离散型随机变量的概念
2-2离散型随机变量及其分布律

松定理(第二章)和中心极限定理(第五章),利用这些定理
可以近似计算出它们的值.
3.泊松分布
定义 2.5 如果随机变量 X 的分布律为
P{X k} k e , k 0,1, 2,L , 0 ,
k!
就称 X 服从参数为 的泊松分布,记为 X ~ P() .
【注 1】 P{X
k
k}
e
0 , k 0,1, 2,L
一般地,在随机试验 E 中,如果样本空间 只包含两个
样本点
{1,2},且
X
0, 1,
若 =1 , 若 =2 ,
则 X ~ B(1, p) ,其中 p P{X 1} P({2}) .
在现实生活中,0 1两点分布有着广泛的应用.例如某产品 合格与不合格;某课程的考试及格与不及格;某事件 A 发生与 不发生等许多现象都能够刻划成 0 1两点分布.
§2 离散型随机变量及其分布律
一、离散型随机变量及其分布律的概念 定义 2.1 若随机变量 X 的取值为有限个或可列无限多个,就 称 X 为离散型随机变量.
定义 2.2 设 X 为离散型随机变量,其所有可能的取值为 x1, x2 ,L , xi ,L ,且
P{X xi} pi , i 1, 2,L .
的概率为 0.6 ,求该射手在 4 次射击中,命中目标次数 X 的
分布律,并问 X 取何值时的概率最大. 解 将每次射击看成一次随机试验,所需考查的试验结果只
有击中目标和没有击中目标,因此整个射击过程为 4 重的贝
努里试验.故由题意知, X ~ B(4, 0.6) ,即
P{X k} C4k 0.6k 0.44k , k 0,1, 2,3, 4 .
P{X
10}
第二节 离散型随机变量及其分布

例3.1.3 (进货问题)由某商店过去的销售记录知
道,海尔彩电每月的销售数可用参数为λ =5的泊 松分布来描述,为了以95%以上的把握保证月底不 脱销,问商店在月底至少应进多少台? 解:设每月的销售数为X,月底进N台,则
其概率分布为 P ( X 1) 3 10 即X服从两点分布。
7 P( X 0) 10
(2) 二项分布 B ( n, p )
背景:n 重Bernoulli 试验中,每次试验感兴 趣的事件A 在 n 次试验中发生的次数 —— X是一离散型随机变量
若P ( A ) = p , 则
Pn ( k ) P ( X k ) C p (1 p)
P{ X 1} 1 P{ X 0} =1 0.99
成功次数服从二项概率
400
0.9820
B(400, 0.01)
有百分之一的希望,就要做百分之百的努力!
(3) Poisson 分布 ( ) 或 P ( )
k! 其中 0 是常数,则称 X 服从参数为 的Poisson 分布,记作 ( ) 或 P ( )
k n k
n k
, k 0,1,, n
称 X 服从参数为n, p 的二项分布(也叫Bernolli 分布).记作
X ~ B( n, p)
0 – 1 分布是 n = 1 的二项分布.
例3.1.1 一大批产品的次品率为0.1,现从中取
出15件.试求下列事件的概率: B ={ 取出的15件产品中恰有2件次品 } C ={ 取出的15件产品中至少有2件次品 }
3.2 离散型随机变量

1、已知分布律,求分布函数※
例3:已知X的分布律,
求 X 的分布函数。
X p Pk
1 1 4
2 1 2
3 1 8
4 1 8
F ( x) P( X x)
x 1 0, P X 1 1 , 1 x 2 4 P X 1 P X 2 3 2 x3 4 P X 1 P X 2 P X 3 7 3 x 4 8 P X 1 P X 2 P X 3 P X 4 1 4 x
例2:某人的手枪里有5发子弹,他向一个目 标独立地射击,直到首次击中才停止射击。 已知每发子弹命中目标的概率为0.6,求消耗 子弹数X的分布律。
已知离散型随机变量的分布律, 求出随机事件的概率. 练习:设随机变量 X 的分布律为
求P
X 2 , P 0 X 5/ 2, P 1 X 3
例如,袋中有5个球,编号为1,2,3,4,5,从中任取3个, 以Y表示3个球中的最大号码,则Y服从超几何分布。
本节小结:
知识点与基本要求: (1)理解离散型随机变量及其概率分布的概念,掌握 离散型随机变量的分布律的性质; (2)理解四种常见分布的实际意义,掌握四种分布(两 点分布、二项分布、泊松分布、超几何分布)及其应用; (3)理解泊松定理的结论和应用条件,了解应用泊松 分布近似表示二项分布; 教学重点:离散型随机变量的分布律性质,四种常见 分布的分布律及其应用; 教学难点:四种常见分布的分布律及其应用。
2、二项分布
设X表示n重伯努利试验中事件A发生的总次数.
