影响光伏发电量的因素
影响光伏电站发电量的10个因素

• • • • • • • • • •
• •
•
1960年 Hoffman电子实现单晶硅电池效率达到14%; 1963年第一个商业通讯卫星Telstar发射,所用的太阳电池功率14W; 1963 年Sharp公司成功生产光伏电池组件;日本在一个灯塔安装242W光伏电池列阵,在 当时是世界最大的光伏电池列阵; 1964年宇宙飞船“光轮发射”,安装470W的光伏列阵; 1965 年Peter Olaser和A.D.Little提出卫星太阳能电站构思; 196年6带有1000W光伏列阵大轨道天文观察站发射; 1972年法国人在尼日尔一乡村学校安装一个硫化镉光伏系统,用于教育电视供电 1973年美国特拉华大学建成世界第一个光伏住宅; 1974年日本推出光伏发电的“阳光计划”;Tyco实验室生长第一块EFG晶体硅带,25mm 宽,457mm长(EFG:Edge defined Film Fed—Growth,定边喂膜生长); 1977年世界光伏电池超过500kW;D.E.Carlson和c.R.Wronski在w.E.Spear的 1975年控制p-n结的工作基础上制成世界上第一个非晶硅(a—Si)太阳电池; 1979年世界太阳电池安装总量达到1MW; 1980年 ARCO太阳能公司是世界上第一个年产量达到1MW光伏电池生产厂家;三洋电气 公司利用非晶硅电池率先制成手持式袖珍计算器,接着完成了a—si组件批量生产并进行了户 外测试; 1981年名为Solar Challenger的光伏动力飞机飞行成功;
我国的太阳辐射情况
四类太阳辐射地区
太阳光谱
大气质量
• •
Z:太阳天顶角 Z=48.2°,AM1.5
讨论:
1:不同的太阳电池的频率响应是不一样的, 通常在300—1200nm之间。 2:近红外线和近紫外线是可以发电的。 3:太阳常数:在地球大气层外,平均日地距 离处垂直太阳光单位面积上的太阳辐射强 度,用AM0表示。 1367W±7W/m2 25℃,1000W/m2, AM1.5为太阳电池的测试 条件。
光伏电站理论发电量计算及影响因素

光伏电站理论发电量计算及影响因素一、光伏电站理论发电量计算1、太阳电池效率η 的计算在太阳电池受到光照时,输出电功率和入射光功率之比就称为太阳电池的效率,也称为光电转换效率。
其中,At 为太阳电池总面积(包括栅线图形面积)。
考虑到栅线并不产生光电,所以可以把At 换成有效面积Aa (也称为活性面积),即扣除了栅线图形面积后的面积,同时计算得到的转换效率要高一些。
Pin 为单位面积的入射光功率。
实际测量时是在标准条件下得到的:Pin 取标准光强:AM 1.5 条件,即在25℃下,Pin= 1000W / m 2。
2、光伏系统综合效率(PR)η总=η1×η2×η3光伏阵列效率η1:是光伏阵列在1000 W/m2 太阳辐射强度下实际的直流输出功率与标称功率之比。
光伏阵列在能量转换过程中的损失包括:灰尘/污渍,组件功率衰减,组件串联失配损失、温升损失、方阵相互遮挡损失、反射损失、光谱偏离损失、最大功率点跟踪精度及直流线路损失等,目前取效率86%计算。
逆变器转换效率η2:是逆变器输出的交流电功率与直流输入功率之比,取逆变器效率97%计算。
交流并网效率η3:是从逆变器输出,至交流配电柜,再至用户配电室变压器10 KV 高压端,主要是升压变压器和交流线缆损失,按96%计算。
3、理论发电量计算太阳电池的名牌功率是在标准测试条件下测得的,也就是说在入射功率为1000W/m2的光照条件下,1000Wp 太阳电池1 小时才能发一度电。
而实际上,同一天不同的时间光照条件不同,因此不能用系统的容量乘以日照时间来预测发电量。
