山东春季高考数学真题含答案

合集下载

2021年山东春季高考数学真题参考答案

2021年山东春季高考数学真题参考答案

山东省2021年普通高校招生(春季)考试数学答案及简要解析卷一(选择题 共60分)一、选择题1.B ʌ解析ɔȵ∁U N ={0,1,3},ʑM ɘ(∁U N )={1,3}.2.D ʌ解析ɔ要使函数有意义,须满足|x -1|-3ȡ0,ʑ|x -1|ȡ3,即x -1ɤ-3或x -1ȡ3,解得x ɤ-2或x ȡ4,ʑ定义域为(-ɕ,-2]ɣ[4,+ɕ).3.A ʌ解析ɔȵf (x )在(-ɕ,+ɕ)上是减函数,ʑ由函数单调性可知当x 越大,f (x )反而越小.ȵ-1<0<1,ʑf (1)<f (0)<f (-1).4.B ʌ解析ɔ由函数y =l o g a x 的图像可知a >1.对于函数y =(1-a )x 2+1来说,1-a <0,ʑ二次函数开口朝下,顶点坐标为(0,1),故选项B 正确.5.D ʌ解析ɔ零向量的方向是任意的,故选项A 错误;大小相等和方向相同的两个向量相等,ʑ两个单位向量不一定相等,故选项B 错误;方向相反且大小相同的两个向量互为相反向量,故选项C 错误.6.C ʌ解析ɔȵ角α的终边过点P (-1,2),ʑs i n α=-55,c o s α=255.由二倍角公式s i n 2α=2s i n αc o s α得s i n 2α=2ˑ-55æèçöø÷ˑ255=-45.7.A ʌ解析ɔ若角α是第一象限角,则s i n α>0,充分条件成立;反之,若s i n α>0,则角α可能为第一象限角或第二象限角或在y 轴正半轴上,必要条件不成立.8.C ʌ解析ɔȵ直线l 经过(1,2)和(3,1),ʑ直线l 的斜率k l =1-23-1=-12,ȵm ʅl ,ʑ直线m 的斜率k m =-1k l=2,又直线m 过点(3,1),由直线的点斜式可知直线m 的方程为2x -y -5=0.9.C ʌ解析ɔ安排四人进行接力赛,可根据有无甲运动员分为两类:第一类甲不参加接力赛,则安排方法有A 44=24种;第二类甲参加接力赛,则安排方法有C 34C 13A 33=72种.故不同的安排方法有96种.10.D ʌ解析ɔ根据表格中的对应关系知f (2)=5,f (5)=7,ʑf [f (2)]=7.11.A ʌ解析ɔ根据向量的运算法则知a b =-2m +3,ʑ-2m +3=5,则m =-1.12.C ʌ解析ɔ由图像可知,该函数不关于原点㊁y 轴对称,为非奇非偶函数,最大值为2.又T4=π3--2π3æèçöø÷=π,ʑ最小正周期是4π,ȵ2πω=4π,ʑω=12,令12ˑπ3+φ=0,则φ=-π6.13.B ʌ解析ɔ三件玩具分为三个小朋友,完成这件事的基本事件个数共有A 33=6个,其中都没有拿到自己玩具的这件事的基本事件个数共2个,故概率为26=13.14.A ʌ解析ɔȵ圆到圆上一点的距离为半径,圆经过原点,ʑ半径r =12+22=5,根据圆的标准方程可以得到标准方程为(x -1)2+(y -2)2=5.15.D ʌ解析ɔȵ点M 到抛物线对称轴的距离是4,ʑ点M 的纵坐标为4,ȵM 在抛物线上,ʑ横坐标为8p ,又点M 到准线的距离为5,ʑ8p +p2=5,解得p =2或p =8.16.B ʌ解析ɔ p :甲㊁乙㊁丙三名同学不都是共青团员,即至少有一名不是共青团员.17.C ʌ解析ɔ由图像可知直线为实线,且点(0,0)在区域内,代入(0,0)可得x +3y -3<0,在直线下方,符合要求.18.C ʌ解析ɔ由题意设该等差数列为{a n },则S 5=30,a 1+a 2=a 3+a 4+a 5,{解得a 1=8,d =-1,{ʑ甲所分小米的斤数是8斤.19.B ʌ解析ɔ由二项式的通项公式可知T m +1=C m n a n -m b m ,ʑ第二项的二项式系数为C 1n ,第五项的二项式系数为C 4n ,ȵC 1n =C 4n ,ʑn =5,则T 4=C 351x æèçöø÷2(-2)3,即系数为-80.20.B ʌ解析ɔ在正方体A B C D A 1B 1C 1D 1中,B D ʅA 1C ,B C 1ʅA 1C ,B D ɘB C 1=B ,且B D ,B C 1⊂平面B C 1D ,A 1C ⊄平面B C 1D ,ʑA 1C ʅ平面B C 1D ,又C 1P ⊂平面B C 1D ,ʑP C 1ʅA 1C .卷二(非选择题 共60分)二㊁填空题(本大题5个小题,每小题4分,共20分㊂请将答案填在答题卡相应题号的横线上)21.-1 ʌ解析ɔȵ-1ɤs i n x ɤ1,ʑ-5ɤ2s i n x -3ɤ-1,即函数y 的最大值是-1.22.1+15 ʌ解析ɔ正四棱锥的表面积由底面正方形和侧面四个等腰三角形构成,故S =1ˑ1+4ˑ12ˑ1ˑ152=1+15.23.53 ʌ解析ɔ由题意知2a 2b =32,则a b =32,故离心率e =1-b a æèçöø÷2=53.24.2 ʌ解析ɔȵ x =16(85+91+88+87+90+87)=88,ʑs 2=16[(85-88)2+(91-88)2++(87-88)2=4,则s =2.25.S =12㊃3m +2-3m +1+12㊃3mʌ解析ɔȵ点A ,B ,C 的横坐标成等差数列,且点A 的横坐标为m ,ʑ点B 的横坐标为m +1,同理,点C 的横坐标为m +2,即点A 为(m ,3m +1),B 为(m +1,3m +2),C 为(m +2,3m +2).利用割补法知әA B C 的面积为S =S әA C E -S әA B D -S 梯形B C E D ,其中S әA C E =12ˑ2ˑ(3m +2-3m ),S әA B D =12ˑ1ˑ(3m +1-3m ),S 梯形B C E D =12[(3m +1-3m )+(3m +2-3m )],故S =12㊃3m +2-3m +1+12㊃3m.三㊁解答题(本大题5个小题,共40分)26.解:(1)ȵf (4)=8,ʑ16a -8=8,则a =1.(2)设x <0,则-x >0,ʑf (-x )=x 2+2x .ȵf (x )是定义在R 上的奇函数,ʑ-f (x )=f (-x ),即f (x )=-f (-x )=-x 2-2x .综上所述,f (x )=-x 2-2x ,x <0,x 2-2x ,x ȡ0.{27.解:(1)ȵa n >0,a 1=1,2a n +1-a n =0,ʑa n +1a n=12,即数列{a n }是等比数列,a 1=1且q =12,ʑ通项公式为a n =12æèçöø÷n -1.(2)ȵb n =l o g 2a n =l o g 212æèçöø÷n -1=1-n ,ʑ数列{b n }是首项b 1=0,公差d =-1的等差数列.则S 90=90ˑ0+90ˑ892ˑ(-1)=-4005.28.解:(1)过点A 作垂线交O Q 于点E ,ȵøP O Q =30ʎ,且O A =10,ʑA E =5.又A B =52,ʑs i n øO B A =A E A B =22,即øO B A =45ʎ.(2)由(1)可知C E =B E =5,O E =53,ʑO C =O E -C E =53-5,ȵD 为O A 的中点,ʑO D =5,由余弦定理可知c o s øP O Q =O C 2+O D 2-C D 22㊃O C ㊃O D =12,ʑC D =2.6.29.解:(1)ȵS A ʅ平面A B C D ,ʑS A ʅA B ,又底面A B C D 是正方形,ʑA D ʅA B ,ȵA D ɘS A =A ,A D ,S A ⊂平面S A D ,A B ⊄平面S A D ,ʑA B ʅ平面S A D ,ȵS D ⊂平面S A D ,ʑA B ʅS D .(2)取S D 的中点G ,连接G F 和A G ,ȵG ,F 是中点,ʑG F ʊC D ,且G F =12C D .ȵ底面A B C D 是正方形,且E 是A B 的中点,ʑA E ʊC D ,且A E =12C D .则A E ʊG F ,且A F =G F ,ʑ四边形A E F G 是平行四边形,则A G ʊE F ,ʑ直线E F 与A D 所成的角为øG A D .ȵG 是S D 的中点,ʑA G =12S D ,则A G =G D ,即三角形A D G 为等腰三角形,又øS D A =60ʎ,ʑ三角形A D G 为等边三角形,则øG A D =60ʎ.30.解:(1)ȵ椭圆方程为x 25+y 24=1,ʑc =1,即左焦点为F (-1,0).ȵ双曲线左顶点与左焦点重合,ʑ双曲线中a =1,又双曲线过点P ,ʑb 2=1,即双曲线的标准方程为x 2-y 2=1.(2)设直线l :y =k (x +1),联立方程组y =k (x +1),x 25+y 24=1,ìîíïïï整理得(4+5k 2)x 2+10k 2x +5k 2-20=0,由韦达定理可知x 1+x 2=-10k 24+5k 2,ȵM ,N 在直线l 上,ʑy 1+y 2=k (x 1+1)+k (x 2+1),即y 1+y 2=-10k 34+5k 2+2k =8k 4+5k 2.ʑ线段MN 的中点坐标为-5k 24+5k 2,4k 4+5k 2æèçöø÷.由双曲线的抛物线方程可知渐近线方程为y =ʃx ,ȵMN 的中点在渐近线上,ʑ分为两种情况:①当线段MN 的中点在y =x 上时,则-5k 24+5k 2=4k4+5k 2,即k =0或k =-45;②当线段MN 的中点在y =-x 上时,则5k 24+5k 2=4k4+5k 2,即k =0或k =45.综上所述,直线l 的方程为y =0或y =ʃ45(x +1)(一般式为4x ʃ5y +4=0).。

