OP07构成的高精度绝对值整流电路特别好用,最后一个电路是

合集下载

op07放大正弦波电路

op07放大正弦波电路

op07放大正弦波电路OP07是一种高精度、低噪声的运算放大器,广泛应用于各种电路中。

本文将重点介绍以OP07放大器为核心的正弦波放大电路。

正弦波放大电路是一种常见的电路,用于放大输入信号的正弦波部分。

它在许多领域中都有应用,比如音频放大、通信系统、测试仪器等。

在正弦波放大电路中,OP07作为运算放大器被广泛使用。

OP07具有高增益、低噪声、低失调电流等优点,使其成为放大器电路的理想选择。

下面我们将详细介绍OP07放大器在正弦波放大电路中的应用。

我们需要了解正弦波放大电路的基本原理。

正弦波放大电路通常由三个主要部分组成:输入级、放大级和输出级。

输入级用于接收输入信号,放大级用于放大信号,输出级用于输出放大后的信号。

在输入级中,我们可以使用OP07作为差分放大器。

差分放大器可以将输入信号进行放大,并将差分信号传递给放大级。

OP07的高增益特性可以确保输入信号被有效放大,同时低噪声特性可以减少噪声对信号的影响。

放大级是整个电路的核心部分,它由多个级联的放大器组成。

每个放大器都使用OP07作为运算放大器,以确保信号在每个级别都得到充分放大。

通过合理选择放大器的增益系数,可以实现对输入信号的精确放大。

输出级负责将放大后的信号输出到负载电阻上。

OP07作为输出级的推动器,可以提供足够的输出电流,以确保信号能够正常传输到负载电阻。

在实际设计中,我们还需要考虑一些细节问题。

例如,输入级需要使用合适的偏置电压,以确保输入信号能够正常工作。

此外,为了减少幅度失真,我们还可以使用负反馈电路进行校正。

总的来说,以OP07放大器为核心的正弦波放大电路具有高增益、低噪声、低失调电流等优点。

它能够有效地放大输入信号,并保持信号的准确性和稳定性。

因此,OP07放大器在正弦波放大电路中得到了广泛的应用。

除了正弦波放大电路,OP07还可以用于其他各种电路中,如滤波电路、仪器放大器、传感器接口等。

它的高性能和可靠性使其成为工程师们的首选。

运放绝对值电路分析

运放绝对值电路分析

电压绝对值电路,顾名思义就是输出电压是输入电压的绝对值。

在很多运放的datasheet上可以看见绝对值电路的身影,就拿大家熟悉的OP07为例其绝对值电路如图1所示图1.OP07电压绝对值电路图现在我们来分析分析图1电路的工作过程。

(1)输入为正电压时电路可以等效为两个单位增益反向放大器级联,达到“负负得正”的效果。

可以将电路图拆分,得到前一个反向放大器如图2所示。

图2.前级反向放大器图2为什么是一个反向放大器的电路呢?主要是多了两个二极管,让我们觉得与一般的反向放大有些不同了。

我们可以看看它的工作情况。

从仿真的结果可以看出,其中D1导通,D2截止。

这个比较好理解,电路从输入口流到运放的2端口,运放的输入电流很小(可忽略),所以电路一分为二,继续向前流,都遇到10K的电阻,也同样遇到了二极管,但是上面的是从二极管正端流入,下面的是负端流入,当然D1导通,D2截止啦!(我是这么理解的,不是很科学,但是比较容易懂)。

那么下面一个10k和D2的电路截止了,就可以忽略不计了,电路就可以当做一个方向放大器来理解了。

再加上后面一个方向放大,就“负负得正”了。

(2)输入电压为负时图3.负电压仿真当输入为-6.32V,输出为6.32V。

设输入为Vin,运放1的正相输入和反相输入端电压分别为V1+、V1-,运放2的正相输入和反相输入端电压分别为V2+、V2-,R1与R2间的节点电压为V o1,电路输出电压V out.由虚短可知V1+=V1-=0V,V2+=V2-,所以V2+-V1+=V2--V1-,即这两条之路的压差相等。

我们先不理会二极管D1与D2。

那么R1、R2支路与R5支路的压差相等,但是电阻为2:1,则电流为1:2.而这两条支路电路之和等于输入电流。

由这样的关系可以计算得:V2-=V2+=-2/3Vin,V o1=-1/3Vin,因此R2两端的压差为-1/3V in。

最后的输出为:V out=V2-+[(1/3Vin)/R2] *R3=-Vin。

o放大器电路图设计

o放大器电路图设计

op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。

由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A 为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。