计算日发电量时,近似计算:理论日发电量=系统峰值功率(kw)x等效日照小时数(h)x系统效率等效峰值日照小时数h/d=(日太阳辐照量kW.h/m2/d)/1kW/m2(日照时数:辐射强度≥120W/m2的时间长度)二、影响发电量的因素光伏电站的发电量由三个因素决定:装机容量、峰值小时数、系统效率。
光伏电站理论发电量计算及影响因素

光伏电站理论发电量计算及影响因素一、光伏电站理论发电量计算1、太阳电池效率η 的计算在太阳电池受到光照时,输出电功率和入射光功率之比就称为太阳电池的效率,也称为光电转换效率。
其中,At 为太阳电池总面积(包括栅线图形面积)。
考虑到栅线并不产生光电,所以可以把At 换成有效面积Aa (也称为活性面积),即扣除了栅线图形面积后的面积,同时计算得到的转换效率要高一些。
Pin 为单位面积的入射光功率。
实际测量时是在标准条件下得到的:Pin 取标准光强:AM 条件,即在25℃下,Pin= 1000W / m 2。
2、光伏系统综合效率(PR)η总=η1×η2×η3光伏阵列效率η1:是光伏阵列在1000 W/m2 太阳辐射强度下实际的直流输出功率与标称功率之比。
光伏阵列在能量转换过程中的损失包括:灰尘/污渍,组件功率衰减,组件串联失配损失、温升损失、方阵相互遮挡损失、反射损失、光谱偏离损失、最大功率点跟踪精度及直流线路损失等,目前取效率86%计算。
逆变器转换效率η2:是逆变器输出的交流电功率与直流输入功率之比,取逆变器效率97%计算。
交流并网效率η3:是从逆变器输出,至交流配电柜,再至用户配电室变压器10 KV 高压端,主要是升压变压器和交流线缆损失,按96%计算。
3、理论发电量计算太阳电池的名牌功率是在标准测试条件下测得的,也就是说在入射功率为1000W/m2的光照条件下,1000Wp 太阳电池1 小时才能发一度电。
而实际上,同一天不同的时间光照条件不同,因此不能用系统的容量乘以日照时间来预测发电量。
计算日发电量时,近似计算:理论日发电量=系统峰值功率(kw)x等效日照小时数(h)x系统效率等效峰值日照小时数h/d=(日太阳辐照量m2/d)/1kW/m2(日照时数:辐射强度≥120W/m2的时间长度)二、影响发电量的因素的发电量由三个因素决定:装机容量、峰值小时数、系统效率。
当电站的地点和规模确定以后,前两个因素基本已经定了,要想提高发电量,只能提高系统效率。
影响光伏发电量的因素

影响光伏发电量的因素并网光伏电站进行发电量测算时,除考虑当地光辐照度、日照时间、环境温度等因素外,还要考虑光照入射角对不同种类电池转换效率的影响、电池板不匹配损耗、组件连接损耗、电池衰减损耗、组件遮挡损耗、温度影响、电气设备损耗、设备故障维护损耗等。
[1]1. 电池板温度和辐射量对光伏发电量影响电池板温度由低到高依次为冬、春、秋、夏季,辐射量由小到大依次为冬、夏、春、秋季。
板温和辐射量对发电量的影响较为复杂,二者既相互制约,又共同发挥作用。
不同季节发电量受板温和辐射量影响趋势和幅度也有所不同,总体表现出双向变化趋势,即辐射量正向变化,板温负向变化,但局部变化以及板温对光伏发电量的影响更为复杂。
两种因素的影响是同时存在的其影响并非是线性的。
[2]2. 光伏阵列组件间距对单位面积发电量的影响随着组件间距的增加,日发电量呈先增后减的趋势,且存在一个发电量最大值点,该点所对应的组件间距即为最优选择。
[4]3.光谱响应对发电量影响:1) 同一块组件,在光谱存在较大差异的不同地区,对组件输出功率有较大差异。
2) 单晶硅太阳电池的量子效率优于多晶硅太阳电池,特别是在310~550 nm 波段。
在该波段,单晶硅太阳电池的量子效率甚至比多晶硅电池高约20% 以上。