X的分布律为
P( X k ) C p (1 p)
k n k
n k
概率统计中的离散型随机变量与连续型随机变量

概率统计中的离散型随机变量与连续型随机变量概率统计是数学的一个分支,用于研究随机现象的规律性和不确定性。
在概率统计中,随机变量是一个非常重要的概念。
随机变量可以分为离散型随机变量和连续型随机变量两种类型。
本文将介绍这两种类型的随机变量以及它们的特点和应用。
一、离散型随机变量离散型随机变量是指在一定范围内取有限个或可列个值的随机变量。
它的特点是在定义域内的每个值都有一定的概率与之对应。
离散型随机变量的概率可以通过概率分布函数来描述。
概率分布函数是一个将随机变量的取值映射到概率的函数。
离散型随机变量常见的例子有抛硬币的结果、掷骰子的点数、抽奖的中奖号码等。
这些随机变量的取值都是有限个或可列个,每个取值的概率可以通过实验或统计数据得到。
离散型随机变量的期望值和方差是衡量其分布特征的重要指标。
期望值表示随机变量的平均取值,方差表示随机变量取值的离散程度。
通过计算期望值和方差,可以更好地理解和描述离散型随机变量的分布特征。
离散型随机变量在实际应用中有着广泛的应用。
例如,在市场调研中,我们可以将消费者的购买行为看作是一个离散型随机变量,通过统计分析不同购买决策的概率分布,可以了解不同消费者的购买偏好和市场需求。
二、连续型随机变量连续型随机变量是指在一定范围内可以取任意实数值的随机变量。
与离散型随机变量不同,连续型随机变量的取值是连续的,无法一一列举出来。
连续型随机变量的概率可以通过概率密度函数来描述。
概率密度函数是一个描述随机变量概率分布的函数,它可以表示在某个取值范围内随机变量出现的概率密度。
与离散型随机变量的概率分布函数不同,连续型随机变量的概率密度函数在定义域内的每个点上的函数值并不表示该点的概率,而是表示该点附近的概率密度。
连续型随机变量常见的例子有身高、体重、温度等物理量。
这些随机变量的取值可以是任意的实数,通过概率密度函数可以描述它们的概率分布情况。
与离散型随机变量类似,连续型随机变量也有期望值和方差这两个重要指标。
2.1.1离散型随机变量

(2)ε,η为希腊字母,读音分别为 [ksai],[i:te].
思考
随机变量和函数有类 似的地方吗?
知识要点
2.随机变量和函数的相同点
(1)随机变量和函数都是一种映射,随机变 量把随机试验的结果映为实数,函数把实数映射 为实数; (2)在这两种映射之间,试验结果的范围相 当于函数的定义域,随机变量的取值范围相当于 函数的值域.
1 6 k C2 C6 (7 k )! 7 k P( Ak ) . 2 k 28 A8
所以, 的分布列为
(2)数学期望为E = (3)所求的概率
P( E ) P( 2) 5 4 3 2 1 15 . 28 28
2 (1 6 2 5 3 4) 2. 28
为2,3,4,5,6,7,8,9,10,11,12.
(2)能用离散型随机变量表示. 可能的取值为
0,1,2,3,4,5.
(3)不能用离散型随机变量表示.
2.可以取的例子很多,这里给出几个例子:
例1 某公共汽车站一分钟内等车的人数; 例2 某城市一年内下雨的天数; 例3 一位跳水运动员在比赛时所得的分数; 例4 某人的手机在一天内接收到电话的次数.
