC=DF,∠A=∠D,过C作CH⊥射线AM于点H,对△ABC的CB边进行分类,可分为“CB<CH,CB=CH,CH<CB<CA,”三种情况进行探究.深入探究:第一种情况,当BC<CH时,不能构成△ABC和△DEF.第二种情况,(1)如图2,当BC=CH时,在△ABC和△DEF中,AC=DF,BC =EF,∠A=∠D,根据,可以知道Rt△ABC≌Rt△DEF.第三种情况,(2)当CH<BC<CA时,△ABC和△DEF不一定全等.请你用尺规在图1的两个图形中分别补全△ABC和△DEF,使△DEF和△ABC不全等(表明字母,不写作法,保留作图痕迹).(3)从上述三种情况发现,只有当BC=CH时,才一定能使△ABC≌△DEF.除了上述三种情况外,BC边还可以满足什么条件,也一定能使△ABC≌△DEF?写出结论,并利用备用图证明.北京市怀柔区中考数学二模试卷参考答案一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.B;2.B;3.B;4.D;5.A;6.C;7.D;8.A;9.D;10.B;二、填空题(本题共18分,每小题3分)11.稳定;12.x(x+3)(x﹣3);13.对角线相互平分;14.4;15.(b,c);(c,a);16.15°或45°或75°;三、解答题(本题共30分,每小题5分)17.;18.;19.;20.;21.;22.;四、解答题(本题共20分,每小题5分)23.;24.50;25.;26.AF;五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.;28.;29.HL或AAS;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1怀柔区2018—2019学年度初三二模 数 学 试 卷 2019.6一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个 1. 下列各式计算正确的是A .23525a a a +=B .23a a a ⋅=C .623a a a ÷= D .235()a a = 2. 窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是A .B .C .D . 3.如下图,将三角板的直角顶点放在直尺的一边上,如果∠1=25°,那么∠2的度数为 A .10 B .15° C .20° D .65°4. 已知232a a -=,那么代数式)1(2)2(2++-a a 的值为A . -9B .-1C . 1D . 95. 如下图所示,某同学的家在A 处,星期日她到书店去买书,想尽快赶到书店B ,请你帮助她选择一条最近的路线A .A→C→D→B B .A→C→F→BC .A→C→E→F→BD .A→C→M→B6. 在平面直角坐标系xOy 中,四条抛物线如图所示,其表达式中的二次项系数绝对值最小的是A.1yB.2y C.3y D.4y27.下表是小丽填写的实践活动报告的部分内容:设树顶端到地面的高度DC 为x m ,根据以上条件,可以列出求树高的方程为A .(10)x x =-cos56°B .(10)x x =-tan56°C .10x x -=tan56°D .(10)x x =+sin56°8.下面的两个统计图是中国互联网信息中心发布的第43次《中国互联网络发展状况统计报告》的内容,上图为网民规模和互联网普及率,下图为手机网民规模及其占网民比例.根据统计图提供的信息,下面推断不合理的是3A.20082018年,网民规模和手机网民规模都在逐年上升B.相比其它年份,2009年手机网民占整体网民的增长比例最大C.2008年手机上网人数只占全体国民的9%左右D.预计2019年网民规模不会低于63% 二、填空题(本题共16分,每小题2分)9. 若代数式11x x -+的值为0,则实数x 的值为 .10. 写出一个..a <<的整数a 的值为 . 11. 如图,在O 中,直径AB ⊥GH 于点M ,N 为直径上一点, 且OM=ON ,过N 作弦CD ,EF.则弦AB ,CD ,EF ,GH 中最短的是 .12. 