3) 在空气稀薄、300~500 nm 波段辐照度相对较强的西北地区,同效率的单晶硅组件发电量明显高于多晶硅组件,平均高1.50%。
因此,在进行西北地区组件选型经济分析时,应充分考虑单晶硅组件发电量较高的事实。
4) 在进行光伏电站的建设前,应对当地太阳光谱进行测试,作为组件选型的参考依据之一。
[7]4 光照入射角对不同种类电池转换效率的影响光照入射角包括方位角和倾角,参阅有关文献,多个光照倾角下各类电池组件实际转换效率对比试验,得出结论为:倾角对晶硅电池和非晶硅电池转换效率影响趋势一致,但受倾角影响的转换效率变化幅度晶硅电池弱于非晶硅电池。
选用合适的可调光伏支架不仅可确保并网光伏系统最大限度发挥发电功能和投资效益,还可有效降低离网光伏系统中固定倾角光伏支架带来的夏冬季发电量大幅差距。
影响光伏电站发电量的10个因素

影响光伏电站发电量的10个因素光伏电站是利用太阳能将光能转化为电能的设备,可以产生清洁能源。
虽然光伏电站具有稳定性和可靠性,但仍然受到一些因素的影响。
以下是影响光伏电站发电量的10个因素。
1.太阳辐射量:光伏电站的发电量主要依赖于太阳辐射量。
当太阳光辐射量越大,发电效率就越高。
2.太阳高度角:太阳高度角是指太阳在天空中的高度。
太阳高度角越大,太阳能照射角度更直接,光伏电站的发电量就越高。
3.气象条件:气象条件如温度、湿度和风速等都会影响光伏电站的发电效率。
在高温环境下,光伏电池的效率可能会下降。
4.阴影效应:即使只有一个光伏电池板被阴影覆盖住,整个光伏电站的发电效率也会受到影响。
因此,避免阴影对光伏电站的影响至关重要。
5.清洁度:光伏电池板表面的灰尘和污垢都会影响太阳光的吸收效率,减少光伏电站的发电量。
保持光伏电池板的清洁度非常重要。
6.光伏电池板的类型和质量:光伏电池板的类型和质量直接影响光伏电站的发电效率。
高效率和高质量的光伏电池板可以提高光伏电站的发电量。
7.倾角和朝向:光伏电池板的倾角和朝向对发电效率有很大影响。
根据光照条件和经纬度等因素,调整倾角和朝向可以最大化光伏电站的发电效率。
8.系统效率:光伏电站系统包括逆变器和电网连接等组件。
这些组件的效率也会影响光伏电站的发电量。
9.电网稳定性:光伏电站需要连接到电网上才能将发电量注入电网。
电网的稳定性和质量会影响光伏电站的发电量和运行。
10.维护和管理:正确的维护和管理对于保持光伏电站的高效运行至关重要。
定期清洁、检查和维护光伏电站的设备可以避免潜在的故障,并保持发电量的稳定。
总之,光伏电站的发电量受多个因素影响,包括太阳辐射量、太阳高度角、气象条件、阴影效应、清洁度、光伏电池板的类型和质量、倾角和朝向、系统效率、电网稳定性以及维护和管理等。
对于实现最高发电效率以及可靠运行的光伏电站,需要综合考虑和管理这些因素。
光伏发电量计算及综合效率影响因素

光伏发电量计算及综合效率影响因素光伏发电是指利用太阳能光子的能量将光能直接转化为电能的技术。
光伏发电量是指单位时间内光伏发电系统所发电的总电能,用于衡量光伏发电系统的性能和效率。
光伏发电量的计算涉及多个因素,包括太阳辐射强度、光伏电池的转换效率、安装角度和方向、天气状况等。
综合效率是指光伏发电系统实际输出的电能与太阳辐射能之比,用于评估光伏系统的总体性能。
光伏发电量的计算主要是基于太阳辐射强度和光伏电池组件的特性参数。
太阳辐射强度是指单位时间内太阳辐射能通过单位面积的能量,通常以W/m²表示。
光伏电池组件的特性参数包括短路电流(Isc)、开路电压(Voc)、最大功率点电流(Imp)、最大功率点电压(Vmp)等。
