机器视觉检测系统深度解读

合集下载

自动化机器视觉系统

自动化机器视觉系统

自动化机器视觉系统自动化机器视觉系统(Automated Machine Vision System)是一种基于计算机视觉技术的先进系统,能够实现物体的自动检测、识别和分析。

该系统结合了传感器、图像处理算法和决策系统,以实现对物体的快速而准确的处理。

本文将从系统原理、应用场景和未来发展等方面进行介绍。

1. 系统原理自动化机器视觉系统利用相机或其他光学传感器捕捉物体的图像,并通过图像处理算法对图像进行分析。

系统通常会采用特定的光源和滤波器来改善图像的质量和对比度。

图像处理算法包括图像增强、特征提取和分类等步骤。

最后,通过决策系统对处理结果进行评估和判断,实现对物体的自动化处理。

2. 应用场景自动化机器视觉系统在工业、医疗、农业和安防等领域有广泛的应用。

以下是几个典型的应用场景:2.1 工业自动化在工业生产线上,自动化机器视觉系统能够实现对产品的检测、排序和包装等操作。

例如,在电子制造业中,系统可以检测电路板上的缺陷或误焊,以提高产品质量和生产效率。

2.2 医疗影像分析自动化机器视觉系统在医学影像领域也有重要的应用。

通过对医学图像进行处理和分析,系统能够帮助医生进行疾病的诊断和治疗。

例如,在眼科领域,系统可以检测和定量测量眼底图像中的病变,辅助眼科医生诊断眼部疾病。

2.3 农业智能化自动化机器视觉系统在农业领域有助于实现农业智能化和精准农业。

系统可以识别农田中的杂草和病虫害,并自动施放相应的农药或杀虫剂,提高农作物的产量和质量。

2.4 安防监控在安防领域,自动化机器视觉系统可以用于实现视频监控和事件识别。

系统可以对图像进行实时分析,检测和识别异常行为或危险事件,并及时报警。

这在提升安全性和保护财产方面起到至关重要的作用。

3. 未来发展随着计算机视觉技术的不断发展,自动化机器视觉系统的应用前景非常广阔。

以下是一些可能的未来发展方向:3.1 深度学习和神经网络深度学习和神经网络是近年来在计算机视觉领域中取得突破的技术。

机器视觉检测系统【深度解读】

机器视觉检测系统【深度解读】

机器视觉检测系统现代工业自动化生产中涉及到各种各样的检验、生产监视和零件识别应用,如汽车零配件批量加工的尺寸检查和自动装配的完整性检查、电子装配线的元件自动定位、IC上的字符识别等。

通常这种带有高度重复性和智能性的工作是由肉眼来完成的,但在某些特殊情况下,如对微小尺寸的精确快速测量、形状匹配以及颜色辨识等,依靠肉眼根本无法连续稳定地进行,其它物理量传感器也难以胜任。

人们开始考虑用CCD照相机抓取图像后送入计算机或专用的图像处理模块,通过数字化处理,根据像素分布和亮度、颜色等信息来进行尺寸、形状、颜色等的判别。

这种方法是把计算机处理的快速性、可重复性与肉眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉检测技术的概念。

视觉检测技术是建立在计算机视觉研究基础上的一门新兴测试技术。

与计算机视觉研究的视觉模式识别、视觉理解等内容不同,视觉检测技术重点研究的是物体的几何尺寸及物体的位置测量,如轿车白车身三维尺寸的测量、模具等三维面形的快速测量、大型工件同轴度测量以及共面性测量等,它可以广泛应用于在线测量、逆向工程等主动、实时测量过程。

视觉检测技术在国外发展很快,早在20世纪80年代,美国国家标准局就曾预计未来90%的检测任务将由视觉检测系统来完成。

因此仅在80年代,美国就有100多家公司跻身于视觉检测系统的经营市场,可见视觉检测系统确实很有发展前途。

在近几届北京国际机床展览会上已经见到国外企业展出的应用视觉检测技术研制的先进仪器,如流动式光学三坐标测量机、高速高精度数字化扫描系统、非接触式光学三坐标测量机等。

