成型原理与成型技术
快速成型技术及原理

RP技术简介快速原型制造技术,又叫快速成形技术,(简称RP技术);英文:RAPID PROTOTYPING(简称RP技术),或RAPID PROTOTYPING MANUFACTUREING,简称RPM。
快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。
自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。
但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。
形象地讲,快速成形系统就像是一台"立体打印机"。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。
快速成型机的工艺立体光刻成型sla层合实体制造lom熔融沉积快速成型fdm激光选区烧结法SLS多相喷射固化mjs多孔喷射成型mjm直接壳法产品铸造dspc激光工程净成型lens选域黏着及热压成型SAHP层铣工艺lmp分层实体制造som自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。
材料成型原理与工艺

04
材料成求极高,需要具备轻质、高强度、 耐高温等特性。材料成型原理与工艺的发展为航空航天领域 提供了更多的选择,如钛合金、复合材料等。
这些新型材料的应用有助于减轻飞机和航天器的重量,提高 其性能和安全性。
汽车工业领域的应用
随着环保意识的提高和新能源汽车的 兴起,汽车工业对轻量化材料的需求 越来越大。
件。
锻造工艺
01
02
03
04
自由锻造
利用自由锻锤或压力机对坯料 进行锻打,形成所需形状和尺
寸的锻件。
模锻
利用模具对坯料进行锻打,使 坯料在模具中形成所需形状和
尺寸的锻件。
热锻
将坯料加热至高温后进行锻打 ,使材料易于塑性变形。
冷锻
在常温下对坯料进行锻打,适 用于塑性较差的材料。
焊接工艺
熔化焊
压力焊
材料成型原理与工艺的发展使得汽车 零部件的制造更加高效、精确,如铝 合金、镁合金等轻质材料的广泛应用 ,有助于降低汽车能耗和排放。
能源领域的应用
能源领域如核能、太阳能等需要大量的特殊材料,如耐高 温、耐腐蚀的材料。
材料成型原理与工艺的进步为能源领域提供了可靠的材料 解决方案,如高温合金、耐腐蚀涂层等,有助于提高能源 利用效率和安全性。
材料成型原理与工艺
• 材料成型原理概述 • 材料成型工艺介绍 • 材料成型原理与工艺的发展趋势 • 材料成型原理与工艺的应用前景
01
材料成型原理概述
材料成型的基本概念
材料成型是通过物理或化学手 段改变材料的形状,以达到所 需的结构和性能的过程。
材料成型涉及多种工艺和技术, 如铸造、锻造、焊接、注塑等。
泡沫金属
通过在金属基体中引入孔洞,制备 出具有轻质、高比强度的泡沫金属 材料。
挤出成型工艺—挤出成型原理(塑料成型加工课件)

二、挤出成型过程
既有混合过 程,也有成 型过程
树脂原料 加热黏流 塑料熔体
助剂
混合过程
加压 挤出连续体
一定规格的 制品
切割 成型连续体
冷却定型
成型过程
以 管 材 挤 出 原料 成型为例
挤出连续体
熔体
定型连续体
制品
三、挤出成型特点
1. 可以连续化生产,生产效率高。 2. 设备自动化程度高,劳动强度低。 3. 生产操作简单,工艺控制容易。 4. 原料适应性强,适用大多数热塑性树脂和少数热固性 树脂。 5. 可生产的产品广泛,同一台挤出机,只要更换不同的 辅机,就可以生产不同的制品。
挤出成型
挤出成型特点
一、挤出成概述
挤出成型又叫挤出模塑,是利用加热使塑料熔融塑化成 为流动状态,然后在机械力(螺杆或柱塞的挤压)的作用下, 使熔融塑料通过一定形状的口模制成具有恒定截面连续的制 品,适用于绝大部分热塑性树脂和部分热固性树脂。
除了用于挤出造粒、染色、树脂掺和等共混改性,还可用于塑 料薄膜、网材、带包覆层的产品、截面一定、长度连续的管材、板 材、片材、棒材、打包带、单丝和异型材等塑料制品的生产。