光伏发电量的计算公式为:发电量=光伏电池组件的面积×太阳辐射强度×光伏电池的转换效率光伏电池的转换效率是一个关键参数,它表示光伏电池将太阳能转化为电能的效率。
光伏电池的转换效率受到多个因素的影响,包括材料的能带结构、材料的光学特性、电池的工作温度等。
目前,光伏电池的转换效率已经超过20%,并且随着技术的进步还有望进一步提高。
除了太阳辐射强度和转换效率,光伏发电量还受到安装角度和方向的影响。
光伏电池的最大功率点随着太阳的高度角和方位角的变化而变化,需要通过调整安装角度和方向来最大化发电量。
对于固定安装的光伏电池组件,通常选择一个适当的安装角度和方向来获取最大的年发电量。
此外,天气状况也会对光伏发电量产生影响。
例如,阴雨天气会降低太阳辐射强度,从而降低光伏发电量。
而晴天和阳光充足的情况下,光伏发电量会最大化。
综合效率是综合考虑光伏发电系统的实际输出和太阳辐射能之比。
综合效率主要由光伏电池的转换效率、光伏组件的阵列效率、逆变器的效率等组成。
光伏电池的转换效率是光伏发电系统的核心,而光伏组件的阵列效率和逆变器的效率则会对整个系统的效率产生影响。
总之,光伏发电量的计算和综合效率受到多个因素的影响,包括太阳辐射强度、光伏电池的转换效率、安装角度和方向、天气状况等。
光伏发电的发电量会受到哪些因素会影响?
光伏发电量会受到哪些因素会影响?首先我们要有一个概念,就是光伏发电的发电量会因为非常多的因素影响,每种因素可能都会导致太阳能发电量的不同。
导致光伏发电量多少的因素主要有:太阳辐射量、光伏组件的质量和效率、温度和湿度、灰尘和污垢、安装角度和间距、太阳能发电设备、电网接入和负载情况等。
太阳辐射量:光伏电站的发电量直接取决于太阳辐射量。
太阳辐射强度越高,光伏电站的发电量就越大。
因此,光伏电站的地理位置选择十分重要,应尽可能选择阳光充足、辐射量大的地方。
光伏组件的质量和效率:光伏组件的质量和效率直接影响到光伏电站的发电量。
优质的光伏组件具有较高的光电转换效率,能够更好地将太阳能转化为电能。
此外,光伏组件的性能也会随着使用时间的推移而衰减,因此需要定期对光伏组件进行检查和维护。
温度和湿度:光伏电站的运行温度和湿度也会对发电量产生影响。
过高的温度和湿度会降低光伏组件的效率,导致发电量减少。
因此,在选择光伏电站的地理位置时,应考虑环境温度和湿度的影响。
灰尘和污垢:灰尘和污垢会覆盖在光伏组件表面,降低其接收到的太阳辐射量,从而影响发电量。
因此,定期对光伏组件进行清洗和维护是保持电站发电量的重要措施。
安装角度和间距:光伏电站的安装角度和间距也会影响发电量。
光伏组件的安装角度和间距应合理设置,以确保最大程度地接收太阳辐射量。
太阳能发电设备故障和损坏:光伏电站的设备故障和损坏也会影响发电量。
例如,光伏组件的破损、电缆的断裂、逆变器的故障等都可能导致电站发电量的损失。
电网接入和负载情况:电网接入和负载情况也会影响光伏电站的发电量。
如果电网接入不良或负载不平衡,可能会导致电站发电量的损失。
提高光伏电站的发电量的方法,一般情况下,都可以从下面3个方面入手:选择合适的地理位置:选择阳光充足、辐射量大的地方建设光伏电站,可以获得更高的发电量。
选择优质的光伏组件:选用高质量、高效率的光伏组件,能够提高电站的发电量。
保持光伏组件的清洁:定期对光伏组件进行清原标题:光伏发电的发电量会受到哪些因素会影响?。
影响光伏发电的十大因素
影响光伏发电的十大因素Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998影响光伏电站发电量的十个因素众所周知,光伏电站发电量计算方法是理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率,但是由于各种原因影响,光伏电站实际发电量却没这么多,实际年发电量=理论年发电量*实际发电效率。