特点:超低偏移:150μV最大。

低输入偏置电流:。

低失调电压漂移:μV/℃ 。

超稳定,时间:2μV/month最大高电源电压范围:±3V至±22V图1 OP07外型图片图2 OP07 管脚图OP07芯片功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源+图3 OP07内部电路图ABSOLUTE MAXIMUM RATINGS 最大额定值Symbol符号Parameter参数Value数值Unit 单位VCC Supply Voltage 电源电压±22V Vid Differential Input Voltage差分输入电压±30V Vi Input Voltage 输入电压±22V Toper Operating Temperature 工作温度-40 to+105℃Tstg Storage Temperature 贮藏温度-65 to+150℃电气特性虚拟通道连接= ± 15V ,Tamb = 25 ℃(除非另有说明)Symbol 符号Parameter 参数及测试条件最小典型最大Unit单位VioInput Offset Voltage 输入失调电压0℃ ≤ Tamb-6015μV≤ +70℃250 Long Term Input Offset VoltageStability-(note 1) 长期输入偏置电压的稳定性-2μV/MoDVio Input Offset Voltage Drift 输入失调电压漂移-μV/℃Iio Input Offset Current输入失调电流0℃≤Tamb≤ +70℃-68nADIio Input Offset Current Drift 输入失调电流漂移-1550pA/℃Iib Input Bias Current输入偏置电流0℃≤Tamb ≤+70℃-79nADIib Input Bias Current Drift 输入偏置电流漂移-1550pA/℃Ro Open Loop Output Resistance 开环输出电阻-60-ΩRid Differential Input Resistance 差分输入电阻-33-MΩRic Common Mode Input Resistance 共模输入电阻-12-GΩVicm Input Common Mode Voltage Range输入共模电压范围0℃ ≤ Tamb ≤ +70℃±13±13±-VCMRCommon Mode Rejection Ratio (Vi =Vicm min)共模抑制比0℃ ≤ Tamb ≤ +70℃10097120-dBSVRSupply Voltage Rejection Ratio 电源电压抑制比(VCC = ±3to ±18V) 0℃ ≤ Tamb ≤ +70℃9086104-dBAvd Large SignalVoltage Gain大信号电压增益VCC = ±15, RL =2KΩ,VO =±10V,12040-V/mV 0℃ ≤ Tamb ≤ +105℃100-VCC = ±3V, RL = 500W,VO = ±10040-Vopp Output VoltageSwing 输出电压摆幅RL = 10KΩ±12±13-VRL= 2kΩ ±±RL= 1KΩ±120℃ ≤ Tamb ≤ +70℃ RL=2KΩ±11-SR Slew Rate 转换率(RL =2KΩ,CL = 100pF)--V/μS GBPGain Bandwidth Product 带宽增益(RL =2KΩ,CL= 100pF, f = 100kHz)--MHzIcc Supply Current -(no load) 电源电流(无负载)0℃ ≤ Tamb ≤ +70℃ VCC = ±3V-56mAen EquivalentInput NoiseVoltage等效输入噪声电压f = 10Hz -1120nV√Hzf = 100Hz-f = 1kHz-10in EquivalentInput NoiseCurrent 等效f = 10Hz-PA√Hzf = 100Hz-输入噪声电流f = 1kHz-图4 输入失调电压调零电路应用电路图:图5 典型的偏置电压试验电路图6 老化电路图7 典型的低频噪声放大电路图8 高速综合放大器图9 选择偏移零电路图10 调整精度放大器图11 高稳定性的热电偶放大器图12 精密绝对值电路。

op07

op07

摘要信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

在电子技术应用领域,函数信号发生器的主要用途是在电子电路测量或调试时做信号源,本课题要求设计输出标准方波波形的函数信号发生器,要完成此方案的方法有许多,可通过迟滞比较器和RC积分电路或集成运算放大器来实现方波信号的产生,其中由集成运算放大器构成的方波信号发生器具有结构简单、调试方便的优点,本文主要对标准方波波形信号发生器电路作深入分析。

设计中多用到模拟电子基础技术中的知识,以充分复习和应用自己已经学过的知识。

第一章绪论在现在社会里,人们的生活通过科技的创新而改变。

而其中,电子产品的更新换代的速度也愈来愈快。

可以说,电子产品改变人类的生活。

虽然,绝大部分电子类产品的原理是复杂的,但是,其基本的原理都是一样的,他们都是对信号进行采集、分析和处理,从而做出相应的处理。

可见,信号质量的好坏,很大程度上可以决定一个电子产品是否符合人的需求。

就目前来说,在信号波形的产生与分解这一部分,国内外的技术已日趋成熟,而我通过本文,一方面来浅析一下该部分的工作原理,另一方面也通过课程设计来巩固自己所学知识,为以后的工作和学习做好铺垫。

