2018年武汉市中考数学模拟试题及答案
(完整版)2018年武汉市中考数学试卷及答案解析,推荐文档

5 32018 年武汉市初中毕业生考试数学试卷考试时间:2018 年6 月20 日14:30~16:30 、一、选择题(共10 小题,每小题3 分,共30 分)1.温度由-4℃上升7℃是()A.3℃B.-3℃C.11℃D.-11℃12.若分式x 2在实数范围内有意义,则实数x 的取值范围是()A.x>-2 B.x<-2 C.x=-2 D.x≠-23.计算3x2-x2 的结果是()A.2 B.2x2 C.2x D.4x2 4.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、405.计算(a-2)(a+3)的结果是()A.a2-6 B.a2+a-6 C.a2+6 D.a2-a+66.点A(2,-5)关于x 轴对称的点的坐标是()A.(2,5) B.(-2,5) C.(-2,-5) D.(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3B.4C.5D.68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.14B.12C.34D.569.1 2 3 4 5 6 7 89 10 11 12 13 14 15 1617 18 19 20 21 22 23 2425 26 27 28 29 30 31 32……平移表中带阴影的方框,方框中三个数的和可能是()A.2019 B.2018 C.2016 D.2013⌒⌒AB BC10.如图,在⊙O 中,点C 在优弧上,将弧沿BC 折叠后刚好经过AB 的中点D.若⊙O 的半径为,AB=4,则BC 的长是()A.2 B.3 233C.5 3D.2 2二、填空题(本大题共6 个小题,每小题3 分,共18 分)11.计算( + 2 ) -的结果是12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 400 1500 3500 7000 9000 14000成活数m 325 1336 3203 6335 8073 12628 成活的频率(精确到0.01)0.813 0.891 0.915 0.905 0.897 0.902由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1)m13.计算m2 -1-11-m2的结果是14.以正方形ABCD 的边AD 作等边△ADE,则∠BEC 的度数是15.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y = 60t -3t 2 .在飞机着陆滑行中,最后4 s 滑行的距离是m216.如图,在△ABC 中,∠ACB=60°,AC=1,D 是边AB 的中点,E 是边BC 上一点.若DE平分△ABC 的周长,则DE 的长是三、解答题(共8 题,共72 分)⎧x +y = 1017.(本题8 分)解方程组:⎩⎨2x +y = 1618.(本题8 分)如图,点E、F 在BC 上,BE=CF,AB=DC,∠B=∠C,AF 与DE 交于点G,求证:GE=GF19.(本题8 分)某校七年级共有500 名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图学生读书数量统计表学生读书数量扇形图(1)直接写出m、a、b 的值65阅读量/本学生人数1 152 a3 b4 5(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8 分)用1 块A 型钢板可制成2 块C 型钢板和1 块D 型钢板;用1 块B 型钢板可制成1 块C 型钢板和3 块D 型钢板.现准备购买A、B 型钢板共100 块,并全部加工成C、D 型钢板.要求C 型钢板不少于120 块,D 型钢板不少于250 块,设购买A 型钢板x 块(x 为整数)(1)求A、B 型钢板的购买方案共有多少种?(2)出售C 型钢板每块利润为100 元,D 型钢板每块利润为120 元.若童威将C、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8 分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB、PC,PC 交AB 于点E,且PA=PB(1)求证:PB 是⊙O 的切线(2)若∠APC=3∠BPC,求PE的值CE22.(本题10 分)已知点A(a,m)在双曲线y =8上且m<0,过点 A 作x 轴的垂线,垂足为 Bx(1)如图1,当a=-2 时,P(t,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C① 若t=1,直接写出点 C 的坐标② 若双曲线y =8经过点C,求t 的值x(2)如图2,将图1 中的双曲线y =8(x>0)沿y 轴折叠得到双曲线y =-8(x<0),将线段x xOA 绕点O 旋转,点A 刚好落在双曲线y =-8(x<0)上的点D(d,n)处,求m 和n 的数量关x 系23.