影响光伏发电量的主要因素有:1、太阳辐射量在太阳电池组件的转换效率一定的情况下,光伏系统的发电量是由太阳的辐射强度决定的。
光伏系统对太阳辐能量的利用效率只有10%左右(太阳电池效率、组件组合损失、灰尘损失、控制逆变器损失、线路损失、蓄电池效率)光伏电站的发电量直接与太阳辐射量有关,太阳的辐射强度、光谱特性是随着气象条件而改变的。
2、太阳电池组件的倾斜角度对于倾斜面上的太阳辐射总量及太阳辐射的直散分离原理可得:倾斜面上的太阳辐射总量Ht是由直接太阳辐射量Hbt天空散射量Hdt和地面反射辐射量Hrt部分组成。
Ht=Hbt+Hdt+Hrt3、太阳电池组件的效率太阳能光伏电池主流的材料是硅,因此硅材料的转化率一直是制约整个产业进一步发展的重要因素。
硅材料转化率的经典理论极限是29%。
而在实验室创造的记录是25%,正将此项技术投入产业。
实验室已经可以直接从硅石中提炼出高纯度硅,而无需将其转化为金属硅,再从中提炼出硅。
这样可以减少中间环节,提高效率。
4、组合损失凡是串连就会由于组件的电流差异造成电流损失;凡是并连就会由于组件的电压差异造成电压损失;组合损失可以达到8%以上,中国工程建设标准化协会标准规定小于10%。
注意:(1) 为了减少组合损失,应该在电站安装前严格挑选电流一致的组件串联。
(2) 组件的衰减特性尽可能一致。
根据国家标准GB/T--9535规定,太阳电池组件的最大输出功率在规定条件下试验后检测,其衰减不得超过8%。
(3) 隔离二极管有时候是必要的。
5、温度特性温度上升1℃,晶体硅太阳电池:最大输出功率下降%,开路电压下降%(-2mv/℃),短路电流上升%。
影响光伏发电量的因素
影响光伏发电量的因素常常有人埋怨光伏发电量少,回本无望,说我始终是王婆卖瓜自卖自夸!其实不然,生活中许多小细节可能导致光伏发电量削减,从而影响收益,今日我就带大家了解一下影响光伏发电的十大因素,信任大家只要摸清晰这几点就肯定可以赚的盆满钵满!1.太阳能资源在光伏电站实际装机容量肯定的状况下,光伏系统的发电量是由太阳的辐射强度打算的,太阳辐射量与发电量呈正相关关系。
太阳的辐射强度、光谱特性是随着气象条件而转变的。
2.组件安装方式同一地区不同安装角度的倾斜面辐射量不一样,倾斜面辐射量可通过调整电池板倾角(支架采纳固定可调式)或加装跟踪设备(支架采纳跟踪式)来增加。
3.逆变器容量配比逆变器容量配比指逆变器的额定功率与所带光伏组件容量的比例。
由于光伏组件的发电量传送到逆变器,中间会有许多环节造成折减,且逆变器、箱变等设备大部分时间是没有方法达到满负荷运转的,因此,光伏组件容量应略大于逆变器额定容量。
依据阅历,在太阳能资源较好的地区,光伏组件:逆变器=1.2:1是一个最佳的设计比例。
补偿超配主动超配 4.组件串并联匹配组件串联会由于组件的电流差异造成电流损失,组串并联会由于组串的电压差异造成电压损失。
CNCA/CTS00X-2023《并网光伏电站性能检测与质量评估技术规范》(征求看法稿)中:要求组件串联失配损失最高不应超过2%。
[pagebreak] 5.组件遮挡组件遮挡包括灰尘遮挡、积雪遮挡、杂草、树木、电池板及其他建筑物等遮挡,遮挡会降低组件接收到的辐射量,影响组件散热,从而引起组件输出功率下降,还有可能导致热斑。
6.组件温度特性随着晶体硅电池温度的增加,开路电压削减,在20-100℃范围,大约每上升1℃每片电池的电压削减2mV;而电流随温度的增加略有上升。
总的来说,温度上升太阳电池的功率下降,典型功率温度系数为-0.35%/℃,即电池温度每上升1℃,则功率削减0.35%。