2.机器视觉检测系统构成、分类及工作原理2.1 系统构成与工作原理(1)系统构成典型的视觉系统一般包括光源、镜头、CCD照相机、图像处理单元(或图像采集卡)、图像处理软件、监视器、通讯/输入输出单元等。

(2)工作原理视觉系统的输出并非图像视频信号,而是经过运算处理之后的检测结果(如尺寸数据)。

通常,机器视觉检测就是用机器代替肉眼来做测量和判断。

机器视觉检测讲解

机器视觉检测讲解

研究背景:产品表面质量是产品质量的重要组成部分,也是产品商业价值的重要保障。

产品表面缺陷检测技术从最初的依靠人工目视检测到现在以CCD 和数字图像处理技术为代表的计算机视觉检测技术,大致经历了三个阶段,分别是传统检测技术阶段、无损检测技术阶段、计算机视觉检测技术阶段。

[]传统检测技术(1)人工目视检测法(2)频闪检测法无损检测技术(1)涡流检测法(2)红外检测法(3)漏磁检测法计算机视觉检测技术(1)激光扫描检测法(2)CCD 检测法采用荧光管等照明设备,以一定方向照射到物体表面上,使用CCD摄像机来扫描物体表面,并将获得的图像信号输入计算机,通过图像预处理、缺陷区域的边缘检测、缺陷图像二值化等图像处理后,提取图像中的表面缺陷的相关特征参数,再进行缺陷图像识别,从而判断出是否存在缺陷及缺陷的种类信息等。

优点:实时性好,精确度高,灵活性好,用途易于扩充,非接触式无损检测。

基于机器视觉的缺陷检测系统优点:集成化生产缩短产品进入市场时间改进生产流程100%质量保证实时过程监控提高产量精确检测100%检测由于经济和技术原因国内绝大多数图像处理技术公司都以代理国外产品为主,没有或者很少涉足拥有自主知识产权的机器视觉在线检测设备,对视觉技术的开发应用停留在比较低端的小系统集成上,对需要进行大数据量的实时在线检测的研究很少也很少有成功案例,但是随着国内经济发展和技术手段不断提高对产品质量检测要求就更高,对在线检测设备的需求也就更大具有巨大的市场潜力。

机器视觉图像处理技术是视觉检测的核心技术铸件常见缺陷:砂眼气孔缩孔披缝粘砂冷隔掉砂毛刺浇不足缺陷变形问题的提出:1.水渍、污迹等不属于铸件缺陷,但由于其外观形貌与缺陷非常类似, 因此易被检测系统误识为缺陷。

从目前发表的文献来看,对于伪缺陷的识别率较低。

2.不同种缺陷之间可能存在形状、纹理等方面的相似性,造成缺陷误判。

国外研究发展现状:20 世纪90 年代后,基于机器视觉检测系统的自动化功能和实用化水平得到了进一步的提高。

机器视觉检测系统

机器视觉检测系统

工作原理:机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格/ 不合格、有/ 无等,实现自动识别功能。

①工业相机与工业镜头——这部分属于成像器件,通常的视觉系统都是由一套或者多套这样的成像系统组成,如果有多路相机,可能由图像卡切换来获取图像数据,也可能由同步控制同时获取多相机通道的数据。

根据应用的需要相机可能是输出标准的单色视频(RS-170/CCIR)、复合信号(Y/C)、RGB信号,也可能是非标准的逐行扫描信号、线扫描信号、高分辨率信号等。

②光源——作为辅助成像器件,对成像质量的好坏往往能起到至关重要的作用,各种形状的LED灯、高频荧光灯、光纤卤素灯等都容易得到。

③传感器——通常以光纤开关、接近开关等的形式出现,用以判断被测对象的位置和状态,告知图像传感器进行正确的采集。

④图像采集卡——通常以插入卡的形式安装在PC中,图像采集卡的主要工作是把相机输出的图像输送给电脑主机。

它将来自相机的模拟或数字信号转换成一定格式的图像数据流,同时它可以控制相机的一些参数,比如触发信号,曝光/积分时间,快门速度等。

图像采集卡通常有不同的硬件结构以针对不同类型的相机,同时也有不同的总线形式,比如PCI、PCI64、Compact PCI,PC104,ISA等。

⑤PC平台——电脑是一个PC式视觉系统的核心,在这里完成图像数据的处理和绝大部分的控制逻辑,对于检测类型的应用,通常都需要较高频率的CPU,这样可以减少处理的时间。