料表面接近或达到黏流温度,表面发黏。
要求:输送能力要稍高于熔融段和均化段。
2. 压缩段 (熔融段)
位置:螺杆中部一段。 作用:输送物料,使物料受到热和剪切作用熔 融塑化,并进一步压实和排出气体。 特点:物料逐渐由玻璃态转变为粘流态,在熔 融段末端物料为粘流态。 要求:螺杆结构逐渐紧密,使物料进一步压实。
(3)横流(环流) 由垂直于螺棱方向的分速
度引起的使物料在螺槽内产生翻 转运动。对生产能力没有影响, 但能促进物料的混合和热交换。
(4)漏流 由机筒与螺棱间隙处形成的
塑料成型原理与工艺

压缩成型与注射成型相比的优点是: (1)无浇注系统,耗料少; (2)设备使用及模具较简单; (3)易于成型流动性较差如以纤维为填料的塑料; (4)制品收缩率小,变形小,各向性能比较均匀; (5)能成型面积大、厚度又比较小的大型扁平制品。
缺点是: (1)生产周期长,效率低; (2)不易成型尺寸精度要求较高、形状复杂、壁厚 相差较大及带有精细易断嵌件的制品; (3)劳动强度大,难以实现自动化,劳动条件较差; (4)模具寿命较短。
2.2.2 压缩成型工艺过程
压缩成型工艺过程主要包括预压、预热和 干燥、嵌件的安放、加料、闭模、排气、固化、 脱模、清理模具、制品后处理等。
但模温也不能过低,过低的模温不仅使 固化速度慢,而且效果差,也会造成制品的 灰暗,甚至表面发生肿胀,这是因为固化不 完全的外层受不住内部挥发物压力作用的结 果。
成型厚度较大的制品时,宜采用降低模 具温度,延长成型时间的工艺规程。
3.压缩成型时间
成型时间是指从闭模加压起,物料在模具 内升温到固化脱模为止的这段时间。它直接 影响制品的成型周期和固化度。
1.压缩成型前的准备工作
(1)预压
在压缩成型前,将松散的粉状或纤维状的 热固性塑料在室温下预先用冷压法(即模具不 加热)压成重量一定、形状一致的密实体的过 程称为预压,所得到的物体称为预压物(或压 锭、型坯、压片)。
预压的作用主要有:
(1)加料快而准确。避免加料过多或不足而造成 的残次品。
(2)减小模具的加料室,降低模具制造成本。
(1)加料 (2)塑化 (3)加压注射 (4)保压 (5)冷却定型 (6)脱模
3. 塑件的后处理 塑件经注射成型后,除去浇口凝料,修饰浇口处余料
五金模具成型原理

五金模具成型原理一、引言五金模具成型是一种常见的制造工艺,广泛应用于各个领域的产品制造中。
本文将介绍五金模具成型的原理,包括模具的基本构造、成型工艺以及常见的成型方式。
二、模具的基本构造五金模具是由上模和下模组成的,它们通过模具底座相互连接并固定在成型机上。
上模和下模的形状及尺寸与最终产品的形状和尺寸相对应。
在成型过程中,上模和下模会相互融合并形成产品的外形。
三、成型工艺五金模具成型的基本工艺包括注塑、压铸、冲压等。
下面将分别介绍这些工艺的原理。
1. 注塑成型注塑成型是将熔化的塑料注入模具中,经过冷却和固化后得到最终产品的一种成型工艺。
注塑成型的原理是利用注塑机将塑料加热熔化后,通过压力将熔化的塑料注入到模具腔中,然后冷却和固化,最后取出成品。
2. 压铸成型压铸成型是将熔化的金属注入模具中,经过冷却和固化后得到最终产品的一种成型工艺。
压铸成型的原理是利用压铸机将熔化的金属注入到模具腔中,然后通过高压将金属充分填充模具腔,冷却和固化后取出成品。
3. 冲压成型冲压成型是利用冲压机将金属板材或带材在模具中进行冲剪、弯曲、拉伸等变形,最终得到所需形状的成型工艺。
冲压成型的原理是通过冲压机使冲头对工件进行冲击,使工件产生塑性变形,最终得到所需形状的成品。
四、常见的成型方式根据产品的形状和尺寸不同,五金模具成型可以采用不同的方式。
下面将介绍常见的成型方式。
1. 单腔成型单腔成型是指模具中只有一个腔,每次只能成型一个产品。
这种成型方式适用于产品的生产量较小的情况。
2. 多腔成型多腔成型是指模具中有多个腔,每次可以同时成型多个产品。
这种成型方式适用于产品的生产量较大的情况。