2021年山东省春季高考数学试卷(含答案)

2021年山东省春季高考数学试卷(含答案)

山东省2021年普通高校招生(春季)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120分,考试时间120分钟,考生请在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01.卷一(选择题 共60分)一.选择题(本大题20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知集合{}0,1,2,3,4U =,集合{}{}12324M N ==,,,,,则()U M N C 等于( )A.{}2B.{}1,3C.{}0,1,3D.{}0,1,2,32.函数y =的定义域是( )A.(2,4)-B.(,2)(4,)-∞-+∞C.[2,4]-D. (,2][4,)-∞-+∞ 3.已知函数()f x 在(,)-∞+∞上是减函数,则下列关系正确的是( )A.(1)(0)(1)f f f <<-B. (0)(1)(1)f f f <-<C. (1)(0)(1)f f f -<<D. (0)(1)(1)f f f <<-4.已知函数log (01)a y x a a =>≠且的图像如图所示,则函数2(1)1y a x =-+的图像大致是( )5.下列命题正确的是( )A.零向量没有方向B.两个单位向量相等C.方向相反的两个向量互为相反向量D.若//AB AC ,则,,A B C 三点共线6.角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边过点(1,2)P -,则sin 2α等于( )A.35- B.35 C. 45- D. 457.“角α是第一象限角”是“sin 0α>”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.如图所示,已知直线m l ⊥,则直线m 的方程为( )A.210x y --=B.210x y -+=C.250x y --=D.250x y -+=9.某运动员队准备参加4100⨯米接力赛,队中共有5名运动员,其中甲运动员不能跑第一棒,教练从这5人中安排4人分别跑第一至第四棒,则所有不用安排方法的种数是( )A.48B.60C.96D.12010.已知函数()f x 的对应值图下表所示:函数()y f x =的对应值表x 012345y 365427则[(2)]f f 等于( )A.4B.5C.6D.711.已知向量(2,3),(,1)a b m =-= ,若5a b = g ,则实数m 的值是( )A.1-B.4-C.32D.7312.函数sin()(0,0,||)2y A x A πωϕωϕ=+>><的部分图像如图所示,则下列说法正确的是( )A.该函数为偶函数B.该函数的最大值为1C.该函数的最小正周期为4πD.ϕ的值为3π-13.在幼儿园“体验分享,快乐成长”的活动中,有三位小朋友都把自己的一件玩具交给老师,老师再把这三件玩具随机发给他们,每人一件,则这三位小朋友都没有拿到自己玩具的概率是( )A.12 B.13 C.14 D.1614.已知过原点的圆,其圆心坐标为(1,2),则该圆的标准方程为( )A.22(1)(2)5x y -+-=B. 22(1)(2)4x y -+-=C.22(1)(2)5x y +++=D. 22(1)(2)4x y +++=15.已知点M 在抛物线22(0)y px p =>上,若点M 到抛物线对称轴的距离为4,到准线的距离为5,则p 的值是( )A.2或4B.4或6C.6或8D.2或816.已知命题:p 甲、乙、丙三名同学都是共青团员,则p ⌝为( )A.甲、乙、丙三名同学都不是共青团员B.甲、乙、丙三名同学至少有一名不是共青团员C.甲、乙、丙三名同学至少有两名不是共青团员D.甲、乙、丙三名同学至多有一名不是共青团员17.在下列不等式中,能表示如图所示区域(阴影部分)的是( )A.330x y +-<B. 330x y +->C. 330x y +-≤D. 330x y +-≥18.在《九章算术》中有如下问题:“有甲、乙、丙、丁、戊五人分30斤小米,其中甲、乙两人所分小米的斤数之和与丙、丁、戊三人所分小米的斤数之和相等,且甲、乙、丙、丁、戊五人所分小米的斤数成等差数列,问每人各分多少斤。

(完整版)山东省春季高考数学试题及答案

(完整版)山东省春季高考数学试题及答案

山东省 2019 年一般高校招生(春天)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120 分,考试时间120 分钟。