(本题10 分)在△ABC 中,∠ABC=90°、(1)如图1,分别过A、C 两点作经过点B 的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN2 5(2)如图2,P 是边BC 上一点,∠BAP=∠C,tan∠PAC=5,求tanC 的值(3)如图3,D 是边CA 延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=3,AD2,直5 AC 5接写出tan∠CEB 的值24.(本题12 分)抛物线L:y=-x2+bx+c 经过点A(0,1),与它的对称轴直线x=1 交于点B(1)直接写出抛物线L 的解析式(2)如图1,过定点的直线y=kx-k+4(k<0)与抛物线L 交于点M、N.若△BMN 的面积等于1,求k 的值(3)如图2,将抛物线L 向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y 轴交于点C,过点C 作y 轴的垂线交抛物线L1于另一点D.F 为抛物线L1的对称轴与x 轴的交点,P为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2 个,求m 的值及相应点P 的坐标5 2 52018 年武汉中考数学参考答案与解析一、选择题1 2 3 4 5 6 7 8 9 10 ADBDBACCDB提示:9. 设中间的数为 x ,则这三个数分别为 x -1,x ,x +1∴这三个数的和为 3x ,所以和是 3 和倍数,又 2019÷3=671,673 除以 8 的余数为1,∴2019 在第 1 列(舍去);2016÷3=672,672 除以 8 的余数为 0,∴2016 在第 8 列 (舍去);2013÷3-671,671 除以 8 的余数为 7,∴2013 在第 7 列,所以这三数的和是是2013, 故选答案 D .10. 连 AC 、DC 、OD,过 C 作 CE ⊥AB 于 E ,过 O 作 OF ⊥CE 于 F ,∵ BC 沿 BC 折叠, ∴∠CDB =∠H ,∵∠H +∠A =180°,∴∠CDA +∠CDB =180°,∴∠A =∠CDA ,∴CA =CD ,∵CE ⊥AD ,∴AE =ED =1,∵ OA = ,AD =2,∴OD =1,∵OD ⊥AB ,∴OFED 为正方形,∴OF =1, OC = ,∴CF =2,CE =3,∴ CB = 3 .2 2 3法一图法二图法二第 10 题作 D 关于 BC 的对称点 E ,连AC 、CE ,∵AB =4, AE = 2 AO = 2 5 ,∴BE =2,由对称性知,∠ABC =∠CBE =45°,∴AC =CE ,延长 BA 至 F ,使 FA =BE ,连 FC ,易证△FCA ≌△BCE ,∴∠FCB =90°,∴BC =FB =22(AB + BE )= 3.二、填空题111. 12.0.913.14.30°或 150°15.2416.3 m -12揭示:第 15 题 y = -3(t - 20)2+ 6002当 t =20 时,滑行到最大距离 600m 时停止;当 t =16 时,y =576,所以最后 4s 滑行 24m .第 16 题 延长 BC 至点 F ,使 CF =AC ,∵DE 平分△ABC 的周长,1AD =BC ,∴AC +CE =BE ,∴BE =CF +CE =EF ,∴DE ∥AF ,DE = AF ,又∵∠ACF =120°,2AC =CF ,∴ AF = 3AC = ,∴DE = 3 .2CEOFA DBCHOFAEDB2 2CEEFG3 ⎩ ⎨⎩FCADB ADB第 16 题法一答图第 16 题法二答图法二 第 16 题 解析 作 BC 的中点 F ,连接 DF ,过点 F 作 FG ⊥DE 于 G ,设 CE =x ,则BE =1+x ,∴BE =1+x ,∴BC =1+2x ,∴ CF = 1 + x ,∴ EF = CF - CE = 1,而2 2DF = 1 AC = 1,且∠C =60°,∴∠DFE =120°,∴∠FEG =30°,2 2∴ GF = 1 1 EF = 2 4,∴ EG =,∴ DE = 2EG = . 4 2三、解答题⎧x = 617、解析:原方程组的解为⎨ y = 4⎧ AB = DC 18.证明:∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE ,在△ABF 和△DCE 中⎪∠B = ∠C ,⎪BF = CE ∴△ABF ≌△DCE (SASA ),∴∠DEC =∠AFB ,∴GE =GF . 19.解析 (1)m =50,a =10,b =201⨯15 + 2 ⨯10 + 3⨯ 20 + 4 ⨯ 5(2)⨯ 500 = 1150 (本) 50答:该年级全体学生在这次活动中课外阅读书箱的总量大约是 1150 本. 20.解析(1) 设 A 型钢板 x 块,则 B 型钢板有(100-x )块.