本文主要深入讨论标准信号发生器电路及其工作所需直流稳压电源。

进一步复习模拟电子技术基础的知识,为实践工作做准备。

第二章标准信号发生器电路设计方案论证2.1 标准信号发生器电路的应用意义电源和信号发生器是电子电路和电子系统中不可缺少的重要组成部分。

通过本次设计,可了解直流稳压电源的工作原理,学习用集成运算放大器构成方波发生器的设计方法和调试方法,并观测方波发生器的波形、幅度和频率,进一步熟悉波形变换电路的工作原理及参数计算和调试方法。

学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。

信号发生器也称信号源,是用来产生振荡信号的一种仪器,为使用者提供需要的稳定、可信的参考信号,并且信号的特征参数完全可控。

ICL7107数字电压表电路及组装要点

ICL7107数字电压表电路及组装要点

ICL7107数字电压表电路及组装要点ICL7107是美国Intersil公司专为数字仪表生产的数字仪V为满幅输入电压一般取200mV或2VINFS表专用芯片。

该芯片集成度高,转换精度高,抗干扰能力强,输出③积分电容CINT可直接驱动发光数码管,只需要很少的外部元件,就可以构成数积分电容取值用下式估算:字仪表模块。

ICL7107芯片用在X线机毫安显示电路中,能使毫CINT=4000×IINT/fosc×VIS安读数显示电路做到使用元件少,可靠性高,调试维修方便。

V为积分器输出幅度。

IS1ICL7107芯片简介④自动稳零电容CAZICL7107是双积分式3位半模数转换器,ICL7107集成电自动稳零电容CAZ大小的选择依系统允许引入的噪声为路内...传统的数字显示测量仪表以集成芯片(比如ICL7107芯片)集成显示为主,或者进行A/D转换后,简单地用单片机技术实现数字显示,单片机技术只是运用于简单的显示作用.由于随着计算机辅助教学在电工电子等教学设备的应用,迫切要求教学设备的硬件结构符合计算机双向控制的要求.特别是在测量仪表上,运用大量的单片机技术可以使许多功能简单实现辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。

也可以把芯片的缺口朝左放置,左下角也就是第一脚了。

许多厂家会在第一脚旁边打上一个小圆点作为标记。

知道了第一脚之后,按照反时针方向去走,依次是第 2 至第40 引脚。

(1 脚与40 脚遥遥相对)。

2.牢记关键点的电压:芯片第一脚是供电,正确电压是DC5V 。

第36 脚是基准电压,正确数值是100mV,第26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。

芯片第31 引脚是信号输入引脚,可以输入±199.9mV 的电压。

在一开始,可以把它接地,造成“0”信号输入,以方便测试。

OP07作用详解

OP07作用详解
02380-004
499Ω
图4:采用虚地的3 V单电源50 Hz/60 Hz有源陷波滤波器
Rev. B | Page 3 of 8
AN-573
更低的电源电流
OP07的静态电流高于当今便携式应用的理想值。OP777仪 表放大器的静态电流小于350 A,而OP07需要4 mA电流才 能在±15 V电压下工作。OP777的低功耗使器件能够设计用 于众多便携式应用。
AN-573 应用笔记
One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 •
OP07仍在发展
作者:Reza Moghimi
5V V1 R12 1MΩ 3 2 U4 V+ V2 1 R13 10.1kΩ
02380-005
+15V 22kΩ IN4002 1 F AD680AD 2 VIN VOUT TEMP R48 6 10kΩ 3 R49 10kΩ +VS 3 2 V+ 1 10kΩ 1/4 OP747 R50 10kΩ C8 1µF 10kΩ 10kΩ 5V 10kΩ 1/4 OP747 7.5V
简介
OP07已经过数年的修补,目前提供的仍是塑料封装版本。
本应用笔记重点说明OP7x7在新设计中的一些主要特性, 并介绍使用了这些特性的一些应用。
电源,也可采用具有单一供电轨的+30 V至+2.7 V电源。 OP777/OP727/OP747数据手册详尽描述了采用+5 V和±15 V 供电轨的器件特性。OP7x7系列的单电源供电能力使设计 人员在单电源和双电源应用中均可采用负电源或地电压供 电。 图1显示仪表放大器(由U3和U4构成)的增益被设置为100。 AD589 建立1.235 V电压,U1放大器伺服于电桥,并维持 2.55 M 和6.19 k 并联组合两端的电压,从而产生200 A 电流源。该电流均匀分离并流入电桥两个部分,最终流经 RTD,并根据电流值建立输出电压。