考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。

2.本次考试同意使用函数型计算器,凡使用计算器的题目,除题目有详细要求外,最后结果精准到。

卷一(选择题共60 分)一、选择题(本大题 20 个小题,每题 3 分,共 60 分。

在每题列出的四个选项中,只有一项切合题目要求,请将切合题目要求的选项字母代号选出.并填涂在答题卡上)1. 已知会合 M={0,1} ,N={1,2},则 M∪ N 等于()A. {1}B. {0,2}C. {0,1,2}D.2. 若实数 a, b 知足 ab>0 , a+b>0 ,则以下选项正确的选项是()A. a>0 , b>0B. a>0 , b<0yC. a<0 , b>0D. a<0 , b<03. 已知指数函数y=a x,对数函数 y=log b x的图像如下图,则以下关系式正确的选项是(y)y=log b y=a xA. 0<a<b<1B. 0<a<1<bO x C. 0<b<1<a D. a<0<1<b4. 已知函数 f(x)=x 3 +x ,若 f(a)=2 ,则 f(-a) 的值是()第 3 题图A. -2B. 2C. -10D. 105. 若等差数列 {a n }的前 7 项和为 70 ,则 a 1+a 7等于()A. 5B. 10C. 15D. 20uuur uuur6. 如下图,已知菱形ABCD 的边长是 2 ,且∠ DAB =60 °,则AB AC 的值是()A. 4B. 4 2 3C. 6D. 4 2 3DA CB第 6 题图7. 对于随意角α,β,“ α = β ”是“ sinα =sin β”的()A. 充足不用要条件B. 必需不充足条件C. 充要条件D. 既不充足也不用要条件8. l⊥ OP ,则直线 l 的方程是(y如下图,直线)A. 3x - 2y=0B. 3x+2y - 12=0 3PC. 2x - 3y+5=0D. 2x+3y - 13=0 O2 x9. 在( 1+x )n的二项睁开式中,若全部项的系数之和为64 ,则第 3 项是(第 8 题图)A. 15x 3B. 20x 3C. 15x 2D. 20x 210. 在 RtV ABC 中,∠ ABC =90 °,AB=3 , BC=4 , M 是线段 AC 上的动点 . 设点 M 到 BC 的距离为 x ,V MBC的面积为y,则y对于x的函数是()A. y=4x , x ∈(0, 4]B. y=2x , x ∈(0,3]C. y=4x , x ∈(0, )D. y=2x , x ∈(0,)11.现把甲、乙等 6 位同学排成一排,若甲同学不可以排在前两位,且乙同学一定排在甲同学前方(相邻或不相邻均可),则不一样排法的种树是()A. 360B. 336C. 312D. 24012. 设会合 M={-2 , 0 , 2 , 4} ,则以下命题为真命题的是()A. a M , a 是正数B. b M , b是自然数C. c M , c 是奇数D. d M , d 是有理数13. 已知 sin1α的值是()α=,则 cos22A. 8B. 8C. 7D. 79 9 9 914. 已知 y=f(x) 在 R 上是减函数,若f(| a|+1)<f(2) ,则实数 a 的取值范围是()A. (-∞,1 )B. (-∞, 1 )∪( 1 ,+∞)C. (- 1 , 1 )D.(-∞,- 1 )∪( 1, +∞)15.已知 O 为坐标原点,点 M 在 x 轴的正半轴上,若直线 MA 与圆 x2 +y 2=2 相切于点 A ,且 |AO|=|AM| ,则点 M 的横坐标是()A. 2B.2C.22D. 416.如下图,点E、F、 G、 H 分别是正方体四条棱的中点,则直线EF 与 GH 的地点关系是()A. 平行B. 订交C.异面D. 重合FGHE第16 题图x y 2 ≥017.如下图,若x,y知足线性拘束条件x ≤0,y≥1则线性目标函数z=2x-y获得最小值时的最优解是()A. ( 0 , 1 )B. ( 0 , 2 )C. ( -1 ,1 ) D . ( -1 , 2 )18. 箱子中放有 6 张黑色卡片和 4 张白色卡片,从中任取一张,恰巧获得黑色卡片的概率是()A. 1B. 1C. 2D. 36 3 5 519. 已知抛物线的极点在座标原点,对称轴为坐标轴,若该抛物线经过点 M( -2 ,4 ),则其标准方程是()A. y 2=-8xB. y 2= - 8x 或 x2=yC. x 2=yD. y 2=8x 或 x2 = - y20. 已知V ABC的内角A,B,C的对边分别是a,b,c,若a=6,sinA=2cosBsinC ,向量 m = ( a, 3b) , 向量 n =( - cosA , sinB) ,且 m ∥ n ,则V ABC 的面积是()A. 18 3B. 9 3C. 3 3D. 3卷二(非选择题共 60 分)二、填空题(本大题 5 个小题,每题 4 分,共 20 分。

2021年山东省春季高考数学试卷(word版含答案)

2021年山东省春季高考数学试卷(word版含答案)

山东省2021年普通高校招生(春季)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120分,考试时间120分钟,考生请在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01.卷一(选择题 共60分)一.选择题(本大题20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知集合{}0,1,2,3,4U =,集合{}{}12324M N ==,,,,,则()U MN C 等于( )A.{}2B.{}1,3C.{}0,1,3D.{}0,1,2,32.函数|1|3y x =--的定义域是( ) A.(2,4)- B.(,2)(4,)-∞-+∞ C.[2,4]- D. (,2][4,)-∞-+∞3.已知函数()f x 在(,)-∞+∞上是减函数,则下列关系正确的是( ) A.(1)(0)(1)f f f <<- B. (0)(1)(1)f f f <-< C. (1)(0)(1)f f f -<< D. (0)(1)(1)f f f <<-4.已知函数log (01)a y x a a =>≠且的图像如图所示,则函数2(1)1y a x =-+的图像大致是( )5.下列命题正确的是( )A.零向量没有方向B.两个单位向量相等C.方向相反的两个向量互为相反向量D.若//AB AC ,则,,A B C 三点共线6.角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边过点(1,2)P -,则sin 2α等于( )A.35- B.35 C. 45- D. 457.“角α是第一象限角”是“sin 0α>”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.如图所示,已知直线m l ⊥,则直线m 的方程为( ) A.210x y --= B.210x y -+=C.250x y --=D.250x y -+=9.某运动员队准备参加4100⨯米接力赛,队中共有5名运动员,其中甲运动员不能跑第一棒,教练从这5人中安排4人分别跑第一至第四棒,则所有不用安排方法的种数是( ) A.48 B.60 C.96 D.120 10.已知函数()f x 的对应值图下表所示:函数的对应值表 x0 1 2 3 4 5y 3 6 5 42 7则等于( )A.4B.5C.6D.7 11.已知向量(2,3),(,1)a b m =-=,若5a b =,则实数m 的值是( ) A.1- B.4- C.32 D.7312.函数sin()(0,0,||)2y A x A πωϕωϕ=+>><的部分图像如图所示,则下列说法正确的是( )B.该函数的最大值为1 4π D.ϕ的值为3π-13.在幼儿园“体验分享,快乐成长”的活动中,有三位小朋友都把自己的一件玩具交给老师,老师再把这三件玩具随机发给他们,每人一件,则这三位小朋友都没有拿到自己玩具的概率是( )A.12 B.13 C.14 D.1614.已知过原点的圆,其圆心坐标为(1,2),则该圆的标准方程为( )A.22(1)(2)5x y -+-=B. 22(1)(2)4x y -+-= C.22(1)(2)5x y +++= D. 22(1)(2)4x y +++=15.已知点M 在抛物线22(0)y px p =>上,若点M 到抛物线对称轴的距离为4,到准线的距离为5,则p 的值是( ) A.2或或6或8或816.已知命题:p 甲、乙、丙三名同学都是共青团员,则p ⌝为( ) A.甲、乙、丙三名同学都不是共青团员B.甲、乙、丙三名同学至少有一名不是共青团员C.甲、乙、丙三名同学至少有两名不是共青团员D.甲、乙、丙三名同学至多有一名不是共青团员17.在下列不等式中,能表示如图所示区域(阴影部分)的是( )A.330x y +-<B. 330x y +->C. 330x y +-≤D. 330x y +-≥18.在《九章算术》中有如下问题:“有甲、乙、丙、丁、戊五人分30斤小米,其中甲、乙两人所分小米的斤数之和与丙、丁、戊三人所分小米的斤数之和相等,且甲、乙、丙、丁、戊五人所分小米的斤数成等差数列,问每人各分多少斤。

山东省春季高考数学答案

山东省春季高考数学答案
10.(1)2≤P≤8(2)当P=5时,每年税收金额最高,最高金额是150万元。
第三章
【热点
1.D2.D3.B4.C5.A
6.C7.B8.D9.D10.B
【热点
1.C2.C3.D4.C5.B6.A
【热点
1.A2.D3.A4.D5.C6.A7.A8.B
9.C10.C11.C12.D13.A14.A15.D16.D
【热点
1.B 2.D 3.C 4.A 5.D 6.C 7.B 8.A 9.C 10.C
【热点
1.D 2.C 3.B 4.A 5.A 6.D 7.A 8.B 9.D 10.D
【热点
1.C 2.C 3.A 4.C 5.A 6.D 7.C 8.D 9.B 10.B
【热点
1.AB=2.m=1或m=-1 3.y2=4x4.AB=8 5.MN=8 6.m=
第二章
【热点
1.B 2.B 3.C 4.C 5.A 6.C 7.A 8.A 9.C 10.A
【热点
1.C 2.C 3.D 4.D 5.A 6.C 7.C 8.D 9.略10.略
【热点
1.C 2.C 3.A 4.D 5.B 6.B 7.D 8.A 9.C 10.B
【热点
1.B 2.D 3.A 4.B 5.C 6.C 7.D 8.B 9.B
-5x2+400x>300×20
解得:20<x<60
所以使每天的销售收入增加的商品单价的范围是(20,60).
4.(1)p=-x+160(0≤x≤160)
(2)x=110时,ymax=2500
5.(1)基础电价为0.5元/度
(2)162元
(3)y=-0.8x-30,x(100,150]

山东省中职春季高考数学练习试卷(含答案)

山东省中职春季高考数学练习试卷(含答案)

