第三章核磁共振氢谱4自旋系统与解析
常见的自旋系统

例:C10H12O的核磁共振氢谱如下,推导其结构。
S a t A p r 2 2 0 9 :4 3 :0 9 2 0 0 0 : (u n title d ) W 1: 1H A x is = p p m S c a le = 4 1 .6 7 H z / c m
重氢交换法
D2O 交换: NaOD交换: 例如 -NH2, -COOH, -SH… 可以与羰基α-位氢交换
OH
加NaOD OH 峰消失
COOH O (B)
加NaOD 峰消失
位移试剂
O O
(
O
)
3
Eu
(
O
)
3
Pr
顺磁性金属络合物 使谱线低场移动
抗磁性金属络合物 使谱线高场移动
AB四重峰进一步被X裂分为8条峰。 根据峰形的相对强度和4个相等的裂距,找出两 个AB四重峰,如 1,3,5,7和2,4,6,8峰。
JAB ≈ [1-3]=[5-7]=[2-4]=[6-8] JAX ≈ [1-2]=[3-4] JBX ≈ [5-6]=[7-8]
若ΔvAB/ J 值太小,需进行较复杂的计算。
常见的自旋系统
核磁共振氢谱谱图的分类 (一级谱图 二级谱图)
自旋系统的分类与命名 常见的自旋系统
一级谱图
•相互偶合核的化学位移差值△v>>J(6J)
•裂分峰数目符合(n+1)或(2nI+1)规律。 •裂分峰强度符合二项展开式的系数。 •裂距等于偶合常数。
二级谱图
•相互偶合核的化学位移差值△v<6J •裂分峰数目不符合(n+1)规则。 •裂分峰强度不再是(a十b)n展开项的系数。 •裂分峰的间隔并不相等,化学位移δ值与偶合常数J 往往不能从图上直接得到,需通过计算求得。
核磁共振氢谱的解析要点

2.2核磁共振氢谱的解析1、自旋偶合系统及分类(1)自旋-自旋偶合机理自旋核与自旋核之间的相互作用称自旋-自旋偶合(spin-spin coupling),简称自旋偶合。
下图是1,1,2-三氯乙烷的1HNMR谱。
双峰和三峰的出现是由于相邻的氢核在外加磁场B中产生不同的局部磁场且相互影响造成的。
CHCl2中有两种取向,与B同向和与B反向,粗略认为二者几率相等。
同向取向使CH2Cl的氢感受到外磁场强度稍稍增强,其共振吸收稍向低场(高频)位移,反向取向使CH2Cl的氢感受到的外磁场强度稍稍降低,其共振吸收稍向高场(低频)端位移,故CH使CH2裂分为双峰。
这种自旋-自旋偶合机理,认为是空间磁性传递的,即偶极-偶极相互作用。
对自旋-自旋偶合的另一种解释,认为是接触机理。
即自旋核之间的相互偶合是通过核之间成键电子对传递的。
根据Pauling原理(成键电子类的自旋方向相反)和Hund规则(同一原子对成键电子应自旋平行)及对应的电子自旋取向与核的自旋取向相同时,势能稍有降低,以Ha -C-C-Hb为例分析。
无偶合时Hb有一种跃迁方式,所吸收的能量为,在Ha 的偶合作用下,Hb有两种跃迁方式,对应的能量分别为E1,E2。
在Hb 的偶合作用下,Ha也被裂分为双峰,分别出现在处,峰间距等于Jab,J为偶合常数。
所以自旋-自旋偶合是相互的,偶合的结果产生谱线增多,即自旋裂分。
偶合常数(J)是推导结构的又一重要参数。
在1HNMR谱中,化学位移(δ)提供不同化学环境的氢。
积分高度(h)代表峰面积,其简化为各组数目之比。
裂分峰的数目和J值可判断相互偶合的氢核数目及基团的连接方式。
(2)n+1规律某组环境完全相等的n个核(I=1/2),在B中共有(n+1)种取向,使与其发生偶合的核裂分为(n+1)条峰。
这就是(n+1)规律,概括如下:某组环境相同的氢若与n个环境相同的氢发生偶合,则被裂分为(n +1)条峰。
某组环境相同的氢,若分别与n个和m个环境不同的氢发生偶合,且J值不等,则被裂分为(n+1)(m+1)条峰。
核磁共振氢谱解析ppt课件

1. 核磁共振的基本原理 2. 核磁共振仪与实验方法 3. 氢的化学位移 4. 各类质子的化学位移 5. 自旋偶合和自旋裂分 6. 自旋系统及图谱分类 7. 核磁共振氢谱的解析
前言