同时,为了减少工业现场电磁、振动、灰尘、温度等的干扰,必须选择工业级的电脑。

⑥视觉处理软件——机器视觉软件用来完成输入的图像数据的处理,然后通过一定的运算得出结果,这个输出的结果可能是PASS/FAIL信号、坐标位置、字符串等。

视觉检测系统简介

视觉检测系统简介

选择图像采集卡要考虑以下几个方面:
(1) 视频输入的格式和数据传输率
大多数摄像机使用RS-422或者EIA644作为输出信号格式,这样图像采集卡就需要支持系 统使用的摄像机所采用的输出信号格式.从灵活性来说,如果两种格式都支持就更好.当摄像 机以较高的速度拍摄高分辨率图像后,会产生很高的输出速率,这时摄像机一般使用多路信 号同时输出,而图像采集卡必须能够支持多路输入及摄像机的输出速率.
Page:4
2.1 相机
目前工业用相机主要有CCD和CMOS两种.CMOS相机起步较晚,所摄取的画面质 量也不是很好,所以主要用在图像品质要求不是很高的产品上,比如手机附带的相机 大多数采用CMOS相机.CCD相机比CMOS相机更灵敏,在昏暗的光照下可以照出较好 的相片,因此工业上应用较为普遍的是CCD相机.CCD(Charge Coupled Device)是一 种半导体光学器件.该器件具有光电转换,信息存储和延时等功能,并且集成度高,能耗 小,故一出现就在固体图像传感,信息存储和处理等方面得到广泛应用.
一个典型的工业机器视觉系统包括:光源、镜头、 相机(包括CCD 相机和COMS相 机)、图像处理单元(或图像捕获卡)、图像处理软件、监视器、通讯 / 输入输出单元 等部分组成.各个部分之间相互配合,最终完成其檢測要求.
优点: 1.非接触式检测,对观察者和被观察者不会产生损伤. 2.具有较宽的光谱效应范围. 3.长时间稳定工作. 4.具有较高的量测精度. 5.拍照速度自动与被测物的速度相匹配,拍摄到理想的图像
相机拍摄要求与光源同步,这样能有效地拍摄高速运动物体的图像.
Page:8
2.4 图像采集卡 图像采集卡是视频信号从相机到电脑之间传输的桥梁.目前大多数相机还是模拟信号输 出,图像采集卡则将各种模拟视频信号经A/D转换成数字信号送入计算机,供计算机作处理,存 储,传输等之用.