数学试题第Ⅰ卷(选择题,共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1. 若角α是ABC ∆的一个内角,且4cos 5α=-,则sin α= ()A 35 ()B 35-()C 45 ()D 45-2.已知42ππθ<<,则下列关系式中正确的是()A sin cos tan θθθ>> ()B cos sin tan θθθ>>()C tan sin cos θθθ>>()D tan cos sin θθθ>>3.a b =是a b =的()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 既不充分也不必要条件4.直线210ax y +-=与()120x a y +-+=平行,则a 的值为()A 32()B 2()C1-()D 2或1-5. 直线34100x y --=与圆229x y +=的位置关系是()A 相切 ()B 相交 ()C 相离 ()D 相交且过圆心6. 已知角α终边上一点()(),0P m m m <,则sin α=()A 2()B 2-()C 2±()D 不能确定7.若圆22290x y ax +++=的圆心坐标是()5,0,则该圆的半径是()A ()B 3 ()C 4 ()D 58. 已知点()()2,46,0M N 、,点P 使得34MP MN =成立,则点P 的坐标为 ()A ()5,3 ()B ()3,5()C ()5,3--()D ()3,5--9. 若cos tan 0θθ>,则θ为()A 第一或第二象限的角 ()B 第二或第三象限的角 ()C 第三或第四象限的角()D 第四或第一象限的角10. 过点()()3,00,4A B -、的椭圆的标准方程是()A 222211916169x y x y +=+=或()B 222211916169x y x y -=-=或()C 221916x y +=()D 221169x y +=11.设非零向量a b 、,下列说法错误的是()A a 与b 同向时,a b +与a 同向 ()B a 与b 同向时,a b +与b 同向()C a 与b 反向且a b <时,a b +与a 同向 ()D a 与b 反向且a b >时,a b +与a 同向12. 为了得到函数sin 3y x π⎛⎫=-⎪⎝⎭的图像,只需把正弦曲线上的所有点 ()A 向左平移13个单位()B 向右平移13个单位()C 向左平移3π个单位()D 向右平移3π个单位13.已知双曲线2213x y k+=的离心率为方程221150x x -+=的一个根,则实数k 的值为 ()A 72-()B 9-()C 4-()D 9414. 函数54sin 23x y π⎛⎫=-⎪⎝⎭的最小正周期为 ()A 2π ()B π()C 2π()D 4π15. 已知抛物线的顶点是双曲线22312x y -=的中心,而焦点是该双曲线的左顶点,则抛物线的标准方程是()A 24y x =-()B 28y x =- ()C 29y x =- ()D 218y x =-16.已知()()3,21,2a b =-=--,,则2a b -= ()A 29()B 29-()C 37()D 17. 以下四个等式中,能够成立的有①sin 0x =;②cos 0x =;③tan 80x +=;④2cos cos 7x x +=;()A 1个 ()B 2个 ()C 3个 ()D 4个18. 若点P 为抛物线2y x =上的任意一点,点F 为该抛物线的焦点,则点P 到点F 与点P 到点()3,1A -的距离之和的最小值为()A 3()B 4()C 72()D 13419.下列命题中正确的是()A 若0a b =,则a 与b 中至少有一个为0 ()B ()()22a b a b a b +-=-()C ()()a b c a b c =()D ()()a b c a b c ++≠++20. 抛物线()240y axa =<的焦点坐标是()A 1,04a ⎛⎫ ⎪⎝⎭()B 10,16a ⎛⎫ ⎪⎝⎭()C 10,16a ⎛⎫- ⎪⎝⎭()D 1,016a ⎛⎫⎪⎝⎭数学试题第Ⅱ卷(非选择题,共40分)注意事项:1.答卷前将密封线内的项目填写清楚.2.用钢笔或圆珠笔直接答在试卷上,解答题和应用题应写出推理、演算步骤. 3.本试题允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01. 二、填空题(本大题4个小题,每题3分,共12分.请将答案填在题中的横线上)21.函数y =的定义域为 .22.若()4,3a =-,//a b 且10a b =,则b 的坐标为 .23.已知两点()()7,45,6A B --、,则线段AB 的垂直平分线方程为 . 24.已知椭圆的对称轴是坐标轴,焦距为20,则该椭圆的标准方程是 .三、向量解答题(6分)25. 已知有()1,1a =,()2,6b =,求当t 为何值时,ta b +取得最小值,并求出此最小值.四、解析几何解答题(7分)26.求以椭圆221169144x y +=的右焦点为圆心,且与双曲线221916x y -=的渐近线相切的圆的标准方程.五、三角解答题(7分)27. 已知函数()()2sin 3sin y x x =+-,试求该函数的最大值和最小值,并求出当y 取得最值时相应的x 的值的集合.六、解析几何解答题(8分)28.已知直线1y ax =+与双曲线2231x y -=相交,交点为A B 、,求当a 为何值时,以线段AB为直径的圆经过坐标原点.()1,1a =,()2,6b =,()()(1,12,6ta b t t +=+=+(2ta b t +=+当且仅当4t =-时,ta b +取得最小值,最小值为21y += 因为圆的圆心为()5,0,与43y x =±相切,设圆的半径为r r =,解得4r =,所以所求圆的标准方程是()22516x y -+=。

2024年山东省春季高考数学试题及答案

2024年山东省春季高考数学试题及答案

2024年山东省春季高考真题一、选择题:1.下列关系式正确的是( )A.Z N ⊆B.Q ∈2C.{}∅=0D.N ∉02.已知0,0><b a ,则下列不等式成立的是( )A.0<+b aB.0<-b aC.0>+b aD.0>-b a3.圆()()43222=++-y x 的圆心坐标是( ) A.()3,2 B.()3,2- C.()3,2- D.()3,2--4.不等式2<-m x 的解集是()3,1-,则实数m 的值为( )A. 0B.1C.2D.35.如图所示,C B A '''∆是用斜二测画法画的水平放置的ABC ∆的直观图,则在平面直角坐标系中,最长的线段是( )A.OCB.OBC.ACD.AB 6.函数()()R b a bx ax x f ∈++=,22是偶函数的充要条件是( )A.0=bB.0=aC.0≠bD.0≠a 7.已知,α是第二象限角,β是第三象限角,下列说法正确的是( )A.0sin sin >βαB.0cos cos <βαC.0cos sin <βαD.0sin cos <βα8.如图所示,在ABC ∆中,三条边长均为1,D 、E 、F 分别是AB 、BC 、CA 的中点,则下列运算结果为单位向量的是( )A.DF DE AD ++B.DE AD +C.DF DE AD +-D.DE AD -9.已知2tan =α,5tan =β,则()=+βαtan ( )A.97B.117C.97-D.113- 10.已知()x f 是定义在R 上的减函数,若()()132f x f >-,则x 的取值范围为( )A.()+∞,2B.()2,∞- C.()+∞-,1 D.()1-∞-, 11.如果a ,b 除以m (*∈N m )所得的余数相同,则称整数a ,b 关于模m 同余,记作()m b a ≡,若()m 5992≡,则m 可能的取值是( )A.2B.11C.22D.3112.已知直线l 与直线13+=x y 垂直,则直线l 的斜率是( ) O ' C 'A 'B 'A B C D E Fx O y x O yx O y xO y A.3 B.3- C.33 D.33- 13.某人驾驶汽车出行,在途中休息一段时间后继续驾驶直达目的地,假设途中汽车匀速行驶,则汽车行驶的路程y 关于时间x 的函数的图象大致是( )A. B. C. D.14.在62⎪⎭⎫ ⎝⎛-x x 的二项式展开式中,常数项是( ) A.20- B.20 C.160- D.16015.已知命题p 、q ,若()q p ∨⌝是真命题,则下列结论正确的是( )A.p 、q 都是真命题B.p 是真命题,q 是假命题C.p 、q 都是假命题D.p 是假命题,q 是真命题16.某学校甲、乙两名教师和3名学生站在一排照相,如果教师甲位于教师乙的左边(可相邻,可不相邻),则至少有2名学生相邻的概率是( )A.101B.103C.107D.109 17.已知抛物线()022>=p px y 的焦点为F ,过F 作垂直于x 轴的直线与抛物线交于M 、N 两点,若4=MN ,则焦点F 到准线的距离是( )A.1B.2C.4D.618.二元一次不等式组⎩⎨⎧≥+-<-+0102y x y x 所表示的平面区域用阴影区域表示是( )A. B. C. D.19.某学校安排甲、乙等6名同学到三个社区开展服务活动,每个社区均安排2名同学,其中甲乙二人必须安排在同一社区,则不同的安排的方法的个数为( )A.6B.18C.36D.9020.如图所示,正三棱锥ABC S -的棱长都是2,D 是SC 的中点,则下列结论:①BD SA //;②SC AB //;③SC 与平面ABC 所成的角是︒60;④正三棱锥ABC S -的体积是322;x O y x O yx O y x O y其中正确的结论的序号是( )A.①②B.①③C.③④D.②④二、填空21.在等差数列{}n a中,a2=4,a4=2,则a7=____________22.椭圆x 28+y26=1的离心率是_________23.|a⃗|=3,|b⃗⃗|=2√3,<a⃗,b⃗⃗>=90°,a⃗∙(a⃗−b⃗⃗)=_________24.一组数9,13,12,13,10平均数为x̅,每个数都减x̅,方差为_________25.f(x)=√3sinωx+cosωx,(ω>0)与y=1有交点,两个相邻交点的最小值为π3,将f(x)的x值缩小为原来的12,y值不变,再向左平移φ(0<φ<π2)为g(x),g(π4)=-1,则g(3π8)=_________三、解答题(本大题共5小题,共40分)26.(本小题共7分)已知f(x)=log a x,过点(4,2)(1)求a(2)g(x)=f(x2−2x+m)的定义域为R,求m的值27.(本小题共8分)等比数列q>1,a1+a3=10,a2=4(1)求a n(2)b n=a2n+1−a2n,求S6(本小题共8分)长方体中A1A=4,AB=AD=3,E、F分别是AD1和CD1的中点(1)证明EF⊥BD(2)求AD1与BD所成角的大小(精确到1°)29.(本小题共8分)三角形ABC中D为BC上一点,BD=6,⊥B=45°,sin⊥BAD=35(1)求AD(2)若2BD=3CD,求AC30. (本小题共9分)双曲线x 2a 2−y 2b 2=1(a>0,b>0),圆D x 2+y 2=r 2,双曲线与圆交于M (3,4),双曲线的一条渐近线为y =√2x(1)求双曲线的方程(2)点P 为圆与y 轴正半轴交点,过点P 的直线l 交双曲线于A 、B 两点,且PB⃗⃗⃗⃗⃗⃗=2BA ⃗⃗⃗⃗⃗⃗,求l 的方程答案:一、选择题:ABCBD ACACB BDACC DBDBD二、填空题:21. -1; 22. 21; 23. 9; 24. 3;25. 3。