北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2019年1月份各区域的PM2.5浓度情况如下表:各区域1月份PM2.5浓度(单位:微粒/立方米)表从上述表格随机选择一个区域,其2019年1月份PM2.5的浓度小于51微克/立方米的概率是 .13. 在平面直角坐标系xOy 中,将抛物线23(1)2y x =+-平移后得到抛物线231y x =+.请你写出一种平移方法 .14. 已知每个正方形网格中正方形的边长都是1,图中的阴影部分图案是以格点为圆心,半径为1的圆弧围成的,则阴影部分的面积是 .15.为打造世界级原始创新战略高地的综合性国家科学中心,经过延伸扩建的怀柔科学城,已经从怀柔区延伸到密云区,两区占地面积共100.9平方公里,其中怀柔区占地面积比密云占地面积的2倍还多3.4平方公里,如果设科学城怀柔占地面积为x 平方公里,密云占地面积是y 平方公里,则计算科学城在怀柔和密云的占地面积各是多少平方公里,依题意可列方程组为 .416. 下面是一位同学的一道尺规作图题的过程. 已知:线段 a ,b ,c.求作:线段x ,使得a :b=c :x.x.。
他的作法如下:①以点 O 为端点画射线 OM ,ON ; ②在 OM 上依次截取 OA=a ,AB=b ; ③在 ON 上截取 OC=c ;④联结 AC ,过点 B 作 BD ∥AC ,交 ON 于点D .所以:线段CD 就是所求的线段 x .这位同学作图的依据是. 三、解答题(本题共68分,第17—22题,每小题5分,第23—26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 170113tan 30(2019)()2π-︒+--. 18.解方程:1322x x x+=--. 19.如图,E 为AB 中点,CE ⊥AB于点E ,AD=5,CD=4,BC=3,求证:∠ACD=90°.20.研究发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的.讲课开始时,学生的注意力激增,中间有一段时间,学生的注意力保持平稳状态,随后开始分散.学生注意力指标数y 随时间x 变化的函DCBA:分)y(5PF ED CBA 数图象如图所示(y 越大表示学生注意力越集中).当0≤x ≤10时,图象是抛物线的一部分;当10≤x ≤20和20≤x ≤45时,图象是线段. 根据图象回答问题:(1)课堂上,学生注意力保持平稳状态的时间段是 (2)结合函数图象回答,一道几何综合题如果需要讲25分钟,老师最好在上课后大约第 分钟到第 分钟讲这道题,能使学生处于注意力比较集中的听课状态.21.如图,在四边形ABCD 中,AD ∥BC , AE 平分∠BAD ,交BC 于点E ,作EF ∥AB ,交AD 于点F ,AE 与BF 交于点P ,连接CF, CF=EF .(1)求证:四边形ABEF 是菱形; (2)若BF=tan ∠FBC=12,求EC 的长.22. 如图,在平面直角坐标系xOy 中,直线y=-x+1与函数xky =的图象交于A (-2,a ),B 两点.(1)求a ,k 的值;(2)已知点P (0,m ),过点P 作平行于x 轴的直线l ,交函数xky =的图象于点C(x 1,y 1),交直线y=-x+1的图象于点D(x 2,y 2),若21x x > , 结合函数图象,直接写出m 的取值范围.23. 如图,AB 是O 的直径,弦EF ⊥AB 于点C ,点D是AB 延长线上一点,30A ∠=︒,30D ∠=︒. (1)求证:FD 是O 的切线;(2)取BE 的中点M ,连接MF ,若,求O 的半径.DA624. 2019年4月23日世界读书日这天,某校初三年级的小记者,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下,请补充完整.收集数据 甲、乙两班被调查者读课外书数量(单位:本)统计如下:甲: 1 9 7 4 2 3 3 2 7 2 乙: 2 6 6 3 1 6 5 2 5 4 整理、描述数据 绘制统计表如下,请补全下表:分析数据、推断结论25. 阅读材料:1903年,英国物理学家卢瑟福通过实验证实,放射性物质放出射线后,这种物质的质量将减少,物质所剩的质量与时间成某种函数关系.