基于机器视觉的产品尺寸自动检测系统设计

基于机器视觉的产品尺寸自动检测系统设计

基于机器视觉的产品尺寸自动检测系统设计随着工业生产的日益发展和自动化程度的不断提高,工业自动化技术也越来越成熟。

其中机器视觉技术就是其中的一种重要的技术手段。

机器视觉技术主要通过计算机视觉系统来实现对物品的自动识别、检测、计量和分类等功能。

机器视觉技术及其相关产品应用广泛,例如工业自动生产线上的产品检测、智能交通系统中的车辆识别等。

本文主要介绍如何基于机器视觉技术来设计一个产品尺寸自动检测系统。

一、机器视觉技术的原理和应用机器视觉技术是一种通过计算机对图像信息进行处理和分析,实现自动识别、检测、计量和分类等功能的技术手段。

将这种技术应用到产品尺寸自动检测系统中,可以实现自动检测各种产品的尺寸、形状、位置等信息。

机器视觉技术主要包括图像采集、图像处理和图像识别三个方面。

图像采集:利用摄像机、线阵列扫描器、CCD、CMOS等各种不同的图像数据采集设备,将物品表面图像转化为数字信号,用以进行后续的图像处理和分析。

图像处理:对采集到的图像进行数字化、滤波、增强、分割等处理,以便对目标物体进行特征提取和分析。

图像识别:通过特征提取和匹配,对进行分类或定位等操作,以实现对目标物体的自动检测、计量、分拣和分类等功能。

二、产品尺寸自动检测系统的设计方案1、系统硬件设计系统硬件主要由采集设备、采集控制器、图像处理器、分析处理器、输出设备等组成。

其中采集设备主要采用CCD或CMOS的形态,并与采集控制器相连,控制信号进入采集设备后对尺寸进行采集。

图像处理器主要对采集的信号进行滤波和增强处理,并采用数字化处理方式,使用数字信号处理芯片实现。

分析处理器主要对处理后的信号进行分析和识别,根据实际情况使用FPGA或DSP进行处理。

2、系统软件设计系统软件的设计主要包括图像获取软件、图像处理软件和图像识别软件,软件运行在嵌入式操作系统中。

图像获取软件主要运行在采集控制器中,其主要作用是控制采集设备和实时采集信号。

图像处理软件主要通过计算机进行处理,并将处理结果传输给图像识别软件进行处理,这里主要应用数字化信号处理和算法处理。

2024 机器视觉检测的目的与意义

2024      机器视觉检测的目的与意义

2024 机器视觉检测的目的与意义机器视觉检测的目的与意义是通过计算机图像处理技术,对图像或视频中的目标进行识别、检测和跟踪。

它具有如下的重要意义:1. 自动化生产:机器视觉检测可以在生产线中自动检测产品的质量,提高生产效率和降低人力成本。

2. 安全监控:机器视觉检测可以用于视频监控系统,实时识别和跟踪异常行为或不安全因素,提供安全保障和预警功能。

3. 交通管理:机器视觉检测可以用于交通监控系统,实时检测和识别交通事故、违规行为和拥堵情况,提供交通管理和调度的依据。

4. 医学影像诊断:机器视觉检测可以帮助医生分析和诊断医学影像,提供更精准的病灶检测和诊断结果,提高医疗水平和减少人为判断的误差。

5. 智能安防:机器视觉检测可以与人脸识别、行为分析等技术结合,应用于智能安防系统中,提供更智能化、精准化的安防策略和报警机制。

6. 无人驾驶:机器视觉检测是实现无人驾驶的关键技术之一,可以实时感知车辆周围的环境和障碍物,并做出相应的决策和控制,确保行驶安全。

7. 虚拟现实和增强现实:机器视觉检测可以为虚拟现实和增强现实等应用提供实时的环境感知和交互功能,提高用户体验和应用效果。

总之,机器视觉检测的目的在于利用视觉信息提取和分析技术,实现对图像或视频中目标的准确识别、检测和跟踪,具有广泛的应用前景和重要的社会意义。

8. 增强生活便利性:机器视觉检测可以应用于智能家居系统,实现对家居设备的智能控制和管理。

通过图像识别和检测技术,识别用户的行为和需求,自动调节灯光、温度、音乐等,提供更便利和舒适的生活体验。

9. 农业领域的应用:机器视觉检测可以用于农业领域,实现对农作物的生长状态、病虫害情况以及果实成熟度的识别和监测。

这样的应用可以帮助农民提高产量、降低成本,同时保证农产品的质量和安全。

10. 垃圾分类与回收:机器视觉检测可以通过对垃圾进行图像分析和分类,实现自动化的垃圾分类和回收。

这有助于减少环境污染和资源浪费,提升垃圾处理的效率和可持续性发展。

机器视觉检测技术简介及特点

机器视觉检测技术简介及特点

机器视觉检测技术简介及特点机器视觉印刷质量检测是一种模拟人工检测方法和推断规律,但同时又具有更高检测精度和更好全都性的自动化检测方法。

一、机器视觉检测的特点1、机器视觉检测技术简介机器视觉,简而言之就是利用机器代替人工进行目标识别、推断与测量。

它是现代光学、电子学、软件工程、信号处理与系统掌握技术等多学科的交叉与融合。

光学采集设备:由工业摄像机、光源及配套图像采集卡等硬件组成。

主要作用是猎取通过采集位置的标签的数字图像,为后续的分析与处理供应素材,相当于人工检测的眼睛。

推断识别:由工业掌握计算机及植入的图像处理与分析软件、掌握软件构成。

是视觉检测的核心部分,最终形成缺陷的推断并能向后续执行机构发出指令。

自动掌握:最终将检测系统的结果变换成详细操作的硬件,比如常见的声光报警器、废品剔除装置或作标记的装置(如喷墨机、贴标机等)。

除此之外,印刷检测设备还必需有一套稳定的机械传输掌握平台,对于安装在印刷机上的在线检测系统而言,传输平台就是印刷机而对于离线检测系统,则需要单独配置传输平台,如复卷机、单张传输平台等。