2020山东省春季高考数学试卷真题及答案详解(精校版)

2020山东省春季高考数学试卷真题及答案详解(精校版)

山东省2020年普通高校招生(春季)考试数学试题一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于()A .∅B .{},a c C .{},b d D .{},,,a b c d 2.函数()1lg f x x=的定义域是()A .()0,∞+B .()()0,11,+∞ C .[)()0,11,+∞U D .()1,+∞3.已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是()A .奇函数B .偶函数C .增函数D .减函数4.已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB a =,AD b =,则EF等于()A .()12a b+ B .()12a b- C .()12b a- D .12a b+ 5.在等比数列{}n a 中,11a =,22a =-,则9a 等于()A .256B .-256C .512D .-5126.已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.已知圆心为()2,1-的圆与y 轴相切,则该圆的标准方程是()A .()()22211x y ++-=B .()()22214x y ++-=C .()()22211x y -++=D .()()22214x y -++=8.现从4名男生和3名女生中,任选3名男生和2名女生,分别担任5门不同学科的课代表,则不同安排方法的种数是()A .12B .120C .1440D .172809.在821x x ⎛⎫- ⎪⎝⎭的二项展开式中,第4项的二项式系数是()A .56B .56-C .70D .70-10.直线2360x y +-=关于点()1,2-对称的直线方程是()A .32100x y --=B .32230x y --=C .2340x y +-=D .2320x y +-=11.已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.已知二次函数2y ax bx c =++的图像如图所示,则不等式20ax bx c ++>的解集是()A .()2,1-B .()(),21,-∞-⋃+∞C .[]2,1-D .(][),21,-∞-+∞ 13.已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01xy a a =<<,则该函数在(,0)-∞上的图像大致是()A .B .C .D .14.下列命题为真命题的是()A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x ∀∈R ,20x ≥15.已知点()4,3A ,()4,2B -,点P 在函数243y x x =--图象的对称轴上,若PA PB ⊥,则点P 的坐标是()A .()2,6-或()2,1B .()2,6--或()2,1-C .()2,6或()2,1-D .()2,6-或()2,1--16.现有5位老师,若每人随机进入两间教室中的任意一间听课,则恰好全都进入同一间教室的概率是()A .225B .116C .125D .13217.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于()A .3B .6C .8D .1218.已知变量x ,y 满足某约束条件,其可行域(阴影部分)如图所示,则目标函数23z x y =+的取值范围是()A .[]0,6B .[]4,6C .[]4,10D .[]6,1019.已知正方体1111ABCD A B C D -(如图所示),则下列结论正确的是()A .11//BD A AB .11//BD A DC .11BD A C ⊥D .111BD AC ⊥20.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C sin cos 2c B A b =,则tan A 等于()A .3B .13-C .3或13-D .-3或13二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上)21.已知ππ,22α⎡⎤∈-⎢⎥⎣⎦,若sin 0.8α=,则α=______rad .22.若212log log 40x -=,则实数x 的值是______.23.已知球的直径为2,则该球的体积是______.24.某创新企业为了解新研发的一种产品的销售情况,从编号为001,002,…480的480个专卖店销售数据中,采用系统抽样的方法抽取一个样本,若样本中的个体编号依次为005,021,…则样本中的最后一个个体编号是______.25.已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______.三、解答题(本大题5个小题,共40分)26.已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩.(1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.27.某男子擅长走路,9天共走了1260里,其中第1天、第4天、第7天所走的路程之和为390里.若从第2天起,每天比前一天多走的路程相同,问该男子第5天走多少里.这是我国古代数学专著《九章算术》中的一个问题,请尝试解决.28.小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:x6π-12π3π712π56πx ωϕ+02ππ32π2πsin()A x ωϕ+03-3根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎣⎦上的最大值和最小值.29.已知点E ,F 分别是正方形ABCD 的边AD ,BC 的中点.现将四边形EFCD 沿EF 折起,使二面角C EF B --为直二面角,如图所示.(1)若点G ,H 分别是AC ,BF 的中点,求证://GH 平面EFCD ;(2)求直线AC 与平面ABFE 所成角的正弦值.30.已知抛物线的顶点在坐标原点O ,椭圆2214x y +=的顶点分别为1A ,2A ,1B ,2B ,其中点2A 为抛物线的焦点,如图所示.(1)求抛物线的标准方程;(2)若过点1A 的直线l 与抛物线交于M ,N 两点,且()12//OM ON B A + ,求直线l 的方程.1.C 【分析】利用补集概念求解即可.【详解】{},U M b d =ð.故选:C 2.B 【分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可.【详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠.所以函数定义域为()()0,11,+∞ .故选:B 3.C 【分析】利用函数单调性定义即可得到答案.【详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <.所以函数()f x 一定是增函数.故选:C 4.A 【分析】利用向量的线性运算,即可得到答案;【详解】连结AC ,则AC 为ABC 的中位线,∴111222EF AC a b ==+ ,故选:A 5.A 【分析】求出等比数列的公比,再由等比数列的通项公式即可求解.【详解】设等比数列{}n a 的公比为q ,因为11a =,22a =-,所以212a q a ==-,所以()198812256a q a ==⨯-=,故选:A.6.D 【分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果.【详解】结合图像易知,sin 0θ<,cos 0θ>,则角θ是第四象限角,故选:D.7.B 【分析】圆的圆心为(2,1)-,半径为2,得到圆方程.【详解】根据题意知圆心为(2,1)-,半径为2,故圆方程为:22(2)(1)4x y ++-=.故选:B.8.C 【分析】首先选3名男生和2名女生,再全排列,共有3254351440C C A =种不同安排方法.【详解】首先从4名男生和3名女生中,任选3名男生和2名女生,共有3243C C 种情况,再分别担任5门不同学科的课代表,共有55A 种情况.所以共有3254351440C C A =种不同安排方法.故选:C 9.A 【分析】本题可通过二项式系数的定义得出结果.【详解】第4项的二项式系数为388765632C ⨯⨯==⨯,故选:A.10.D 【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,因为点(2,4)x y ---在直线2360x y +-=上,所以()()223460x y --+--=即2320x y +-=.故选:D.11.A 【分析】根据充分条件和必要条件的定义即可求解.【详解】当0a =时,集合{}1,0M =,{}1,0,1N =-,可得M N ⊆,满足充分性,若M N ⊆,则0a =或1a =-,不满足必要性,所以“0a =”是“M N ⊆”的充分不必要条件,故选:A.12.A 【分析】本题可根据图像得出结果.【详解】结合图像易知,不等式20ax bx c ++>的解集()2,1-,故选:A.13.B 【分析】根据偶函数,指数函数的知识确定正确选项.【详解】当(0,)x ∈+∞时,()01xy a a =<<,所以()f x 在()0,∞+上递减,()f x 是偶函数,所以()f x 在(),0∞-上递增.注意到01a =,所以B 选项符合.故选:B 14.D 【分析】本题可通过43>、12<、45<、cos 1≤x 、20x ≥得出结果.