op07中文资料

op07中文资料一、引言本文档旨在为读者提供关于OP07运算放大器的中文资料。

OP07是一种高性能精密运算放大器,被广泛应用于工业控制、仪器仪表和传感器信号调理等领域。

本文将介绍OP07的基本特性、电路应用、性能参数等内容,以帮助读者更好地了解和应用OP07。

二、OP07概述OP07是由美国ADI(Analog Devices Inc.)公司推出的一种低噪声、低失调、高增益的运算放大器。

其内部电路采用了差动输入、差动输出的架构,使其具有良好的共模抑制比和噪声性能。

OP07采用超低温漂技术,使其在温度变化较大的环境下依然能提供稳定的性能。

三、OP07特性1. 低噪声OP07的噪声系数非常低,通常在10nV/√Hz以下。

这使得OP07能够处理微弱信号并提供高信噪比的放大功能。

2. 低失调OP07具有低失调和低温漂特性,其失调电压和失调电流均较小。

这使得OP07能够准确放大输入信号,不会引入过多失真。

3. 高增益OP07的开环增益非常高,通常在100dB以上。

高增益使得OP07对输入信号的放大能力更强,可适用于高精度、低噪声的应用场景。

4. 宽电源范围OP07的电源电压范围较宽,通常可以工作在±15V的电源电压下。

这使得OP07适用于不同电源供电的应用场合。

四、OP07应用OP07广泛应用于各种需要高精度、低噪声放大的场合,下面列举了一些常见的应用示例:1. 传感器信号调理OP07可以用于处理传感器输出信号,提供高增益、低噪声的放大功能。

例如,温度传感器、压力传感器、光电传感器等信号的放大和调理。

2. 工业自动化OP07可用于工业控制中的PID控制、测量仪表和反馈控制等场合。

其高精度、低噪声的特性能够提供稳定和精确的控制。

3. 仪器仪表OP07可用于精密仪器仪表中的放大和信号调理,如电压测量仪、电流测量仪、频率计等。

其高性能可以提供准确的测量结果。

4. 数据采集OP07适用于数据采集系统中的信号放大和调理。

运放op07参数

运放op07参数摘要:1.运放op07 概述2.运放op07 的主要参数3.运放op07 的参数解读4.运放op07 的应用领域正文:一、运放op07 概述运放,全称为运算放大器,是一种模拟电路,用于对信号进行放大、滤波、模拟计算等功能。

在众多的运算放大器中,op07 是一款性能较为优越的运放芯片,被广泛应用于各种电子设备中。

二、运放op07 的主要参数运放op07 的主要参数包括:1.开环增益:表示在没有负反馈时,运放的电压放大倍数。

op07 的开环增益一般为1000 倍左右。

2.输入阻抗:表示运放输入端的阻抗,即输入电流与输入电压之间的比值。

op07 的输入阻抗非常高,可达到MΩ甚至GΩ的数量级。

3.输出阻抗:表示运放输出端的阻抗,即输出电流与输出电压之间的比值。

op07 的输出阻抗较低,通常在几十欧姆到几百欧姆之间。

4.全功率带宽:表示运放在全功率状态下,可以稳定工作的频率范围。

op07 的全功率带宽一般在1MHz 左右。

5.输入失调电压:表示运放输入端两个输入信号理想情况下应该完全相等,但由于制造工艺等原因导致的微小差异。

op07 的输入失调电压非常低,一般在几毫伏到几十毫伏之间。

6.噪声:表示运放在正常工作状态下,输入端产生的噪声电压。

op07 的噪声电压较低,一般在几纳伏到几十纳伏之间。

三、运放op07 的参数解读1.开环增益越高,运放的放大能力越强,但同时容易产生自激振荡,因此在设计电路时要权衡好这两者之间的关系。

2.输入阻抗越高,说明运放对输入信号的影响越小,可以更好地保留输入信号的原始特性。

同时,高输入阻抗也有助于提高运放的抗干扰能力。

3.输出阻抗越低,说明运放可以驱动更大的负载,但过低的输出阻抗会导致运放的输出电压受到限制。

4.全功率带宽越宽,说明运放在高频信号处理方面的性能越好,但同时也会增加运放的噪声。

5.输入失调电压越低,说明运放的输入信号平衡性越好,可以提高电路的稳定性。

单片机控制单相交流调功器的设计

武汉理工大学华夏信息工程课程设计报告书课程名称单片机控制单相交流调功器的设计课程设计总评成绩学生姓名、学号************学生专业班级自动化1082指导教师姓名课程设计起止日期2011.11.28--2011.12.25三、项目设计方案论证(可行性方案、最佳方案、软件程序、硬件电路原理图和PCB图 )1系统结构设计1.1系统设计框图基于单片机的单相交流调功器,顾名思义是要通过单片机编程控制实现交流调功。