过去50年,波谱学已全然改变了化学家、生物学家和 生物医学家的日常工作,波谱技术成为探究大自然中 分子内部秘密的最可靠、最有效的手段。NMR是其中 应用最广泛研究分子性质的最通用的技术:从分子的 三维结构到分子动力学、化学平衡、化学反应性和超 分子集体、有机化学的各个领域。 1945年 Purcell(哈佛大学) 和 Bloch(斯坦福大学) 发现核磁共振现象,他们获得1952年Nobel物理奖 1951年 Arnold 发现乙醇的NMR信号,及与结构的关 系 1953年 Varian公司试制了第一台NMR仪器
• 驰豫时间与谱线宽度的关系 :即谱线宽度与驰豫 时间成反比。
• 饱和:高能级的核不能回到低能级,则NMR信号 消失的现象。
核磁共振仪
分类:按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分:40 ,60 ,90 ,100 , 200 ,500,--,800
MHZ(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分:连续波NMR谱仪(CW-NMR) 脉冲傅立叶变换NMR谱仪(FT-NMR)
频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 实际上多用后者。 各种核的共振条件不同,如:在1.4092特斯拉的磁场,各 种核的共振频率为:
1H
60.000 MHZ
13C
15.086 MHZ
19F
56.444 MHZ
31P
24.288 MHZ
对于1H 核,不同的频率对应的磁场强度:
核磁共振氢谱解析

7
扫频:固定外加磁场 强度H0,通过逐渐改 变电磁辐射频率来检 测共振信号。
扫场:固定电磁辐射 频率,通过逐渐改变 磁场强度来检测共振 信号。
核磁共振所需辐射频率:=(2μ/h)H0
8
9
屏蔽效应
核外电子在与外加磁场垂直的平面上绕核旋转同时将产生一 个与外加磁场相对抗的第二磁场。结果对氢核来说,等于增 加了一个免受外加磁场影响的防御措施。这种作用叫做电子 的屏蔽效应。
R
O C 2.2 CH3
AR
O O 2.1 CH3
13
3)化学位移的影响因素 (1)电负性 随着相连基团电负性的增加氢核外围电子云密度不断降低, 故化学位移值(d )不断增大
化 合 物 氢核的化学位移
(CH3)4Si
(CH3)3-Si(CD2)2CO2-Na+ CH3I CH3Br CH3Cl CH3F CH3NO2
0.00
0.00 2.2 2.6 3.1 4.3 4.3
CH2Cl2
CHCl3
5.5
7.3
14
3)化学位移的影响因素 (2)磁各向异性
烯氢:4.5~5.7 醛氢:9.4~10.0 6.0-9.0
RH
~1
1.8~3.0
15
单键的磁各向异性
H C C H H
C C C H H
C C C C H
甲基 0.85~0.95
21
质子化学位移的经验计算
取代基对苯环芳氢的影响(d=7.27+Ss)
取代基 供电基团 -OH -OCH3 -CH3 吸电基团 -COCH3 +0.64 +0.09 +0.30 -0.50 -0.43 -0.17 -0.14 -0.09 -0.09 -0.40 -0.37 -0.18 o m p
第三讲 核磁共振氢谱

关于自旋-自旋偶合及偶合常数
(1)偶合体系中化学位移值的读取;
d B标准-B样品 x 106
B标准
d
样品-标准 标准
x 106
(2)偶合常数的读取;
(3)数根图的熟练运用。
54
§3.5 简化1H NMR的谱的实验方法
重水交换法:与氧、氮、硫等相连的氢是 活泼氢,在溶液中它们可以进行不断的交换。如 果样品分子中含有这些基团,在作完谱图后滴加 几滴重水,振荡,然后重新作图,此时活泼氢已 被氘取代,相应的谱峰消失,由此可以完全确定 它们的存在。
N 1.03
O H 2.55 H H
H 2.93
1.80
H
H
39
9.87 2.96
OH
HH O
H H
N
H
H H 8.02
2.88
6.69 H
H 5.23 H
H
H
5.74
H 5.28 H
3.72
H
H