例题1
任意掷一枚硬币,可能出现正面向上、反面向 上这两种结果,虽然这个随机试验的结果不具有数 量性质,但仍可以用数量来表示它.通常我们用ε来 表示这个随机试验的结果: ε=0,表示正面向上; ε=1,表示反面向上.
知识要点
3.离散型随机变量
如果随机变量X的所有可能值只有有限多 个或可列多个(所有值可以一一列出)则称之 为离散型随机变量.
导入新课
思考
掷一枚骰子,出现的点数可以用数字1,2,3, 4,5,6来表示,那么掷一枚硬币的结果是否也 可以用数字来表示呢?
离散性随机变量的概念

离散性随机变量的概念知识归纳1.离散型随机变量随着试验结果的变化而变化的变量叫做随机变量.如果随机变量所有可能取的值,可以按一定次序一一列出,这样的随机变量叫做 随机变量.如果随机变量可以取某一区间内的一切值,这样的随机变量叫做 随机变量. 2.离散型随机变量的分布列(1)设离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每个值x i (i =1,2,…n )的概率P (X =x i )=p i ,则称表为随机变量X 的分布列.X 的分布列也可简记为:P (X =x i )=p i ,i =1、2、…、n .(2)离散型随机变量的两个性质: ①p i ≥0,i =1,2,…n ; ②p 1+p 2+p 3+…p n =1.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.3.两点分布如果随机变量X 的分布列为其中0<p <1,则称离散型随机变量X 服从参数为p 的两点分布,称p =P (X =1)为成功概率.任何事件的条件概率都在0和1之间,即0≤P (B |A )≤1,如果B 和C 是两个互斥事件,则P (B∪C |A )=5.事件的独立性设A 、B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与B 相互独立.4.条件概率 一般地,设A 、B 为两个事件,且P (A )>0,称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率,一般把P (B |A )读作A 发生的条件下B 发生的概率.(1)如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都相互独立.(2)如果A 与B 相互独立,则P (B |A )=P (B ),即事件A 的发生与否不影响事件B 的发生. (3)对于n 个事件A 1、A 2、…、A n ,如果其中任何一个事件发生的概率不受其它事件的影响,则这n 个事件A 1、A 2、…、A n 相互独立.如果A 1、A 2、…、A n 相互独立,那么P (A 1A 2…A n )=6.独立重复试验与二项分布(1)一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验.各次试验的结果不受其它试验的影响.(2)一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率都为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为则称随机变量X 服从参数为n 、P 的二项分布,记作X ~B (n ,p ),并称p 为成功概率.7.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为为超几何分布列,如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布.超几何分布给出了求解这类问题的方法,可以当公式直接运用.误区警示1.“互斥事件”与“相互独立事件”的区别它们是两个不同的概念,相同点都是对两个事件而言的,不同点是:“互斥事件”是说两个事件不能同时发生,“相互独立事件”是说一个事件发生与否对另一个事件发生的概率没有影响.2.对独立重复试验要准确理解 (1)独立重复试验的条件第一:每次试验是在同样条件下进行.第二:各次试验中的条件是相互独立的.第三,每次试验都只有两种结果,即事件要么发生,要么不发生3.(1)准确理解事件和随机变量取值的意义,对实际问题中事件之间的关系要清楚. (2)认真审题,找准关键字句,提高解题能力.如“至少有一个发生”,“至多有一个发生”,“恰有一个发生”等.P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n .P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,(其中m 是M ,n 中的最小值,n ≤N ,M ≤N ,n 、M 、N ∈N *).