通常来自传感器的信号是伏级的模拟信号,而单片机的接口电压为+5V,因此需要一个信号放大电路和一个A/D转换电路。

信号通过放大转换之后输送到单片机,单片机通过运行指令,控制输出脉冲,通过脉冲驱动主电路晶闸管,从而达到调功的目的。

系统框图如图1.1所示:图1.1基于单片机的单相交流调功器设计框图2方案论证2.1信号放大电路通信系统中使用的小信号放大器分为两类,一类是谐振放大器,谐振放大器都是选频的窄带放大器,并联谐振回路、耦合谐振回路和各种固体滤波器是其负载。

谐振放大器的主要参数除了电压放大倍数(增益)、输入阻抗、输出阻抗外,通频带和选择性是有别于其它放大器的重要的参数。

另一类是宽带放大器,实用中的宽带放大器多为集成放大器。

分离元件的谐振放大器通常采用y参数等效电路来分析计算,单管单调谐放大器和单管双调谐放大器的分析计算是本章的重点,这一章要注意计算公式的灵活应用。

小信号放大器能否稳定工作是电路设计和调整中必须考虑的问题,但是稳定性涉及的问题比较多,计算只能为电路调整指一个方向,需要根据实际情况进行仔细地调整。

集成宽带放大器+集中选频滤波器是目前小信号放大器的方向。

宽带放大器也存AD620的管脚示意图如图1.2所示:图1.2 AD620的管脚示意图A/D转换采用芯片AD574,AD574A是美国模拟数字公司(Anal og)推出的单片高速12位逐次比较型A/D转换器,内置双极性电路构成的混合集成转换显片,具有外接元件少,功耗低,精度高等特点,并且具有自动校零和自动极性转换功能,只需外接少量的阻容件即可构成一个完整的A/D转换器。

op07引脚图及应用电路 管脚及代换元件介绍

OP07是高精度低失调电压的精密运放集成电路,用于微弱信号的放大,如果使用双电源.能达到最好的放大效果下面介绍一下他的引脚图资料。

OP07 pdf 中文资料下载:/view.jsp?Searchword=OP07
op07介绍
1) 低的输入噪声电压幅度—0.35 μVP-P (0.1Hz ~10Hz)
2) 极低的输入失调电压—10 μV
3) 极低的输入失调电压温漂—0.2 μV/ ℃
4) 具有长期的稳定性—0.2 μV/MO
5) 低的输入偏置电流—±1nA
6) 高的共模抑制比—126dB
7) 宽的共模输入电压范围—±14V
8) 宽的电源电压范围—±3V ~±22V
9) 可替代725、108A、741、AD510 等电路
下面是一些OP07放大电路的应用,供大家查阅。

OP07应用介绍
TD07高精度运放具有极低的输入失调电压,极低的失调电压温漂,非常低的输入噪声电压幅度及长期稳定等特点。

广泛应用于稳定积分、比较器,密绝对值电路、及微弱信号的精确放大(中有详细介绍),尤其适应于宇航、军工的应用。

可和uA741,uA709,LM301,LM308, LF356,OP07,op37,max427这些运放来直接代换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。

由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。

特点:
超低偏移:150μV最大。

低输入偏置电流: 1.8nA 。

低失调电压漂移:0.5μV/℃。

超稳定,时间:2μV/month最大
高电源电压范围:±3V至±22V
图1 OP07外型图片
图2 OP07 管脚图
OP07芯片引脚功能说明:
1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚6为输出,7接电源+
图3 OP07内部电路图
电气特性
虚拟通道连接= ± 15V ,Tamb = 25 ℃(除非另有说明)
图4 输入失调电压调零电路
应用电路图:
图5 典型的偏置电压试验电路
图6 老化电路
图7 典型的低频噪声放大电路
图8 高速综合放大器
图9 选择偏移零电路
图10 调整精度放大器
图11 高稳定性的热电偶放大器
图12 精密绝对值电路
以上翻译自SGS-THOMSON的OP07。

相关文档
最新文档