3. 分模成型分模成型是指模具中的上模和下模可以分开成型。
这种成型方式适用于产品的形状复杂、内部结构复杂的情况。
4. 滑块成型滑块成型是指模具中的滑块可以在成型过程中进行上下或前后移动,以实现特殊的成型要求。
这种成型方式适用于产品的形状特殊、内部结构复杂的情况。
注塑成型的工作原理

注塑成型的工作原理注塑成型是一种常见的塑料加工技术,通过将熔化的塑料注入模具中,并在固化后得到所需形状的制品。
本文将详细介绍注塑成型的工作原理,并探讨其具体步骤及相关特点。
一、工作原理注塑成型的工作原理基于热塑性塑料的特点,其主要包括以下几个步骤:1. 塑料熔化:首先,将塑料颗粒加入注射机的料斗中。
然后,通过外加热源,调节注射机的温度,使塑料颗粒迅速熔化成为黏稠的熔融塑料。
2. 注射:在塑料熔化的同时,注射机会将熔融塑料注入模具中。
注射机通过螺杆运动,将熔融塑料推动到注射筒前端,并通过喷嘴进入模具的腔体。
3. 塑料充填:一旦熔融塑料进入模具腔体,它会填充整个腔体,包括模具中所定义的产品形状。
在此过程中,注射机保持一定的压力,以确保塑料充分填充模具。
4. 塑料固化:一旦塑料充填完成,它会开始在模具中逐渐冷却,并渐渐固化。
注射机会保持模具一定的冷却时间,以确保塑料完全固化。
5. 产品脱模:当塑料完全固化后,模具会打开并释放成形的产品。
产品的脱模可以通过模具的自动弹出装置或人工操作实现。
释放后,可以开始进行下一次注射循环。
二、特点与优势注塑成型作为一种成熟的塑料加工技术,具有以下特点与优势:1. 精度高:注塑成型产品的尺寸精度高,可以满足不同行业的严格要求,如医疗器械、汽车零部件等。
2. 产品种类多样:注塑成型可以加工各种形状的产品,从小到大,从简单到复杂,包括零件、容器、玩具等。
3. 生产效率高:注塑成型具有高效连续生产的能力,可以快速完成成形循环,满足大批量生产的需求。
4. 自动化程度高:注塑成型设备智能化程度高,可以实现自动化操作,提高生产效率和产品质量。
5. 材料选择广泛:注塑成型可适用于热塑性塑料、热固性塑料和橡胶等材料,具有较广泛的应用范围。
三、应用领域注塑成型技术广泛应用于众多行业,例如:1. 汽车工业:注塑成型可制造汽车内部和外部的零部件,如仪表盘、门把手、保险杠等。
2. 电子电器:注塑成型可制造电子产品的外壳,如手机壳、电视遥控器等。
混凝土挤出成型方法

混凝土挤出成型方法一、引言混凝土挤出成型方法是一种较为先进的建筑材料生产技术,具有高效、环保、节能、节材等优点。
本文将详细介绍混凝土挤出成型方法的原理、工艺流程、生产设备和注意事项。
二、混凝土挤出成型原理混凝土挤出成型技术是利用泵送装置将混凝土通过模具挤出,形成所需的混凝土构件,其原理主要包括以下几个方面:1.混凝土挤出成型采用高压泵,将混凝土输送到模具中,利用模具的形状和尺寸限制混凝土的流动方向和形态,使其在模具内部不断挤压、密实,最终成型。
2.混凝土挤出成型过程中,混凝土的流动性和压缩性是关键,必须保证混凝土的流动性和压缩性良好,才能保证挤出成型的质量和效率。
3.混凝土挤出成型技术还需要配备专门的控制系统,控制混凝土的流量、压力、速度等参数,以保证挤出成型的准确度和稳定性。
三、混凝土挤出成型工艺流程混凝土挤出成型的工艺流程主要包括原料准备、混凝土配制、模具设计、挤出成型和后处理等环节。
1.原料准备:混凝土挤出成型所用原料主要包括水泥、砂、石子、添加剂等,需要进行准确的称量和混合,以确保混凝土的配合比例和质量。
2.混凝土配制:将混凝土原料按照一定比例混合,加水搅拌成糊状物,保证混凝土的均匀性和流动性。
3.模具设计:根据工程需要和混凝土特性,设计合适的模具形状和尺寸,以实现所需的混凝土构件。
4.挤出成型:利用高压泵将混凝土输送到模具中,通过模具的形状和尺寸限制混凝土的流动方向和形态,使其在模具内部不断挤压、密实,最终成型。
5.后处理:将挤出成型的混凝土构件进行表面处理、养护等,确保其质量和使用寿命。
四、混凝土挤出成型生产设备混凝土挤出成型生产设备主要包括高压泵、模具、控制系统等。