【详解】A 项:因为43>,所以10>且34>是假命题,A 错误;B 项:根据12<、45<易知B 错误;C 项:由余弦函数性质易知cos 1≤x ,C 错误;D 项:2x 恒大于等于0,D 正确,故选:D.15.C【分析】由二次函数对称轴设出P 点坐标,再由向量垂直的坐标表示计算可得.【详解】由题意函数243y x x =--图象的对称轴是2x =,设(2,)P y ,因为PA PB ⊥ ,所以(2,3)(6,2)12(3)(2)0PA PB y y y y ⋅=-⋅--=-+--= ,解得6y =或1y =-,所以(2,6)P 或(2,1)P -,故选:C .16.B【分析】利用古典概型概率公式,结合分步计数原理,计算结果.【详解】5位老师,每人随机进入两间教室中的任意一间听课,共有5232=种方法,其中恰好全都进入同一间教室,共有2种方法,所以213216P ==.故选:B17.B【分析】根据椭圆中,,a b c 的关系即可求解.【详解】椭圆的长轴长为10,焦距为8,所以210a =,28c =,可得5a =,4c =,所以22225169b a c =-=-=,可得3b =,所以该椭圆的短轴长26b =,故选:B.18.C【分析】作出目标函数对应的直线,平移该直线可得最大值和最小值,从而得范围.【详解】如图,作出直线:230l x y +=,向上平移直线l ,l 最先过可行域中的点A ,此时2204z =⨯+=,最后过可行域中的点(2,2)B ,此时223210=⨯+⨯=,所以z 的取值范围是[4,10].故选:C .19.D【分析】根据异面直线的定义,垂直关系的转化,判断选项.【详解】A.11//AA BB ,1BB 与1BD 相交,所以1BD 与1AA 异面,故A 错误;B.1BD 与平面11ADD A 相交,且11D A D ∉,所以1BD 与1A D 异面,故B 错误;C.四边形11A BCD 是矩形,不是菱形,所以对角线1BD 与1AC 不垂直,故C 错误;D.连结11B D ,1111B D A C ⊥,111BB A C ⊥,1111B D BB B ⋂=,所以11A C ⊥平面11BB D ,所以111A C BD ⊥,故D 正确.故选:D20.A【分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得sin()sin 22A CB +=⇒,最后利用两角和的正切公式,即可得到答案;【详解】 222sin cos tan 222a b c C C C ab +-==⇒=,4C π∴>,2sin sin sin a b c R A B C=== ,sin sin cos sin sin cos sin 2A B C C B A B ∴⋅⋅+⋅⋅=,sin()sin 22A CB ∴+=⇒=,4B π∴=,tan 1B ∴=,∴tan tan tan tan()31tan tan B C A B C B C+=-+=-=-⋅,故选:A.21.53π180【分析】根据反三角函数的定义即可求解.【详解】因为sin 0.8α=,ππ,22α⎡⎤∈-⎢⎥⎣⎦,所以453πarcsin 53rad 5180α=== ,故答案为:53π180.22.14【分析】根据对数运算化简为2log 2x =-,求解x 的值.【详解】21222log log 40log log 40x x -=⇔+=,即2log 2x =-,解得:14x =.故答案为:1423.43π【分析】根据公式即可求解.【详解】解:球的体积为:344133V ππ=⨯⨯=,故答案为:43π24.469【分析】先求得编号间隔为16以及样本容量,再由样本中所有数据编号为()005+161k -求解.【详解】间隔为021-005=16,则样本容量为480=3016,样本中所有数据编号为()005+161k -,所以样本中的最后一个个体的编号为()005+16301469-=,故答案为:469251+【分析】利用抛物线的性质,得到M 的坐标,再带入到双曲线方程中,即可求解.【详解】由题意知:,2,2p c p c -=-∴=∴抛物线方程为:224,y px cx =-=-M 在抛物线上,所以(,2),M c c -M 在双曲线上,222241,c c a b∴-=2224224,60c a c a c a b =-∴-+= 23e ∴=±,又()1,e ∈+∞, 1.e ∴+126.(1)3;(2)35a -<<.【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥,则()1215f a a -=--,因为()13f a -<,所以2153a --<,即14a -<,解得35a -<<.27.140里.【分析】由条件确定,该男子这9天中每天走的路程数构成等差数列,根据等差数列的通项公式,和前n 项和公式,列式求解.【详解】解:因为从第2天起,每天比前一天多走的路程相同,所以该男子这9天中每天走的路程数构成等差数列,设该数列为{}n a ,第1天走的路程数为首项1a ,公差为d ,则91260S =,147390a a a ++=.因为1(1)2n n n S na d -=+,1(1)n a a n d =+-,所以11119(91)91260236390a d a a d a d ⨯-⎧+=⎪⎨⎪++++=⎩,解得110010a d =⎧⎨=⎩,则514100410140a a d =+=+⨯=,所以该男子第5天走140里.28.(1)3A =,2ω=,3πϕ=;(2)最大值是3,最小值是32-.【分析】(1)利用三角函数五点作图法求解A ,ω,ϕ的值即可.(2)首先根据(1)知:3sin 23y x π⎛⎫=+ ⎪⎝⎭,根据题意得到11172636x πππ≤+≤,从而得到函数的最值.【详解】(1)由表可知max 3y =,则3A =,因为566T πππ⎛⎫=--= ⎪⎝⎭,2T πω=,所以2ππω=,解得2ω=,即3sin(2)y x ϕ=+,因为函数图象过点,312π⎛⎫ ⎪⎝⎭,则33sin 212πϕ⎛⎫=⨯+ ⎪⎝⎭,即πsin φ16骣琪+=琪桫,所以262k ππϕπ+=+,k ∈Z ,解得23k πϕπ=+,k ∈Z ,又因为2πϕ<,所以3πϕ=.(2)由(1)可知3sin 23y x π⎛⎫=+ ⎪⎝⎭.因为3544x ππ≤≤,所以11172636x πππ≤+≤,因此,当11236x ππ+=时,即34x π=时,32y =-,当5232x ππ+=时,即1312x π=时,3y =.所以该函数在区间35,44ππ⎡⎤⎢⎣⎦上的最大值是3,最小值是32-.29.(1)证明见解析;(2【分析】(1)要证明线面平行,可转化为证明面面平行;(2)根据面面垂直的性质定理,可知CF ⊥平面ABFE ,再结合线面角的定义,可得得到直线AC 与平面ABFE 所成角的正弦值.【详解】证明:(1)连接AF ,设点O 为AF 的中点,连接GO ,OH ,在ACF △中,又因为点G 为AC 中点,所以//OG CF .同理可证得//OH AB ,又因为E ,F 分别为正方形ABCD 的边AD ,BC 的中点,故//EF AB ,所以//OH EF .又因为OH OG O ⋂=,所以平面//GOH 平面EFCD .又因为GH Ì平面GOH ,所以//GH 平面EFCD .(2)因为ABCD 为正方形,E ,F 分别是AD ,BC 的中点,所以四边形EFCD 为矩形,则CF EF ⊥.又因为二面角C EF B --为直二面角,平面EFCD 平面ABFE EF =,CF ⊂平面EFCD ,所以CF ⊥平面ABFE ,则AF 为直线AC 在平面ABFE 内的射影,因为CAF ∠为直线AC 与平面ABFE 所成的角.不妨设正方形边长为a ,则2a CF BF ==,在Rt ABF 中,AF ===因为CF ⊥平面ABFE ,AF ⊂平面ABFE ,所以CF AF ⊥,在Rt AFC △中,AC =2sin a CF CAF AC ∠==即为直线AC 与平面ABFE 所成角的正弦值.30.(1)28y x =;(2))240x y --+.【分析】(1)根据抛物线的焦点,求抛物线方程;(2)首先设出直线l 的方程为()2y k x =+,与抛物线方程联立,并利用韦达定理表示OM ON + ,并利用()12//OM ON B A + ,求直线的斜率,验证后,即可得到直线方程.【详解】解:(1)由椭圆2214x y +=可知24a =,21b =,所以2a =,1b =,则()22,0A ,因为抛物线的焦点为2A ,可设抛物线方程为22(0)y px p =>,所以22p =,即4p =.所以抛物线的标准方程为28y x =.(2)由椭圆2214x y +=可知()12,0A -,()20,1B -,若直线l 无斜率,则其方程为2x =-,经检验,不符合要求.所以直线l 的斜率存在,设为k ,直线l 过点()12,0A -,则直线l 的方程为()2y k x =+,设点()11,M x y ,()22,N x y ,联立方程组2(2)8y k x y x=+⎧⎨=⎩,消去y ,得()22224840k x k x k +-+=.①因为直线l 与抛物线有两个交点,所以200k ⎧≠⎨∆>⎩,即()2222048440k k k k ≠⎧⎪⎨--⨯>⎪⎩,解得11k -<<,且0k ≠.由①可知212284k x x k -+=,所以()()()21212128482244k y y k x k x k x x k k k k-+=+++=++=+=,则()212122848,,k OM ON x x y y k k ⎛⎫-+=++= ⎪⎝⎭ ,因为()12//OM ON B A + ,且12(2,0)(0,1)(2,1)B A =--= ,所以2284820k k k--⨯=,解得2k =-2k =--因为11k -<<,且0k ≠,所以2k =-所以直线l的方程为(2(2)y x =-++,即)240x y --+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到。

卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上) 1.已知集合A ={}1,3,B ={}2,3,则A B U 等于( )A. ∅B. {}1,2,3C. {}1,2D. {}3【答案】B 【解析】因为A ={}1,3,B ={}2,3,所以A B U {}1,2,3=. 2.已知集合A ,B ,则“A B ⊆”是“A B =”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】 B 【解析】A B A B=⇒⊆Q,又A B A B A B⊆⇒=或Ø,∴“A B⊆”是“A B=”的必要不充分条件.3.不等式23x+>的解集是()A. ()(),51,-∞-+∞U B. ()5,1-C. ()(),15,-∞-+∞U D.()1,5-【答案】A【解析】23123235x xxx x+>>⎧⎧+>⇒⇒⎨⎨+<-<-⎩⎩,即不等式的解集为()(),51,-∞-+∞U.4.若奇函数()y f x=在()0,+∞上的图像如图所示,则该函数在(),0-∞上的图像可能是()第4题图GD21GD22GD23GD24GD25【答案】D 【解析】因为已知是奇函数,根据奇函数的性质是关于原点对称,根据选项只能选D.5.若实数a >0,则下列等式成立的是( )A. ()224--= B. 33122a a -=C. ()021-=- D. 4141a a-⎛⎫= ⎪⎝⎭【答案】D 【解析】A 中()2124--=,B 中33122a a-=,C 中()021-=,故D 选项正确.6.已知数列{}n a 是等比数列,其中3a 2=,6a 16=,则该数列的公比q 等于 ( )A.143.2 C 【答案】 B 【解析】 3a Q 2=,6a 16=,333631628a a q q q ∴=⇒==,,则q=2.7.某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求既有男生又有女生,则不同选法的种数是( ).31 C【答案】C 【解析】由题知,有两种选法①两名男生一名女生2143C C 18=种,②两名女生一名男生1243C C 12=种,所以一共有181230+=种.8.下列说法正确的是( ) A.函数()2y x a b =++的图像经过点(a ,b )B.函数x y a =(a >0且a ≠1)的图像经过点(1,0)C.函数log a y x =(a >0且a ≠1)的图像经过点(0,1)D.函数a y x =(∈R α)的图像经过点(1,1)【答案】D 【解析】A 中,函数()2y x a b =++的图像经过点(-a ,b );B 中,函数x y a =(a >0且a ≠1)的图像经过点(0,1);C 中,函数log a y x =(a >0且a ≠1)的图像经过点(1,0);D 中,把点()1,1代入,可知图象必经过点()1,1.9.如图所示,在平行四边形OABC 中,点A (1,-2),C (3,1),则向量OBuuu r的坐标是( )第9题图GD26A.(4,-1)B.(4,1)C.(1,-4)D.(1,4)【答案】A 【解析】Q A (1,-2),C (3,1),()()1231OA OB ∴=-=u u u r u u u r,,,,又OA CB =u u u r u u u r , ()4,1OB OC CB OC OA ∴=+=+=-u u u r u u u r u u u r u u u r u u u r.10.过点P (1,2)与圆225x y +=相切的直线方程是( )A. 230x y -+=B. 250x y -+=C. 250x y +-=D.250x y +=【答案】B 【解析】将点P ()1,2代入圆方程,可知点P 在圆上,又因为将点代入C,D 等式不成立,可排除C,D ,又因为直线与圆相切,所以圆心到直线的距离等于半径,又圆心为(0,0),5即圆心到直线230x y -+=的距离55d =≠圆心到直线250x y -+=的距离55d '==则只有B 符合.11.表中数据是我国各种能源消费量占当年能源消费总量的百分率,由表可知,从2011年到2014年,消费量占比增长率最大的能源是( )A.天然气B.核能C.水利发电D.再生能源表 我国各种能源消费的百分率【答案】D 【解析】 根据表1可知,从2011年到2014年,天然气:5.6 4.5100%24.4%4.5-⨯≈,核能:1.00.7100%42.9%0.7-⨯≈,水力发电:8.16.0100%35%6.0-⨯=,再生能源:1.80.7100%157.1%0.7-⨯≈,则消费量占比增长率最大的能源是再生能源.12.若角α的终边过点()6,8P -,则角α的终边与圆221x y +=的交点坐标是( )A. 34,55⎛⎫- ⎪⎝⎭B. 43,55⎛⎫- ⎪⎝⎭C. 34,55⎛⎫- ⎪⎝⎭D. 43,55⎛⎫- ⎪⎝⎭【答案】A 【解析】因为()6,8P -,所以长度为226810+=,设交点为()11,x y ,又因为圆的半径为1,因此有11141085y y =⇒=,1131065x ==,又因为终边在第二象限,所以选A.13.关于x ,y 的方程y mx n =+和221x y m n+=在同一坐标系中的图象大致是( )GD27GD28GD29GD30【答案】D 【解析】 当221x y m n +=的图象为椭圆时,00m n >>,,则y mx n=+的图象单调递增,且与y 轴的截距大于0,A 、B 均不符;当221x y m n+=的图象为双曲线时,○1当00m n <>,时,双曲线的焦点在y 轴上,y mx n =+的图象单调递减,且与y 轴的截距大于0;○2当00m n ><,时,双曲线的焦点在x 轴上,y mx n =+的图象单调递增,且与y 轴的截距小于0,综上所述,选项D 正确.14.已知()2nx -的二项展开式有7项,则展开式中二项式系数最大的项的系数是( )A.-280B.-160C.160【答案】B 【解析】 ()2nx -Q 的二项展开式有7项,6n ∴=,()616C 2kk kk T x -+=-,又展开式中二项式系数最大的项为第4项,则()3363346C 2160T xx -=-=-,则其系数为160-.15.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是( )A.421 B. 121C. 114D. 27【答案】A 【解析】先利用捆绑法将甲乙进行捆绑并全排列,有22A 种排列方法,将甲乙作为一个整体,除去丙丁将其他人进行全排列,有44A 种排列方法,再利用插空法将丙丁进行插空,有25A 种排列方法;总共有77A 种排列方法,所以概率为24224577A A A 4A 21⋅⋅=. 16.函数sin 24y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图像可能是( ) GD31GD34GD32GD33【答案】A 【解析】B 选项中当,18x y π==,C 选项中当0x =时,2y =,D 选项中,当2,4x y π==. 17.在ABC △中,若2AB BC CA ===u u u r u u u r u u u r,则AB BC ⋅u u u r u u u r 等于( )A. 23-B. 23C.-2【答案】C 【解析】因为2AB BC CA ===u u u r u u u r u u u r,所以ABC △是等边三角形,所以各个角均为60︒,cos1202AB BC AB BC ⋅=⋅⋅︒=-u u u r u u u r u u u r u u u r.18.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是( )第18题图 GD35.4 C【答案】B 【解析】 由图可知,目标函数z x y =+在点(2,2)处取得最大值,即max 224z =+=.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是( ) A.若,,l n m n ⊥⊥则l m ∥ B.