7.组件功率衰减组件功率的衰减是指随着光照时间的增长,组件输出功率渐渐下降的现象。
光伏板的发电量测量指标
光伏板的发电量测量指标
1. 日照强度,日照强度是指太阳光照射单位面积的能量,通常
以瓦特每平方米(W/m²)来表示。
光伏板的发电量与日照强度密切
相关,因此日照强度是光伏板发电量测量的重要指标之一。
2. 转换效率,光伏板的转换效率是指光能转换为电能的比率,
通常以百分比表示。
高转换效率意味着光伏板单位面积的发电量更高,因此转换效率是评估光伏板性能的关键指标之一。
3. 温度效应,光伏板的发电量会受到温度的影响,通常来说,
光伏板的温度越低,发电效率越高。
因此,温度效应是衡量光伏板
性能的重要指标之一。
4. 组件损耗,光伏板组件在实际使用中会有一定的损耗,包括
光伏板自身损耗、连接线路损耗、逆变器损耗等。
综合考虑这些损耗,可以更准确地评估光伏板的实际发电量。
5. 实际发电量,最终衡量光伏板发电量的指标是其实际发电量,即光伏板在实际运行中产生的电能。
通过监测和记录光伏板的实际
发电量,可以全面了解光伏发电系统的性能表现。
综上所述,光伏板的发电量测量指标涵盖了日照强度、转换效率、温度效应、组件损耗和实际发电量等多个方面,通过综合考量这些指标,可以全面评估光伏板的发电性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响光伏发电量的因素
并网光伏电站进行发电量测算时,除考虑当地光辐照度、日照时间、环境温度等因素外,还要考虑光照入射角对不同种类电池转换效率的影响、电池板不匹配损耗、组件连接损耗、电池衰减损耗、组件遮挡损耗、温度影响、电气设备损耗、设备故障维护损耗等。
[1]
1. 电池板温度和辐射量对光伏发电量影响
电池板温度由低到高依次为冬、春、秋、夏季,辐射量由小到大依次为冬、夏、春、秋季。
板温和辐射量对发电量的影响较为复杂,二者既相互制约,又共同发挥作用。
不同季节发电量受板温和辐射量影响趋势和幅度也有所不同,总体表现出双向变化趋势,即辐射量正向变化,板温负向变化,但局部变化以及板温对光伏发电量的影响更为复杂。
两种因素的影响是同时存在的其影响并非是线性的。
[2]
2. 光伏阵列组件间距对单位面积发电量的影响
随着组件间距的增加,日发电量呈先增后减的趋势,且存在一个发电量最大值点,该点所对应的组件间距即为最优选择。
[4]
3.光谱响应对发电量影响:
1) 同一块组件,在光谱存在较大差异的不同地区,对组件输出功率有较大差异。
2) 单晶硅太阳电池的量子效率优于多晶硅太阳电池,特别是在 310~550 nm 波段。
在该波段,单晶硅太阳电池的量子效率甚至比多晶硅电池高约 20% 以上。
3) 在空气稀薄、300~500 nm 波段辐照度相对较强的西北地区,同效率的单晶硅组件发电量明显高于多晶硅组件,平均高 1.50%。
因此,在进行西北地区组件选型经济分析时,应充分考虑单晶硅组件发电量较高的事实。
4) 在进行光伏电站的建设前,应对当地太阳光谱进行测试,作为组件选型的参考依据之一。
[7]
4 光照入射角对不同种类电池转换效率的影响
光照入射角包括方位角和倾角,参阅有关文献,多个光照倾角下各类电池组件实际转换效率对比试验,得出结论为:倾角对晶硅电池和非晶硅电池转换效率影响趋势一致,但受倾角影响的转换效率变化幅度晶硅电池弱于非晶硅电池。
选用合适的可调光伏支架不仅可确保并网光伏系统最大限度发挥发电功能和投资效益,还可有效降低离网光伏系统中固定倾角光伏支架带来的夏冬季发电量大幅差距。
[6]
5 电池板不匹配损耗
该类损耗影响发电量约 1.3%。
并网光伏电站的电池方阵进行电池组件串、并联时,理想状态是将工作电流基本相同的串联在一起,再将组件串中工作电压基本相同的并联在一起。