1.高压泵:高压泵是混凝土挤出成型的核心设备,其作用是将混凝土输送到模具中,保证混凝土的流量、压力、速度等参数,以实现挤出成型。
2.模具:模具是混凝土挤出成型的重要组成部分,其作用是限制混凝土的流动方向和形态,使其在模具内部不断挤压、密实,最终成型。
挤出成型的原理和工艺流程

挤出成型的原理和工艺流程
挤出成型是一种常见的塑料加工工艺,通过将加热熔化的塑料挤压至模具中,使其快速冷却凝固并形成所需产品。
本文将介绍挤出成型的原理和工艺流程。
原理
挤出成型的原理基于塑料的热塑性特性,塑料在一定温度下能够熔化并具有流动性。
在挤出机中,塑料颗粒被加热熔化成为熔体,然后通过螺杆将熔体加压,推动熔体流经模具口向外挤出。
随着熔体在模具中迅速冷却,最终形成固化的塑料制品。
工艺流程
1.塑料颗粒加料:首先将塑料颗粒放入挤出机的料斗中,经过加热系统加热,使其
熔化成为熔体。
2.挤出过程:熔化的塑料经过螺杆的推动,被压入模头中,经过交变的高压和高温
使得熔体形成流态,流经挤出模的成型孔。
3.冷却固化:熔体在挤出口挤压而出后,迅速接触冷却水或风冷,使其迅速冷却凝
固。
4.切割成型:冷却后的塑料制品经过切割装置,按照所需长度进行切割,最终形成
成型的塑料制品。
工艺优势
挤出成型具有以下优点:
•高效率:生产速度快,生产成本相对较低。
•适用性广泛:可以加工各种形状和规格的塑料制品。
•制品质量稳定:产品表面光滑,尺寸精确。
•生产自动化程度高:无需过多人工干预,生产稳定可靠。
应用领域
挤出成型广泛应用于塑料制品生产行业,如管道、板材、型材、薄膜、包装材料等领域。
其高效率、高质量的特点使其成为塑料制品生产中不可或缺的一环。
总的来说,挤出成型作为一种常见的塑料加工工艺,通过简单高效的操作流程,可以生产出质量稳定的塑料制品,在工业生产中发挥着重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注射成型是将瓷粉和有机粘结剂混合后, 经注射成型机,在130~300℃温度下将瓷
料注射到金属模腔内。待冷却后,粘结剂固化, 便可取出毛坯而成型。(P51,图18-1)
注射成型的特点
注射成型法可以成型形状复杂的制品。毛坯
尺寸和烧结后实际尺寸的精确度高,尺寸公差 在1%以内,而干压成型为±1%~2%,注浆成 型法±5%。注射成型工艺的周期为10~90s, 工艺简单,成本低,压坯密度均匀,适于复杂 零件的自动化大批量生产。但是它脱脂时间较 长,金属模具昂贵,设计较困难。
(2)湿式等静压容器内可同时放入几个模具, 压制不同形状的坯体。
(3)可以任意调节成型压力。 (4)压制产品质量高,烧成收缩小,坯件致 密,不易变形。
(5)设备成本高,湿式等静压成型不易自动 化生产,生产效率不高。
11.5挤压成型
挤压成型是将经真空练制的泥料,置于挤制 机(挤坯机)内,只需更换挤制机的机嘴, 就能挤压出各种形状的坯体。(P52,图18-2, 3)
轧膜成型用塑化剂
轧膜成型用塑化剂由粘合剂、增塑剂和溶剂 所组成(P23,表13-4)。
轧膜成型对粉料粒度的要求是越细越圆润,含 粘合剂量越多,轧辊的精度要求也越高。
轧膜成型的特点
轧膜成型具有工艺简单、生产效率高、膜片厚 度均匀、生产设备简单、粉尘污染小、能成 型厚度很薄的膜片等优点。但用该法成型的 产品干燥收缩和烧成收缩较干压制品的大。
11.7轧膜成型
轧膜成型是将准备好的陶瓷粉料,拌以一定 量的有机粘结剂(如聚乙烯醇等)和溶剂, 通过粗轧和精轧成膜后再进行冲片成型。
轧膜成型的工艺流程如下:
粗轧是将粉料、粘结剂和溶剂等成分置于 两辊轴之间充分混合混练均匀,伴随着吹风, 使溶剂逐渐挥发,形成一层厚膜。精轧是逐步 调近轧辊间距,多次折叠,90°转向反复轧练, 以达到良好的均匀度、致密度、光洁度和厚度。 轧好的坯片,在一定湿度的环境中储存,防止 干燥脆化,最后在冲片机上冲压成型。
11.5.1挤压成型泥料的性能要求
(1)粉料有足够的细度和圆润的外形,以保 证必要的流动性。