若,,l n m n l ⊥⊥⊥则m C.若,,l m l αα∥∥则∥m D.若,,l m l αα⊥⊥∥则m【解析】A,B,C 选项,直线l 与m 相交、平行、异面都有可能;D 选项,∵,m α∥,∴存在一个平面β,使得αβ∥,且m β∈,∵,l α⊥∴l β⊥,l m ⊥.20.已知椭圆22126x y +=的焦点分别是12,F F ,点M 在椭圆上,如果120FM F M ⋅=u u u u r u u u u r,那么点M 到x 轴的距离是( )2D. 1【答案】B 【解析】 椭圆22126x y +=,即2a b c ====,设点M 的坐标为00()x y ,,又120F M F M ⋅=u u u u r u u u u rQ ,∴点M 又在以原点为圆心,半径为2的圆上,圆方程为224x y +=,即2204x y +=①,又2200126x y +=②,联立①②得0y =M 到x卷二(非选择题,共60分)二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上) 21.已知tan 3α=,则sin cos sin cos αααα+-的值是 .【答案】2【解析】分式上下同除以cos α得sin cos tan 1cos sin cos tan 1cos αααααααα++=--,把tan 3α=代入得原式=2.22.若表面积为6的正方体内接于球,则该球的表面积等于 . 【答案】3π【解析】设正方体的边长为x ,2661x x =⇒=,则边长为1,243S r =π=π球. 23.如果抛物线28y x =上的点M 到y 轴的距离是3,那么点M 到该抛物线焦点F 的距离是 .【答案】5【解析】因为抛物线28y x =上的点M 到y 轴的距离是3,所以点M 的横坐标为3,再将3x =代入得到y =±(3,M ±,又因为28y x =,准线22px =-=-,则点M 到该抛物线焦点F 的距离是5. 24.某职业学校有三个年级,共有1000名学生,其中一年级有350名,若从全校学生中任意选出一名学生,则恰好选到二年级学生的概率是.现计划利用分层抽样的方法,从全体学生中选出100名参加座谈会,那么需要从三年级学生中选出 名.【答案】33【解析】恰好选到二年级学生的概率是,恰好选到一年级学生的概率是,则选到三年级学生的概率是,那么需要从三年级抽取100×=33人. 25.设命题p ;函数()()215f x x a x =+-+在(],1-∞上是减函数;命题q :()2,lg 230x x ax ∀∈++>R .若p q ∨⌝是真命题,p q ∧⌝是假命题,则实数a 的取值范围是 .【答案】(-或()-∞+∞U ,【解析】 Q p q ∨⌝是真命题,p q ∧⌝是假命题,∴pq 同为真或pq 同为假,当pq 同为真时,函数()()215f x x a x =+-+在(],1-∞上是减函数,函数()f x 的对称轴为12a x -=-,即1112a a --⇒-≤≥,()2,lg 230x x ax ∀∈++>R ,即2231x ax ++>恒成立,设222y x ax =++,即()22420a a ∆=-⨯<⇒<<,则1a -<<pq 同为假时,a 或a ≤数a 的取值范围为(1-或()-∞+∞U ,. 三、解答题(本大题5小题,共40分)26.(本小题6分)已知某城市2015年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素).(1)若经过x 年该城市人口总数为y 万,试写出y 关于x 的函数关系式;(2)如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)?【解】(1)由题意可得()20011%xy =+;(2)如果该城市人口总数达到210万,则()20011%x+210=5x ⇒≈,那么至少需要经过5年.27.(本小题8分)已知数列{}n a 的前n 项和223n S n =-.求: (1)第二项2a ;(2)通项公式n a .【解】(1)因为223n S n =-,所以11231a S ==-=-,222235S =⨯-=,()22121516a S S S a =-=-=--=,所以26a =.( 2 )()22123213n n S n S n -⎧=-⎪⎨=--⎪⎩①②,①-②=142n n S S n --=-. 28.(本小题8分)如图所示,已知四边形ABCD 是圆柱的轴截面,M 是下底面圆周上不与点,A B 重合的点.(1)求证:平面DMB ⊥平面DAM ;(2)若AMB ∆是等腰三角形,求该圆柱与三棱锥D-AMB 体积的比值.GD36第28题图【解】(1)∵M 是下底面圆周上不与点,A B 重合的点,∴,,A M B 在一个平面上,又∵四边形ABCD 是圆柱的轴截面,∴边AB 过圆心,DA ⊥平面AMB ,DA BM ⊥,根据定理以直径为斜边的三角形为直角三角形,所以AM BM ⊥, ∵,DA AM ⊂平面DAM ,且DA AM A =I ,∴BM ⊥平面DAM ,又∵BM ⊂平面DMB ,∴平面DMB ⊥平面DAM . (2)设底面圆的半径为x ,圆柱的高为h ,又∵AMB △2x ,所以221(2)2ABMS x x ==△,所以2133D AMB AMB x h V S h -=⋅=△,2V S h x h =⋅=π圆柱所以2233D AMBV x hx h V -π==π圆柱.29.(本小题8分)如图所示,要测量河两岸P ,Q 两点之间的距离,在与点P 同侧的岸边选取了A ,B 两点(A ,B ,P ,Q 四点在同一平面内),并测得AP =20m ,BP =10m ,60APB ∠=︒,105PAQ ∠=︒,135PBQ ∠=︒.试求P ,Q 两点之间的距离.SH17第29题图【解】 连接AB ,又60APB ∠=︒,AP =20m ,BP =10m ,则90ABP ∠=︒,则22222010103m AB AP BP -=-=,又135PBQ ∠=︒,45ABQ ∴∠=︒,3601056013560AQB ∠=︒-︒-︒-︒=︒,在ABQ △中,由正弦定理得,sin sin AQ AB ABQ AQB =∠∠,即21031032102m sin 45sin 603AQ AQ =⇒==︒︒,在APQ △中,由余弦定理得,2222cos PQ AP AQ AP AQ QAP =+-⋅∠2220(102)220102cos1054002003=+-⨯⨯︒=+,10(13)103PQ =+=+P ,Q 两点之间的距离为10103+.30.(本小题10分)如图所示,已知双曲线的中心在坐标原点O ,焦点分别是()()122,02,0F F -,,且双曲线上的任意一点到两个焦点的距离之差的绝对值等于2. (1)求该双曲线的标准方程、离心率及渐近线方程;(2)若直线l 经过双曲线的右焦点2F ,并与双曲线交于M ,N 两点,向量()2,1n =-r是直线l 的法向量,点P 是双曲线左支上的一个动点.求PMN△面积的最小值.GD39第30题图【解】(1)根据题意设双曲线的标准方程为22221x y a b-=,()()122,02,0F F -Q ,,双曲线上的任意一点到两个焦点的距离之差的绝对值等于2,2221c a a ∴===,,,即222213b c a -=-=准方程为2213y x -=,离心率221c e a ===,渐近线方程为33b y a =±== (2)Q 向量()2,1n =-r是直线l 的法向量,∴直线的斜率2k =,又直线l 经过双曲线的右焦点()22,0F ,即直线l 的方程为()2224240y x x x y =-=-⇒--=,设()()1122M x y N x y ,,,,又双曲线的方程为2213y x -=,即2213240y x x y ⎧-=⎪⎨⎪--=⎩216190x x ⇒-+=,12121619x x x x +==,,则12MN x =-30===,要使PMN △面积的最小值,即点P 到直线l 的距离最小,则点P 坐标为()10-,,5d ∴==,则1130225PMN S MN d =⨯=⨯⨯=△。

相关文档
最新文档