但在实际安装时很难做到,而且每一组件,其最佳工作电压和电流不一定完全相同,造成整个方阵的总功率小于各个组件的功率之和。
6 组件连接损耗
该类损耗影响发电量约2%。
电池组件间及到接线盒使用导线连接,接线较细,且连接点众多,导线电阻损耗及连接点接触不良都会产生损耗。
7 电池衰减损耗
该类损耗影响发电量每年减少约1%。
多晶硅光伏组件的老化衰减,主要是由于电池的缓慢衰减以及封装材料的性能退化所造成,导致组件主材性能退化的主要原因是紫外线的照射。
8 遮挡损耗
该类损耗影响发电量约5%。
实际运行中,当电池方阵表面沉积灰尘或积雪时没有及时清洗,或有树叶、鸟粪等遮挡物长期存在电池组件上,不仅会影响系统发电量,而且遮挡物形成局部阴影,使组件局部长期发热,甚至引起热斑效应,产生的温度超过一定极限将会烧爆玻璃。
当前光伏电站对于提升发电量有多种方式,最主流的有单轴跟踪系统和双轴跟踪系统,多方调查数据显示,单轴系统能提升发电量约在10%双轴提升发电量平均约在15%~20%。
但安装单轴系统需增加光伏电站建设成本 10%,(按当前光伏电站投资12元/W)。
双轴需增加投资成本30%。
但自动清洁装置提升 8%~10% 发电量在生命周期内仅需增加投资成本3%。
[3]
9.温度影响
该类损耗影响发电量约 4.5%。
太阳能电池组件的额定功率是在标准测试条件下测定的,如果运行时,电池的温度高于25℃,输出功率将会减少。
因为电池组件的光电转换效率随温度的增加而下降,太阳能电池温度每升高1℃,功率减少0.35%。
10.湿度影响
随着相对湿度的增大发电量呈减小趋势,发电量较大时相对湿度大多分布在40%~70%之间,光伏电站逐日总发电量与日平均相对湿度的相关系数为-0.5735,呈显著的负相关关系。
11.发电量与云系的关系
无论是总云量或低云量均与发电量呈负相关关系,即云量越大发电量越小。
12.发电量与能见度的关系
能见度越低说明大气中气溶胶越多,到达地面的太阳辐射越少,引起发电量减小。
发电量较大值一般出现于能见度大于15km的情况下此时大气中颗粒物较少,太阳辐射穿透大气达到地面的减损较小,光伏组件接受的太阳辐射同比增多,发电量增大。
[8]
13空气污染对发电量影响:
空气中的污染物能改变大气的消光能力,因此影响地面光伏电站的发电量。
空气质量指数、云量和太阳入射角度对发电量影响较为显著,其中空气质量指数的回归相关度最高。
[5]
14 电气设备损耗
该损耗包括逆变器损耗、变压器损耗、直流和交流电缆损耗,影响发电量分别约为3%、2.5%、2%。
15 系统故障及维护损耗
该类损耗影响发电量约0.5%。
实际运行中,发生电池组件破损、汇流箱内公母头烧损等故障后进行维护处理会影响发电量。
参考文献:
1.杨静涛,贾晖杰.并网光伏电站发电量影响因素分析.太阳能,2013
2.吕学梅等.电池板温度和辐射量对光伏发量影响的趋势面分析.可再生能
源,2014.7
3岑先富,朱超林. 光伏组件积尘对发电量的影响及自动清洁经济效益研究.太阳能,2013
4.王庆伟,于大龙. 光伏阵列组件间距对单位面积发电量的影响.可再生能源,2013
5.刘大为等.考虑空气污染因素的光伏发电量回归分析,可再生能源,2013
6.谷永梅.可调倾角光伏支架对光伏系统发电量的影响[A],建筑电气,2014
7.吕欣等.光谱响应对光伏电站发电量的影响分析.太阳能,2014
8.孙朋杰等. 太阳能光伏电站发电量变化特征及其与气象要素的关系.水电能源科学,2013
Love is not a maybe thing. You know when you love someone.。