称分布列一、解决概率问题的步骤第一步,确定事件的性质:古典概型、互斥事件、独立事件、独立重复试验,把所给问题归结为某一种.第二步,判断事件的运算(和事件、积事件),确定事件至少有一个发生还是同时发生等等. 第三步,运用公式求概率1、 写出下列各随机变量可能的取值,并说明随机变量所表示的随机试验的结果.(1)小明要去北京旅游,可能乘火车、乘汽车,也可能乘飞机,旅费分别为100元、60元和600元,将他的旅费记为ξ;(2)正方体的骰子,各面分别刻着1、2、3、4、5、6,随意掷两次,所得的点数之和为ξ; (3)一个人要开房门,他共有10把钥匙,其中仅有一把是能开门的,他随机取钥匙去开门并且用后不放回,其中打开门所试的钥匙个数为ξ;(4)电台在每个整点都报时,某人随机打开收音机对表,他所等待的时间ξ(min). 2、 (09·广东)已知离散型随机变量X 的分布列如右表,若E (X )=0,D (X )=1,,则a =______,b =______.设随机变量ξ的分布列为P (ξ=k )=ck +1,k =0,1,2,3,则E (ξ)= ( )A.1225B.2325C.1350D.4625古典概型P (A )=mn ;互斥事件P (A ∪B )=P (A )+P (B ); 条件概率P (B |A )=P (AB )P (A ); 独立事件P (AB )=P (A )P (B );n 次独立重复试验:P (X =k )=C k n p k (1-p )n -k.3 一次数学摸底考试,某班60名同学成绩的频率分布直方图如图所示.若得分90分以上为及格.从该班任取一位同学,其分、数是否及格记为ξ,求ξ的分布列.4 从某批产品中,有放回地抽取产品两次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96.(1)求从该批产品中任取一件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.5某学习小组有6个同学,其中4个同学从来没有参加过数学研究性学习活动,2个同学曾经参加过数学研究性学习活动.(1)现从该小组中任选2个同学参加数学研究性学习活动,求恰好选到1个曾经参加过数学研究性学习活动的同学的概率;(2)若从该小组中任选2个同学参加数学研究性学习活动,活动结束后,该小组没有参加过数学研究性学习活动的同学个数ξ是一个随机变量,求随机变量ξ的分布列及数学期望E(ξ).6 在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取1件.试求:(1)第一次取到不合格品的概率;(2)在第一次取到不合格品后,第二次再次取到不合格品的概率.7设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx +c =0实根的个数(重根按一个计).(1)求方程x 2+bx +c =0有实根的概率; (2)求ξ的分布列和数学期望;(3)求在先后两次出现的点数中有5的条件下,方程x 2+bx +c =0有实根的概率.8(1)求该生至少有1门课程取得优秀成绩的概率; (2)求p ,q 的值; (3)求数学期望E (ξ).9.(2010·甘肃省质检)某机械零件加工由2道工序组成,第1道工序的废品率为a ,第2道工序的废品率为b ,假定这2道工序出废品的概率彼此无关,那么产品的合格率是( ) A .ab -a -b +1 B .1-a -b C .1-ab D .1-2ab10.(2010·上海市嘉定区调研)一只不透明的布袋中装有编号为1、2、3、4、5的五个大小形状完全一样的小球,现从袋中同时摸出3只小球,用随机变量X 表示摸出的3只球中的最大号码数,则随机变量X 的数学期望E (X )=( )A.445B.8310C.72D.9211.(2010·福建福州)在研究性学习的一次活动中,甲、乙、丙、丁、戊五位同学被随机地分配承担H,I,J,K四项不同的任务,每项任务至少安排一位同学承担.(1)求甲、乙两人同时承担H任务的概率;(2)求甲、乙两人不同时承担同一项任务的概率;(3)设这五位同学中承担H任务的人数为随机变量ξ,求ξ的分布列及数学期望E(ξ).12.(2010·云南统考)某单位组织职工参加了旨在调查职工健康状况的测试.该测试包括心理健康测试和身体健康测试两个项目,每个项目的测试结果为A、B、C、D、E五个等级.假设该单位50位职工全部参加了测试,测试结果如下:x表示心理健康测试结果,y表示身体健康测试结果.(1)求a+b的值;(2)如果在该单位随机找一位职工谈话,求找到的职工在这次测试中,心理健康为D等级且身体健康为C等级的概率;(3)若“职工的心理健康为D等级”与“职工的身体健康为B等级”是相互独立事件,求a、b的值.13.