镭的质量由0m 缩减到021m 需1620年, 由021m 缩减到041m 需1620年,由041m 缩减到081m 需1620年,即镭的质量缩减为原来的一半所用的时间是一个不变的量——1620年,一般把1620年称为镭的半衰期.实际上,所有放射性物质都有自己的半衰期.铀的半衰期为9104.5 年,蜕变后的铀最后成为铅.科学家们测出一块岩石中现在含铀和铅的质量,便可以利用半衰期算出从原来含铀量到现在含铀量经过了多少时间,从而推算出这块岩石的年龄.根据以上材料回答问题:(1) 设开始时岩石中含有铀的质量为0m 千克,经过n 个半衰期后,剩余的铀的质量为1m 千克,下表是1m 随n 的变化情况,请补充完整:7E D C B A (3)设铀衰变后完全变成铅,下图是岩石中铅的质量2m 与半衰期n 的函数关系图象,请在同一坐标系中,利用描点法画出岩石中含铀的质量1m 与半衰期n 的函数关系图象:(426. 在平面直角坐标系xOy 中,直线x y =与抛物线0)3()(32≠++-=a x a ax y 交于A ,B 两点,并且OA <OB .(1)当a =1时,求抛物线与x 轴的交点坐标; (2)当2422≤≤OB 时,求a 的取值范围.27.在四边形ABCD 中,AD ∥BC ,(BC >AD ),∠D=90°,BC=CD=12,∠ABE=45°,若AE=10,求CE 的长.828.在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω, 如果在图形ω上存在点P ,Q (P ,Q 可以重合),使得AP =2BQ ,那么称点A 与点B 是图形ω的一对“倍点”. 已知⊙O 的半径为1,点B (0,3).(1)①点B 到⊙O 的最大值 ,最小值 ;②在A 1(5,0),A 2(0,10),A 3(2,2)这三个点中,与点B 是⊙O 的一对“倍点”的是 ;(2)在直线b +=x y 33上存在点A 与点B 是⊙O 的一对“倍点”,求b 的取值范围; (3)正方形MNST 的顶点M (m ,1),N (m+1,1),若正方形上的所有点与点B 都是⊙O 的一对“倍点”,直接写出m 的取值范围.92019年怀柔区高级中等学校招生模拟考试(二)数学试卷答案及评分参考一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9. x=1 10.2(或3 ) 11. GH 12.71713.答案不唯一,例如,将抛物线23(1)2y x =+-先向右平移1个单位长度,再向上平移3个单位长度得到抛物线231y x =+.14. 24π- 15.100.92 3.4x y x y +=⎧⎨=+⎩16.平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例.三、解答题(本题共68分,第17—22题,每小题5分,第23—26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17. 解:原式 2133332-+⨯-= …………………………………4分 13-=. ………………………………………………5分18.解:去分母,得.………………………………………………… 1分去括号,得. ………………………………………………… 2分 移项,得 .合并同类项,得 .…………………………………………………… 3分 系数化为1,得.……………………………………………………… 4分 经检验,原方程的解为.………………………………………………5分 19. 证明:∵E 为AB 中点,CE ⊥AB 于点E , ∴AC=BC. ……………………………… 2分∵3BC =,∴3AC =.…………………………3分 又∵5AD =,4CD =,DCBA10HP FEDCB A∴222AC CD AD +=……………………… 4分∴90ACD ∠=︒.……………………………… 5分20.(1)10到20分钟时. …………………………… 2分(2)第4分钟到29分钟时. …………………………… 5分 21.(1)证明:∵AD ∥BC , AE 平分∠BAD,∴∠DAE=∠AEB.∠DAE=∠BAE. ∴∠BAE=∠AEB ∴AB=BE.