1.25
O
HH
O
2.05
4.12 H
O
HH
3.48
O H
2.35 N
HH H
1.26
2.53 H N
HH
19
3、相邻键的磁各向异性 (1)叁键:
20
(2)双键:
21
(3)环状共轭体系的环电流效应 苯环:环电流产生的磁力线方向在苯环上、
下方与外磁场磁力线方向相反,但在苯环侧面 (苯环的氢正处于苯环侧面),二者的方向是相同 的。即环电流增强了外磁场,氢核被去屏蔽, 共振谱峰位置移向低场。
22
不仅是苯,所有具有4n+2个离域p电子的
第3章核磁共振氢谱

自旋角动量: P h I(I1)
2
核磁矩: •P
I:自旋量子数; h:普朗克常数; γ:磁旋比;
4
第一节 基本原理
➢ 自旋量子数(I)不为零的核都具有磁矩,
➢ 原子的自旋情况可以用(I)表征
自旋量子数与原子核的质量数及质子数关系
质量数(a)原子序数(Z)自旋量子(I) 例子
偶数
偶数
0
12C, 16O, 32S
H2,2个氢,1个直立氢Ha,1个平展氢He。 H3,1个直立氢Ha。-OH在平展位。 H4,Ha还是He?
41
第二节 核磁共振氢谱的主要参数
例题 据化合物C10H10O的氢谱,推测其结构 Ω=6,可能有苯环
3 1
6
J=18Hz
HO CC
H
C CH3
42
第二节 核磁共振氢谱的主要参数
3. 远程偶合(long range coupling) (4J或J远)
➢ 自旋系统:分子中相 互偶合的核构成一个 自旋系统。
OCH 3
➢ 系统内部的核互相偶 合,但不和系统外的 任何核相互作用。
➢ 系统与系统之间是隔
离的.
O
O
CH3
51
第二节 核磁共振氢谱的主要参数
自旋系统表示方法
互相偶合核的Δ较大时(Δυ≥J),用A,M,X表示, 字母右下标数字表示磁全同质子的数目。
44
第二节 核磁共振氢谱的主要参数
• 磁等价
• 分子中一组化学等价核(化学位移相同)对组外其它 任何一个核的偶合相等,则这组核称为磁等价核。
H CH H
化学等价 磁等价
H HCF
F
H H2 H HCC CH
HH
核磁共振氢谱

核磁共振光谱仪的简单构造示意图
实现核磁共振的方法,只有以下两种: (1)B0不变,改变v 方法是将样品置于强度固定的外加磁场中,并逐步改 变照射用电磁辐射的频率,直至引起共振为止,这种方 法叫扫频(frequency sweep)。 (2)v不变,改变B0 方法是将样品用固定电磁辐射进行照射,并缓缓改变 外加磁场的强度,达到引起共振为止。这种方法叫扫场 (field sweep)。 通常,在实验条件下实现NMR多用2法。
h 2
m:磁量子数(magnetic quantum number), m = I, I-1, I-2,…-I
对于I = 1/2的核,如1H, 13C,m = 1/2, -1/2
自旋运动的原子核与外加磁场的作用能量:
E =- B0
h E Z B0 m B0 大小: 2 1 h 1 h E1 B0 E B 1 0 I = 1/2时, 2 2 2 2 2 2
能级差:
E E
1 2
E1
2
h B0 2
h B0 2
任意两个能级的能量差:
E m
量子力学选律: m = 1的跃迁是许可跃迁 任意相邻两个能级的能量差:
h E B0 2
核磁共振现象:Larmor(拉莫)进动
当原子核的核磁矩处于外加磁场B0 中,由于核自身 的旋转,而外加磁场又力求它取向于磁场方向,在这两 种力的作用下,核会在自旋的同时绕外磁场的方向进行 回旋,这种运动称为Larmor (拉莫)进动。 近似于陀 螺在重力场中的进动 两种取向不完全与外磁场平行,相互作用, 产生进动 (拉莫进动)进动频率 ; 角速度; = 2 = B0 磁旋比; B0外磁场强度; 两种进动取向不同的氢核之间的能级差:E= B0 (磁矩)
核磁共振氢谱

ν =
γ H0
2π
γ — 磁旋比(物质的特征常数)
射频频率与磁场H0有正比关系, 即磁场强度愈高,发生核磁共 振所需的射频频率也愈高。
E = hν = γ
h 2π
H0
例:60MHz的NMR谱仪,其磁铁的磁场 强度多大?