2、印刷缺陷检测原理印刷缺陷检测主要依靠图像比对的方法进行。

如图2所示,上部图像是通过相机采集到的实时图像,而下部图像为事先采集并存储下来的标准图像。

检测时,首先将两幅图像通过定位等方法使其重合,然后进行逐点(逐像素)对比颜色(或亮度差异)。

当他们之间的差异超出事先设定的范围时即判为缺陷。

3、机器视觉检测特点一套高品质的机器视觉检测系统,必需具备以下几个必备条件:1)高品质的成像系统成像系统被称为视觉检测设备的“眼睛”,因此“眼睛”识别力量的好坏是评价成像系统的最关键指标。

通常,成像系统的评价指标主要体现在三个方面:能否发觉存在的缺陷基于图像方法进行的检测,所能够依据的最原始也是唯一的资料即是所采到的图像上的颜色(或者亮度)变化,除此之外,没有其他资料可供参考。

所以,一个高品质的成像系统首先应当是一个能充分表现被检测物表面颜色变化的成像系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机器视觉检测系统内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.现代工业自动化生产中涉及到各种各样的检验、生产监视和零件识别应用,如汽车零配件批量加工的尺寸检查和自动装配的完整性检查、电子装配线的元件自动定位、IC上的字符识别等。

通常这种带有高度重复性和智能性的工作是由肉眼来完成的,但在某些特殊情况下,如对微小尺寸的精确快速测量、形状匹配以及颜色辨识等,依靠肉眼根本无法连续稳定地进行,其它物理量传感器也难以胜任。

人们开始考虑用CCD照相机抓取图像后送入计算机或专用的图像处理模块,通过数字化处理,根据像素分布和亮度、颜色等信息来进行尺寸、形状、颜色等的判别。

这种方法是把计算机处理的快速性、可重复性与肉眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉检测技术的概念。

视觉检测技术是建立在计算机视觉研究基础上的一门新兴测试技术。

与计算机视觉研究的视觉模式识别、视觉理解等内容不同,视觉检测技术重点研究的是物体的几何尺寸及物体的位置测量,如轿车白车身三维尺寸的测量、模具等三维面形的快速测量、大型工件同轴度测量以及共面性测量等,它可以广泛应用于在线测量、逆向工程等主动、实时测量过程。

视觉检测技术在国外发展很快,早在20世纪80年代,美国国家标准局就曾预计未来90%的检测任务将由视觉检测系统来完成。

因此仅在80年代,美国就有100多家公司跻身于视觉检测系统的经营市场,可见视觉检测系统确实很有发展前途。

在近几届北京国际机床展览会上已经见到国外企业展出的应用视觉检测技术研制的先进仪器,如流动式光学三坐标测量机、高速高精度数字化扫描系统、非接触式光学三坐标测量机等。

2.机器视觉检测系统构成、分类及工作原理2.1 系统构成与工作原理(1)系统构成典型的视觉系统一般包括光源、镜头、CCD照相机、图像处理单元(或图像采集卡)、图像处理软件、监视器、通讯/输入输出单元等。