(2010·河北唐山)已知7件产品中有2件次品,现逐一不放回地进行检验,直到2件次品都能被确认为止.(1)求检验次数为4的概率;(2)设检验次数为ξ,求ξ的分布列和数学期望.14.(2010·浙江金华十校联考)质地均匀的正四面体玩具的4个面上分别刻着数字1,2,3,4,将4个这样的玩具同时抛掷于桌面上.(1)求与桌面接触的4个面上的4个数的乘积不能被4整除的概率;(2)设ξ为与桌面接触的4个面上数字中偶数的个数,求ξ的分布列及期望E(ξ).15.(2010·河南调研)甲、乙两人进行某项对抗性游戏,采用“七局四胜”制,即先赢四局者为胜,若甲、乙两人水平相当,且已知甲先赢了前两局,求:(1)乙取胜的概率;(2)比赛进行完七局的概率;(3)记比赛局数为ξ,求ξ的分布列及数学期望E(ξ).。
名词解释离散型随机变量

名词解释离散型随机变量
离散型随机变量是指具有有限个值或有限个可能结果中出现的一种变量,它们
具有离散取值,而不是连续变化。
离散型随机变量既可以是定义在连续变量上的变量,也可以是由其他连续随机变量(如随机变量)组成的变量。
离散型随机变量的应用可以追溯到19世纪的统计学家,他们把随机变量分为
连续型变量和离散型变量,以描述发生在概率范畴里的一些事件。
离散型随机变量是一个很强大的数学概念,已被广泛应用于各种科学领域,其中包括金融、经济学、生物统计学等。
离散型随机变量在统计学中可被描述为某一实验,其值依赖于可能观测到的值,本质上是一种概率分布。
它们利用概率论来表示实验结果的不确定性,可用于估计一种实验事件发生的概率。
更重要的是,它可以用来推断概率分布的特性,如正态分布、对数正态分布等,并估计其概率密度函数的参数值。
离散随机变量的另一个重要应用是描述实验结果的统计特性。
比如,使用它们
可以表示实验组与控制组之间的统计频数,识别两者之间的差异,也可以表示实验组间统计频数之间的相关性,同时绘制实验结果的直方图,使用者可清晰地观察不同状态的变化。
离散型随机变量在相关研究中的作用也受到了人们的广泛关注。
它可以用于识
别某一变量和另一个变量之间的相关性,以及可能的关系,这常常可简化研究者在实验中的观察结果,为深入的研究提供必要的信息。
总之,离散型随机变量具有深远的影响力,它们可以用来描述实验结果的统计
特性,估计概率分布的参数,识别不同变量之间的相关性等,因此离散型随机变量当今全球社会中受到的人们的广泛关注和广泛使用,在不断提升社会生活水平的过程中扮演着重要角色。
概率论与数理统计:离散型随机变量的分布函数

0, 1, 2, , n.
当 X k (0 k n) 时, 即 A 在 n 次试验中发生了k 次.
A A A A A A ,
k次
n k 次
A A A A A A A A
k 1 次
n k 1 次
n 得 A 在 n 次试验中发生k 次的方式共有 种, k 且两两互不相容.
P{ X 0} 0.012 P{ X 1} 0.058
P{ X 4} 0.218 P{ X 5} 0.175 P{ X 6} 0.109 P{ X 8} 0.022 P{ X 9} 0.007
P{ X 10} 0.002
P{ X 2} 0.137
1 0.9999
1000
1000 0.0001 0.9999999 1
4. 泊松分布
设随机变量所有可能取 的值为 0, 1, 2,, 而取各个 值的概率为 k! 其中 0 是常数.则称 X 服从参数为 的泊松分 布, 记为 X ~ π( ).
泊松资料
将 E 独立地重复地进行n 次, 则称这一串重 复的独立试验为n 重伯努利试验.
实例1 抛一枚硬币观察得到正面或反面. 若将硬 币抛 n 次,就是n重伯努利试验. 实例2 抛一颗骰子n次,观察是否 “出现 1 点”, 就
是 n重伯努利试验. (3) 二项概率公式
若 X 表示 n 重伯努利试验中事件A 发生的次数, 则 X 所有可能取的值为
xk x
xk x
P( X x
k
)
xk x
p
k
pk P( X xk ) F ( xk ) F ( xk 1 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说明:本章研究的离散型随机变量只取有限个值.
你能举出一些离散型随机变量的例子吗?
-
11
离散型随机变量的一些实例: (1) 在本班中任意抽取5名同学中戴眼镜的人数;
2015
它的所有可能取值为0,1,2,3,4,5 (共6个)
(2) 某人射击一次可能命中的环数. 它的所有可能取值为0,1,2,…,10 (共11个)
(3) 1小时内到达某公共汽车站的人数;
它的所有可能取值为0,1,2,… .