∵EF ∥AB , AD ∥BC ∴四边形ABEF 是平行四边形,∴四边形ABEF 是菱形…………………………… 2分 (2)解:作FH ⊥BC 于H ,∵四边形ABEF 是菱形,BF=4,∴∠B PE=90°,PB=PF=2,∵tan ∠FBC=,∴PE=,BE=5,…………………………… 3分在RT △BFH 中,∵tan ∠FBC=,∴=, BF=4.∴FH=4,BH=8. ∴EH=3.∵CF=EF,∴EC=2EH=6…………………………… 5分22.(1)∵直线1+-=x y 与函数xky =的图象交于点A (-2,a ), 把A (-2,a )代入1+-=x y 解得3=a . ∴A (-2,3).把A (-2,3)代入x ky =,解得k = -6.…………… 2分(2) 画函数图象……………………… 3分30<<m 或 02<<-m ……………………………5分23.解:(1)连接OE ,OF .∵EF AB ⊥,AB 是O 的直径,∴DOF DOE =∠∠.∵2DOE A =∠∠,30A ∠=︒,∴60DOF ∠=︒ . ……………………………1分 ∵30D ∠=︒.∴90OFD ︒=∠.∴OF FD ⊥.∴FD 为O 的切线,……………………………2分DA11(2)图形如图所示.连接OM .∵AB 为O 的直径,∴O 为AB 中点, 90AEB ∠=︒.∵M 为BE 的中点,∴OM AE ∥,1=2OM AE . ……………………………3分 ∵30A ∠=︒,∴30MOB A ∠=∠=︒.∵260DOF A ∠=∠=︒ , ∴90MOF ∠=︒. ………………………4分 ∴222+OM OF MF =.设O 的半径为r .∵90AEB ∠=︒,30A ∠=︒,∴cos30AE AB ︒=⋅=.∴OM . ……………5分∵FM222)+r =.解得=2r .(舍去负根)∴O 的半径为2. …………………………6分 24. …………………………… 2分(1)12; …………………………… 3分(2)乙班,乙班的方差较小,说明乙班学生普遍有阅读意识,而甲班方差较大,说明甲班虽然存在一部分读书意识较强的同学,但也存在一部分读书意识淡漠的同学等等.(答案不唯一,只要理由充足即可得分). …………………………… 6分0 …………………………… 1分 …………………………… 3分(3) 如图…………………………… 4分 (4)1.1…………………………… 6分DA12GMA BCD E26.解:(1)0)3()(32≠++-=a x a ax y ,解得x 1=1,x 2=3a .与y 轴交于(0,3)把a =1代入0)3()(32≠++-=a x a ax y .解得32+-=x x y 4.令y =0,∴x 1=1,x 2=3.∴抛物线与x 轴的交点坐标是(1,0),(3,0). …………………………… 2分 (2)①当a >0,OB =24时B (4,4).解得a =1213.当OB =22时B (2,2).解得a =25.∴251213≤≤a .…………………………… 4分②当a <0时,2019611-≤≤-a .∴251213≤≤a 或2019611-≤≤-a .…………………………… 6分 27.解:如图,延长DA 至M ,使BM ⊥BE.过点B 作BG ⊥AM , G 为垂足. …………………………… 1分 ∵AD ∥BC ,BC=CD ,∠D=90°,∴四边形BCDG 为正方形. ∴BC=BG.又∵∠CBE=∠GBM ,∴Rt △BEC ≌Rt △BMG .…………………………… 3分 ∴BM=BE ,∠ABE=∠ABM=45°,∴△ABE ≌△ABM ,∴AM=AE=10. …………………………… 5分 设CE=x ,则AG=10-x ,AD=12-(10-x)=2+x , DE=12-x.在Rt △ADE 中,∵AE 2=AD 2+DE 2,∴100=(2+x)2+(12-x)2,∴x 2-10x+24=0,解得x 1=4,x 2=6. ∴CE 的长为4或6. …………………………… 7分 28.解:(1)①4,2…………………………… 2分 ② A 1…………………………… 3分 (2)∵O 到直线b +=x y 33的距离是9.∴36±=b ∴3636≤≤-b …………………………5分 (3)7722≤≤m -1 或2277-≤≤-m -1………………… 7分13。