(2)溶剂、增塑剂等用量要适当。
11.5.2挤压成型的特点
挤压成型适于连续化批量生产,生产效率 高,环境污染小,易于自动操作。但机嘴结 构复杂,加工精度要求高,耗泥量多,制品 烧成收缩大。挤压成型适于挤制直径1~ 30mm的管、棒形制品(细管壁厚小至 0.2mm),或用以挤制径幅800mm 、100~ 200孔/cm2的蜂窝状、筛格式穿孔瓷筒。
注浆成型法 :
(1)空心注浆
(2)实心注浆 11.2热压铸成型
利用含蜡料浆加热熔化后具有流动性和塑性, 冷却后在金属模中凝固成一定形状。
1.蜡浆的制备
熟瓷粉 石蜡 表面活性物质
预热 熔化
搅拌
除气、进热压铸机 浇成蜡饼存放
熟瓷粉是预先煅烧的瓷料。目的,除使反应充分 均匀之外,还可减少石蜡用量,降低烧结收缩和 变形。
11.3.1塑化与造粒工艺
通过造粒工艺,把陶瓷粉料制成具有良好 流动性和一定强度的颗粒(同时具有一定的
粘性),以便干压成型。
1.机械(人工)造粒
加入粘合剂溶液的粉料,在陶瓷研钵或轮辗
机中均匀混合,进行塑化。
2.喷雾干燥造粒
喷雾干燥造粒是适用于大批量、自动化生产。 喷雾干燥造粒的过程是:制备混有粘合剂的料 浆,然后用泵将浆打入造粒塔雾化,热空气对 料浆进行干燥处理形成球颗粒。
11.4.2干式等静压成型
干式等静压成型的模具是半固定式的,坯料的 添加与坯件的取出都是在干燥状态下操作。干 式等静压成型模具,两头(垂直方向)并不加 压,适于压制长型、薄壁、管状产品。
13.4.3热等静压成型
对坯体加温加压同时进行,陶瓷致密度更高。
热等静压成型的特点:
(1)适于压制形状复杂、大件且细长的新型 陶瓷制品。
适用于外形复杂、精密度高的中小型制品。 其成型设备不复杂,模具磨损小,操作方便, 生产效率高。热压铸成型的缺点是,工序较繁, 耗能大,工期长,对于壁薄、大而长的制品不 宜采用。
11.3干压成型
将陶瓷粉体经过塑化、造粒,制备成流动性 好、粒配合适的粉料,装入模具内,通过压 机的柱塞施以外加压力,使粉料压制成一定 形状的坯体。
石蜡是作为增塑剂使用,具有很好的热流动性、 润滑性和冷凝性。
表面活性物质—油酸、硬脂酸、蜂蜡等,使瓷粉 与石蜡更好地结合。这些表面活性物质不仅能提 高蜡浆的热流动性和冷凝蜡坯的强度,而且可以 减少石蜡的用量,防止瓷粉分层。
2.蜡浆的性能 (1)稳定性好 (2)可铸性好 (3)收缩率低 3.热压铸成型的特点
第十一章 成型原理与成型技术
11.1 注浆成型
它是利用石膏吸水性的一种成形方法。此法 适于生产一些形状复杂且不规则、外观尺寸要 求不严格、壁薄及大型厚胎的制品。
对注浆成型所用的料浆,必须具备如下性能: 流动性、稳定性(即不易沉淀和分层)、触 变性要小、含水量尽可能少、渗透性要好、脱 膜性要好、尽可能不含气泡。
控制因素:
(1)成型压力的大小 (2)加压速度与保压时间
11.3.4干压成型的特点
由于坯料中含水或其它粘合剂比较少,干 压成型的坯体致密度高,尺寸比较精确,烧 成收缩小,瓷件的机械强度高,电性能好。 主要用于圆形、薄片状的简单形状制品。
11.4等静压成型
等静压成型又称静水压成型,它是利用液 体介质不可压缩性和均匀传递压力性的一种 成型方法 。 冷等静压成型
热等静压成型
11.4.1湿式等静压成型
先将配好的坯料装入塑料或橡胶做成的弹 性模具内,置于高压容器内,密封后,注入 高压液体介质,压力传递至弹性模具对坯料 加压。然后释放压力取出模具,并从模具取 出成型好的坯件。
传压液体可用水、甘油或重油等。弹性模 具材料应选用弹性好、抗油性好的橡胶或类
似的塑料。
3.干压成型对粒料的工艺要求
粒度和粒度分布 压制大的坯件,粒料可适当粗些,较小的坯件,
粒料需稍细。粒度不当,成型的坯件密度低,强 度差。粒料过来自,坯件易出现起层(层裂)现象。
粒料的流动性 粒料的自然息角α越小,流动性越好。
11.3.2干压成型方法 (1)单向加压 (2)双向加压
11.3.3干压成型应注意的问题 坯件的密度称为成型密度。成型密度愈均匀 愈好。