1
H 核:
自旋取向数 = 2×1/2 + 1 = 2
如果把H核放在外磁场中,由于磁场间的相互作用, 即:H核在外场有两个自旋方向相反的取向。 氢核的磁场方向会发生变化:
H' H'
一 致
H0
相 反
每一种取向都对映一个能级状态,有一个ms 。如: 1H核:标记ms为-1/2 和 +1/2
高能态
ν= 数)
Proton NMR, Sample #1
Analysis:
C3H6O2 Help with Analysis
Proton NMR, Sample #2
Analysis:
C5H10O Help with Analysis
Advanced Nuclear Magnetic Resonance Spectroscopy
1,氢的类型:通过化学位移来判断。例如,在氢谱中,可以制定甲基氢、芳 氢、烯氢、醛氢等等。
2,氢的化学环境:通过偶尔常数和自旋-自旋裂分来判断。例如,在氢谱中 可以判别甲基是与CH2相连,还是和CH相连。 3,氢的相对数量:可以通过峰面积或积分曲线显示各组质子间的相对数量。
4,氢的相对距离:通过核的Overhause效应可以测得质子在空间的相对距离。
1945年12月,珀塞尔和他的小组在石蜡样品中观察到质子的 核磁共振吸收信号,1946年1月,布洛赫和他的小组在水样品 中也观察到质子的核感应信号。他们两人用的方法稍有不同, 几乎同时在凝聚态物质中发现了核磁共振。他们发展了斯特恩 开创的分子束方法和拉比的分子束磁共振方法,精确地测定了 核磁矩。以后许多物理学家进入了这个领域,形成了一门新兴 实验技术,几年内便取得了丰硕的成果
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、 自旋系统的分类与命名 三、 常见的自旋系统
一、 核磁共振氢谱图的分类 一级谱图
相互耦合的两组质子的化学位移之差远大于其耦合场数
裂分峰数目符合(n+1)或(2nI+1)规律。
裂分峰强度符合二项展开式的系数。
裂距等于耦合常数。
二级谱图
一级谱的特征在二级谱中不表现出来。 (1)裂分峰数目超出(n+1)规律 (2)裂分峰的相对强度关系复杂 (3)化学位移和耦合常数不能直接读出,需计算
AB
AB
A2
v3 v4
AB 系统
D JAB
[1-2] =[3-4]=JAB [1-3]=[2-4]=D
Δv AB=
D2
J
2 AB
v中心
=
1[
2
v
1+
v
4]
=
1 2
[
v
2+
v 3]
vA
=
v中心 +
2
(v
A
&
2
常见的AB系统
HA
HB
HA
HA
HB
HB
HA HB
第三章 核磁共振氢谱
3.1 核磁共振的基本原理 3.2 核磁共振仪 3.3 化学位移 3.4 影响化学位移的因素 3.5 各类质子的化学位移 3.6 自旋偶合和自旋裂分 3.7 偶合常数与分子结构的关系 3.8 常见的自旋系统 3.9 简化1H NMR谱的实验方法 3.10 核磁共振氢谱解析及应用
3.8 常见的自旋系统
A、M、X表示
Δν/J 值较小时,用连续的大写英文字母
A、B、C表示
A、M、X,以及A、B、C之间 化学不等价,磁不等价
A与A 化学等价,磁不等价。 A2或X2 表示各自为两个磁全同的核。
三、二旋系统
AX, AB(>C=CH2,X-CH=CH-Y,C*-CH2-等), A2
AX
v1 v2
由上式计算得 δA=7.45ppm,δB=6.96ppm, JAB=7.8Hz
AMX 系统:
AMX系统,12条峰
A (dd 1H JAM JAX) M (dd 1H JAM JMX) X (dd 1H JAX JMX) 在A,M,X各4条谱线中,[1-2]=[3-4] 等于一种偶合常数,[1-3]=[2-4]等于另 一种偶合常数,化学位移值约等于4条谱 线的中心。
NO2
随着ΔvAB/J 值的降低,二者化
学位移接近,综合峰强度增大。