(2)工作原理视觉系统的输出并非图像视频信号,而是经过运算处理之后的检测结果(如尺寸数据)。

通常,机器视觉检测就是用机器代替肉眼来做测量和判断。

首先采用CCD照相机将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号。

图像系统对这些信号进行各种运算来抽取目标的特征,如:面积、长度、数量、位置等。

后,根据预设的容许度和其他条件输出结果,如:尺寸、角度、偏移量、个数、合格/不合格、有/无等。

上位机(如PC和PLC)实时获得检测结果后,指挥运动系统或I/O系统执行相应的控制动作(如定位和分类)。

2.2 系统分类从视觉系统的运行环境分类,可分为PC—BASED系统和PLC—BASED系统。

基于PC的系统利用了其开放性、高度的编程灵活性和良好的Windows界面,同时系统总体成本较低。

PC—Based系统内含高性能图像采集卡,一般可接多个镜头,并提供库函数支持。

目前世界一流的PC—Based视觉系统生产厂商美国Data Translation公司,其MACH 系列(如DT3155)和MV系列PC I工业视觉卡已经成为业界标准;配套软件方面,32位SDK for Windows95/98/NT 提供C/C++编程用DLL,DT Active Open Layer可视化控件提供VB和VC++下的图形化编程环境,而DT Vision Foundry则是Windows下面向对象的机器视觉组态软件,用户可用它快速开发复杂高级的应用。

类似的还有美国NI公司,该公司将机器视觉和运动控制功能与其被广泛应用的Labview虚拟仪器软件相结合,效果显著。

与美国公司大力发展PC结构相比,日本和德国公司在PLC—Based系统方面走在前列。

在PLC系统中,视觉的作用更像一个智能化的传感器,图像处理单元独立于系统,通过串行总线和I/O与PLC交换数据。

日本松下公司的Image Checker M100/M200系统可说是这方面的代表。

该系统利用高速专用ASIC进行256级灰度检测,带逻辑条件和数学运算功能。

系统软件固化在图像处理器中,通过类似于游戏键盘的简单装置对显示在监视器中的菜单进行配置,开发周期短,系统可*性高,其新一代产品A110/A210体现了集成化、小型化、高速化和低成本的特点。

欧姆龙、Keyence等公司也有类似的系统,但在技术性能上相对简单,更适用于进行有无判别或形状匹配等。

而德国Siemens公司的智能化PROFIBUS工业视觉系统SIMATICVS 710提供了一体化的、分布式的高档图像处理方案,它将处理器、CCD、I/O集成在一个机箱内,提供PROFIBUS的联网方式或集成的I/O和RS232接口,更重要的是通过PCWINDOWS下的Pro Vision软件进行组态。

VS 710第一次将PC的灵活性、PLC的可靠性、分布式网络技术和一体化设计结合在一起,使得西门子在PC和PLC体系之间找到了完美的平衡。

3.机器视觉检测系统的典型应用领域及市场现状现代视觉理论和技术的发展,不仅在于模拟人眼能完成的功能,更重要的是它能完成人眼所不能胜任的工作。

在当今电子、光学和计算机等技术不断成熟和完善的基础上,视觉技术这个新兴技术门类也得到迅速发展。

机器视觉的特点是自动化、客观性、非接触和高精度。

与一般意义上的图像处理系统相比,机器视觉系统强调的是精度、速度以及工业现场环境下的可靠性。

机器视觉特别适用于大批量生产过程中的质量检查,如:零件装配完整性、装配尺寸精度、零件加工精度、位置/角度测量、零件识别、特性/字符识别等,主要应用于包括汽车、制药、电子与电气、制造、包装、食品、饮料、医学等领域,用于对汽车仪表盘加工精度的检查、高速贴片机上对电子元件的快速定位、对管脚数目的检查、IC表面印字符的辨识、胶囊生产中对胶囊壁厚和外观缺陷的检查、轴承生产中对滚珠数量和破损情况的检查、食品包装上对生产日期的辨识、对标签贴放位置的检查以及医疗方面对细胞数量和性质的判断等。

由于机器视觉系统可以快速获取大量信息,易于自动处理,也易于与设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。

机器视觉系统的特点是提高生产的柔性和自动化程度,在一些不适合人工作业的危险工作环境或人工视觉难以满足要求的场合,采用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量不仅效率低而且精度不高,而用机器视觉检测方法可以大大提高生产效率和生产的自动化程度;此外,机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。

国际上视觉系统的应用方兴未艾,仅1998年的市场规模已达46亿美元,而在国内,工业视觉系统尚处于概念导人期,各行业的领先企业在解决了生产自动化的问题以后,才开始将目光转向视觉测量自动化。