-
12
随机变量的分类
随机变量2015
离散型
连续型
随机变量所取的可能值是有限多个或无限可列个, 叫做离散型随机变量.
随机变量所取的可能值可以连续地充满某个 区间,叫做连续型随机变量.
-
13
-
练 下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由. (1)上海国际机场候机室中2011年10月1日的201旅5 客数量; (2)2011年某天济南至北京的D36次列车到北京站的时间; (3)2011年5月1日到10月1日期间所查酒驾的人数; (4)体积为1000 cm3的球的半径长.
-
8
函数与随机变量的异同点
2015
-
9
例如,在含有10件次品的100件产品中,任意抽取4件,可能含有的次品件数X将随着抽 取结果的变化而变化,是一个随机变量.
其值域是
2015
{0,1,2,3,4} .
问题4 能够通过随机变量X来研究随机事件吗? 例如,{X=0}表示“抽出0件次品”; {X=1}表示“抽出1件次品”; {X=4}表示“抽出4件次品”等. 你能说出{X<3}表示什么事件呢?
-
5
思考与探究
在掷骰子、掷硬币和罚球的随机试验中,我们确定了一个对应关系,使得每一个试验
结果都用一个确定的数字表示.
2015
在这个对应关系下,数字随着试验结果的变化而变化.
定义1:这种随着试验结果变化而变化的变量称为随机变量 (random variable).
符号表示:常用希腊字母ξ,η大写英文字母X,Y等表示。
“抽出3件以上次品”又如何用X表示呢?
{X=3或X=4}
-
“抽出0或1或2 件次品”
10
问题5 从值域的角度来看,前面所涉及的随机变量取值有什么特点?
2015
特点:随机变量所取的值可以一一列出.
定义2:所有取值可以一一列出的随机变量称为离散型随机变量 (discrete random variable).
-
7
随机变量和函数有类似的地方吗? 思考与探究
随机变量和函数都是一种映射,随机变2015量把随机试验的结果映为实数,而函数把实 数映为实数.
实际上随机变量的概念也可以看作是函数概念的推广.
试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域. 我们把随机变量的取值范围叫做随机变量的值域.
2015
离散型随机变量的概念
-
复习引入:
1、什么是随机事件?什么是基本事件?
20ቤተ መጻሕፍቲ ባይዱ5
在一定条件下可能发生也可能不发生的事件,叫做随机事件。试验的每一个可能的结果称为 基本事件。
2、什么是随机试验?
凡是对现象或为此而进行的实验,都称之为试验。
如果试验具有下述特点: 试验可以在相同条件下重复进行;每次试验的所有可能结果都是明确可知的,并且不止一个; 每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪 一个结果。它被称为一个随机试验。简称试验。
是
是
是
不是
-
思考与探究
问题1 (1)掷一枚骰子,出现的结果有哪些? (2)掷一枚硬币,出现的结果有哪些?
2015
(1)出现的点数用数字1,2,3,4,5,6来表示.
(2)掷一枚硬币,可能出现的结果有 种:
两
正面向上、反面向上
但我们可以用数字1和0分别表示正 面向上和反面向上.
正面向上 反面向上
1
1 2
-
6
问题3 在掷骰子试验中,如果我们仅关心掷出的点数是否为偶数,应该如何定义随机变量 呢?
0 , 掷出奇数点
2015
Y= 1 , 掷出偶数点
与掷出点数X (1,2,3,4,5,6)比较,随机变量Y (0,1)的值域更小,构造更简单.
说明:在实际应用中应该选择有实际意义、尽量简单的随机变量来表示随机试验的结果.
还可以用其他的数来表示这两个试验的结果
0
吗?
-
4
问题2 一位篮球运动员3次投罚球的得分结果可以用数字表示吗?生产一件 产品合格与否,其结果也可以用数字表示吗?
2015
任何随机试验的所有结果都可以用数字表示吗?
说明: (1)任何一个随机试验的结果我们可以进行数量化; (2)同一个随机试验的结果,可以赋不同的数值.