AB2系统的化学位移和偶合常数 由下式求出:
vA = v3
vB
=
1( 2
v5+
v7)
JAB
=
1 {[1-4]
3
+
[6-8]}
例: 2,6-二甲基吡啶的1HNMR谱(60MHz)如下:
v1 ~ v8 依次为456, 449.5, 447, 440.5, 421.5,420.5, 414, 412.5Hz
AB2 系统
AB2 系 统 比 较 复 杂 , 最 多 时 出 现 9 条 峰,其中A 4条峰, 1H; B 4条峰,2H; 1条综合峰。
常见的AB2系统如下
(注意:虽结构不对称,但值相近)
A
B
B
H3C N CH3
A
B
B
Y
Y
X
Cl
B
NO2
B
A
Cl
NO2 OH
B
A
COOH
B
CH3 CH3
B
B A
二、 自旋系统的分类与命名
自旋系统: 相互偶合的核构成一自系统,
不与系统外的核偶合。
一个分子可由一个或一个以上的自旋系统组成。
如 C6H5CH2CH2OCOCH=CH2 由三个自旋系统组成
自旋系统的分类
二旋系统 >C=CH2, X-CH=CH-Y, C*-CH2- 等。
三旋系统 X-CH=CH2 , -CH2-CH< , 三取代苯,二取代吡啶等。
四旋系统 X-CH2-CH2-Y ,二取代苯, 一取代吡啶等。
五旋系统 CH3-CH2-X , 一取代苯等。
自旋系统的命名
AX系统, AMX系统, AX2系统, A2X2系统 AB系统, AB2系统, ABX系统, ABC系统 A2B2系统, AAˊBBˊ系统, AAˊBBˊC系统
Δν/J 值较大时,用不连续的大写英文字母
理。AB四重峰进一步被X裂分为8条峰。
根据峰形的相对强度和4个相等的裂距,找出两 个AB四重峰,如 1,3,5,7和2,4,6,8峰。
JAB ≈ [1-3]=[5-7]=[2-4]=[6-8] JAX ≈ [1-2]=[3-4] JBX ≈ [5-6]=[7-8] 若ΔvAB/ J 值太小,需进行较复杂的计算。
例:解释α-呋喃甲酸甲酯的1HNMR谱.
JAM=3.5, JMX=1.8, JAX= ~1Hz
ABX 系统
常见的二级谱。 ABX系统最多出现14条峰,AB部分8条峰, X部分4条峰,两条综合峰。
AB部分的8条峰相互交错,不易归属, 裂距不等于偶合常数。
ΔvAB/ J 值不是太小时,可近似作为一级谱处
ABC系统
随着ΔvAB/J 值的降低,AMX→ABX → ABC
ABC系统更加复杂,最多出现15条峰, 峰的相对强度差别大,且相互交错,难 以解析
提高仪器的磁场强度,ΔvAB /J 值增
大,使二级谱转化为一级谱 ABC → ABX →AMX
例如:60兆赫兹的谱图中属于ABC系统,但 220兆赫兹的谱图可用AMX系统处理
例如:β-氯乙醇
Fri Apr 21 18:54:06 2000: (untitled) W1: 1H Axis = ppm Scale = 4.59 Hz/cm
4.150
4.100
4.050
4.000
3.950
3.900
3.850
3.800
3.750
3.700
五、四旋系统
4个质子间的相互偶合, 常见的有 AX3 A2X2 A2B2 AA'BB'
AX3 A2X2 一级谱 A2B2, AA'BB'二级谱
例如:CH3CHO, CH3CHX-, -OCH2CH2CO- 等 一级谱处理。
A2B2系统
A2B2系统理论上18条峰,常见14条峰,A、B各自为7
条峰,峰形对称。vA = v5,v B = v5ˊ,JAB = 1/2[1-6]
四、三旋系统
A3 AX2 AB2 AMX ABX ABC系统 (X-CH=CH2 ,-CH2-CH< ,三取代苯,二取代吡啶等)
A3 系统:A3 (s 3H), CH3O-, CH3CO-, CH3-Ar…
AX2 系统: A (t 1H) X2 (d 2H)
例 CHCl2CH2Cl的1HNMR谱如下,AX2 系统