4.机器视觉检测系统在检测方面的应用机器视觉系统在工业在线检测的各个领域得到广泛应用。

(1)大型工件平行度、垂直度测量采用激光扫描与CCD探测系统的大型工件平行度、垂直度测量仪,它是以稳定的准直激光束为测量基线,配以回转轴系,旋转五角标棱镜扫出互相平行或垂直的基准平面,并将其与被测大型工件的各面进行比较。

在加工或安装大型工件时,可用该认错器测量面间平行度及垂直度。

(2)热轧螺纹钢几何参数在线动态检测系统该系统以频闪光作为照明光源,利用面阵和线阵CCD作为螺纹钢外形轮廓尺寸的探测器件,实现热轧螺纹钢几何参数在线测量的动态检测。

(3)轴承状态实时监控采用视觉技术实时监控轴承的负载和温度变化,消除过载和过热的危险。

该技术将传统的通过测量滚珠表面来保证加工质量和安全操作的被动式测量变为主动监控。

(4)基于机器视觉的仪表板总成智能集成测试系统汽车仪表板总成上安装有速度里程表、水温表、汽油表、电流表、信号报警灯等,其生产批量大,出厂前需要进行一次质量终检。

检测项目包括速度表等五个仪表指针的指示误差,24个信号报警灯和若干照明灯是否损坏或漏装等。

通常采用人工目测方法检查,但误差大、可靠性差,不能满足自动化生产的需要。

机器视觉检测技术的智能集成测试系统改变了这种现状,实现了对仪表板总成智能化、全自动、高精度、快速度的质量检测,克服了人工检测所造成的各种误差,大大提高了检测的效率和可靠性。

(5)金属板表面自动探伤系统在对表面质量要求很高的特殊大型金属板进行检测时,原始的检测方法是采用人工目视或用百分表加探针进行检测,该方法不仅易受主观因素的影响,而且可能给被测表面带来新的划伤。

金属板表面自动探伤系统利用机器视觉检测技术对金属表面缺陷进行自动检查,可在生产过程中高速、准确地进行检测,同时由于该系统采用非接触式测量,避免了产生新划伤的可能。

该系统采用激光器作为光源,通过针孔滤波器滤除激光束周围的杂散光,采用扩束镜和准直镜使激光束变为平行光并以45度的入射角均匀照射在被测金属板表面上。

金属板放在检验台上,检验台可在x、y、z三个方向上移动,摄像机采用TCD142D型2048线阵CCD,镜头采用普通照相机镜头,CCD接口电路采用单片机系统。

PC主机主要完成图像预处理及缺陷的分类或划痕的深度运算等,并可将检测到的缺陷或划痕图像在显示器上显示。

CCD接口电路和PC机之间通过RS.232口进行双向通讯,构成人机交互式数据采集与处理。

该系统主要利用线阵CCD的自扫描特性与被检钢板在x方向的移动相结合,提取金属板表面的三维图像信息。

(6)汽车车身轮廓尺寸精度检测系统英国ROVER汽车公司800系列汽车车身轮廓尺寸精度的100%在线检测,是机器视觉系统用于l3l工业检测中的一个典型实例。

该系统由62个测量单元组成,每个测量单元包括一台激光器和一个CCD摄像机,用以检测车身外壳上288个测量点;汽车车身置于测量框架下,通过软件校准车身的精确位置。

每个激光器、摄像机单元均在离线状态下经过校准,同时还有一个在离线状态下用三坐标测量机校准过的校准装置用以对摄像机进行在线校准;检测系统以每40秒检测一个车身的速度,可检测三种类型的车身;系统将检测结果与从CAD模型中提取出来的合格尺寸相比较,测量精度为±0.1mm。

ROVER公司的质量检测人员用该系统来判别关键部分的尺寸一致性,如车身整体外型、车门、玻璃窗口等。

检测实践证明,该系统可成功进行800系列汽车车身轮廓尺寸精度的在线检测,并将用于检测ROVER公司其它系列的车身轮廓尺寸精度。

(7)奥迪白车身表面质量检测系统奥迪公司近来研制了一种能够对白车身表面缺陷进行全自动检测的系统,取名为“智能控制白车身表面质量检测系统”。

相关文档
最新文档