⎪2x +100 - x ≥ 120 ⎪⎩x + 3(100 - x )≥ 250,解得20 ≤ x ≤ 25 .X =20 或 21 或 22 或 23 或 24 或 25,购买方案共有 6 种.(2) 设总利润为 W 元,则3A OHE CB ⎩PE = = =w = 100 (2x +100 - x )+120 ⎣ x + 3(100 - x )⎦ = -140x + 46000X =20 时,W max = -140 ⨯ 20 + 46000 = 43200 元. 获利最大的方案为购买 A 型 20 块,B 型 80 块.⎧OA = OB 21.(1)证明:如图①,连接 OB ,OP ,在△OAP 和△OBP 中,⎨⎪OP = OP ,⎪ AP = BP ∴△OAP ≌△OBP (SSS ),∴∠OBP =∠OAP ,∵PA 是⊙O 的切线,∴∠OBP =∠OAP =90°,∴PB 是⊙O 的切线.P① ①① ①⑵如图②,连接 BC ,AB 与 OP 交于点 H∵∠APC =3∠BPC ,设∠BPC =x ,则∠APC =3x ,∠APB =x +3x =4x 由⑴知 ∠APO =∠BPO =2x ,∴∠OPC =∠CPB =x ∵AC 是⊙O 的直径,∴∠ABC =90°∵易证 OP ⊥AB ,∴∠AHO =∠ABC =90°,即 OP ∥BC∴∠OPC =∠PCB =∠CPB =x ,∴OACB =BP 易证△OAH ∽△CAB ,∴ OHCB= AC = 1 ,设 2 OH =a ,∴CB =BP =2a易证△HPB ∽△BPO ,∴ HP = BP ,∴设 HP =ya ,∴ ya = 2aBP OP 2a a + ya解 得 y = -1 - 17 (舍)或 y = -1 + 171 2 22HP ya -1 + 17 ∵OP ∥CB ,易证△HPE ∽△BCE ,∴CE CB 2a 4 22、解:⑴将 x A =-2 代入 y = 8中得:y A = x ①∵t =1 ∴P(1,0),BP =1-(-2)=38 =-4∴A(-2,-4),B(-2,0) -2 ∵将点 B 绕点 P 顺时针旋转 90°至点 C ∴x C =x P =tPC =BP =3∴C(1,3)②∵B(-2,0),P(t ,0)第一种情况:当 B 在 P 的右边时,BP =-2-t ∴x C =x P =t PC 1=BP =-2-t ∴C 1(t ,t +2) 第二种情况:当 B 在 P 的左边时,BP =2+t ∴x C =x P =t PC 2=BP =2+t ∴C 2(t ,t +2)综上:C 的坐标为(t ,t +2)AOECByD 2E 2 D 1E 1xBOxAN2 yyCPBxBOOPCAA∵C 在 y = 8上 ∴t(t +2)=8 解得 t =2 或-4x⑵作 DE ⊥y 轴交 y 轴于点 E ,8 8 882 将 y A =m 代入 y = 得:x A = ,∴A( ,m) ∴AO 2=OB 2+AB 2= 2 +m 2,x m m 8 8 8m⎛ 8 ⎫2 将 y D =n 代入 y = 得:x D = ,∴D(- ,n) ∴DO 2=DE 2+OE 2= - ⎪ +n 2,x n n ⎝ n ⎭82 ⎛ 8 ⎫22 2 64(n 2 - m 2 ) ∴ +m 2= - ⎪ +n 2, 8- 8 =n 2-m 2, =n 2-m 2, m ⎝ n ⎭m n 2 m 2 n 2(64-m 2n 2)(n 2-m 2)=0①当 n 2-m 2=0 时,n 2=m 2,∵m <0,n >0 ∴m +n =0 ②当 64-m 2n 2=0 时,m 2n 2=64,∵m <0,n >0 ∴mn =-8 综合得:m +n =0,或 mn =-823、证明: ⑴∵∠ABC =90°∴∠3+∠2=180°-∠ABC =180°-90°=90°又∵AM ⊥MN ,CN ⊥MN∴∠M =∠N =90°,∠1+∠3=90° ∴∠1=∠2 ∴△ABM ∽△BCN ⑵方法一:过 P 点作 PN ⊥AP 交 AC 于 N 点,过 N 作 NM ⊥BC 于 M 点A ∵∠BAP +∠APB =90°,∠APB +∠NPC =90° ∴∠BAP =∠NPC ,△BAP ∽△MPNAP = BA = BPCPN MP MNPN2 5BPM又∵ tan ∠PAC = =PA 5A 1C3 2MBN25设 MN = 2 5a , PM = 2 5b ,则 BP = 5a , AB = 5b 又∵ ∠BAP = ∠BCA ,∴ ∠NPC = ∠BCA ,∴NP = NC , PC = 2PM = 4 5b又△ BAP ∽△ BCA ,BA = BC ,∴ BA 2 = BP ⋅ BC , BP BA(5b )2 = 5a ⋅ (5a + 4 5b ),解得: a =5 b ,MN2 5aa5∴ t an ∠C == = =MC2 5b b 5方法二:过点C 作CE ⊥ AP 的延长线交于 E 点,过 P 作 PF ⊥ AC 交 AC 于点 F ∵ ∠ABC = ∠CEP = 90︒ , ∠BPA = ∠EPC ,∴ ∠BAP = ∠ECP = ∠ACB∵ t an ∠PAC =5,∴设CE = 2 5m ,则 AE = 5m由勾股定理得: AC = 3 5m ,∵ ∠ACP = ∠ECP ,∴ PF = PE∴S ∆APC = AC = AP = 3S ∆CPE CE PE 2∵ AE = 5m ,∴ PE = 2m PE25∴ tan ∠ECP = tan ∠ACB ===EC 2 5 5方法三:作 AP 的垂直平分线交 AB 于 D 点,连 DP 设∠C = ∠BAP = x , ∠PAC = y ,∴ 2x + y = 90︒∠BDP = ∠BAP + ∠DPA = 2x ∠DPB = 90︒ - 2x = y = ∠PAC∵ t an ∠PAC = 5,令BD = 2a , BP = 5a 由勾股定理得: DP = 3a = AD ∴ tan ∠C = tan ∠BAP =BP = 5AB 5(3)过 A 作 AH ⊥ EB 交 EB 于 H ,过C 作CK ⊥ EB 交 EB 的延长线于 K2 5 2 5(x +x - 4x x ) 2M N M N(2 - k )2 - 4 (3 - k ) k 2 -8 ⎩∵ AE = AB ∴ EH = HB ,易知△ AHB ∽△ BKC , ABHBEH = DA = 2HK AC 5设CK = 3x ,∵△ AHB ∽△ BKC ,∴=,∴ HB = EH = 4x5EH20xBC CKCK 3∴ HK = = = 10x ,∴ tan ∠CEB = =2 2 EK 1424. 解析:(1) y = -x 2 + 2x +1(2)∵直线 y = kx - k + 4 (k < 0),则 y = k (x -1)+ 4 ∴直线 MN 过定点 P (1,4) ⎧ y = kx - k + 4 联立⎨y = -x 2 + 2x +1,得 x 2 + (k - 2)x - k + 3 = 0 ∴ x M + x N = 2 - k , x M ⋅ x N = 3 - k∴ S ∆BMN = S ∆EBN - S ∆EBM= 1 EB (x -1)- 1 EB (x -1)= 1⨯ 2 (x - x )= 12 N 2 M 2N M∵ x N - x M ===∴ = 1 ∵ k < 0∴ k = ±3 ∴ k = -3(3)设 L 1为: y = -x 2 + 2x + t F (1,0),设 P (0, a )∴ m = t -1 且C (0, t ), D (2, t ),①△ PCD ∽△ POF 时, ∴CD = CP , ∴ 2 = t - a, ∴ t = 3a ,此时必有一点 P 满 OF OP 1 ak 2 - 82 2 2 2 2 足条件②△ DCP ∽△POF时, ∴CD =CP , ∴ 2 = t - a , ∴ a 2 - at + 2 = 0∵符合条件的点 P 恰有两个,∴第一种情况:OP OF a1 a2 - at + 2 = 0 有两个相等的实数根∆ = 0 ,∴ t = ±2 2∵ t > 0 ∴ t = 2 , ∴ m 1 = 2 -1将t = 2 代入t = 3a 得: a 1 =2 232 2 ∴ P 1(0,3)将t = 2 代入 a 2 - at + 2 = 0 得: a 2= ∴ P 2 (0, )第二种情况:a 2 - at + 2 = 0 有两个不相等的实数根,且其中一根为t = 3a 的解∴ ∆ > 0 , 将t = 3a 代入 a 2 - at + 2 = 0 得: a 2 - 3a 2 + 2 = 0∴ a = ±1∵ a > 0∴ a = 1 ,∴ t = 3 , m 2 = 2将t = 3 代入 a 2 - at + 2 = 0 得: a = 1 , ∴ P (0,1); a = 2 , ∴ P (0,2)3344综上所述:当 m 1 = 2 -1时, P (0, 2 2 3)或 P (0, ),当 m 2 = 2 时, P (0,1)或 P (0,2)2 2 2“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
2018年武汉市中考数学试卷及答案解析Word版

第 16 题法二答图
法二 第 16 题 解析 作的中点 F,连接,过点 F 作⊥于 G,设,则 1,∴
1,∴1+2x,∴
,∴
,而
,且∠60°,∴∠
120°,∴∠30°,∴
,∴
,∴
。
三、解答题 17、解析:原方程组的解为
2018 年武汉市中考数学试卷及答案解析 Word 版(word 版可编辑修改)
2018 年武汉市中考数学试卷及答案解析 Word 版(word 版可编辑修改)
2018 年武汉中考数学参考答案与解析
一、选择题
1 2 3 4 5 6 7 8 9 10
ADBDBACCDB
提示:
9.设中间的数为 x,则这三个数分别为 1,x,1
∴这三个数的和为 3x,所以和是 3 和倍数,又 2019÷3=671,673 除以 8
180°,∴∠∠180°,∴∠∠,∴,∵⊥,∴1,∵
,2,∴1,∵⊥,∴
为正方形,∴1,
,∴2,3,∴
.
C
O F
A
E
D
C H
E
O
B F A
B D
法一图
法二图
法二 第 10 题 作 D 关于的对称点 E,连、,∵4,
,∴2,
由对称性知,∠∠45°,∴,延长至 F,使,连,易证△≌△,版(word 版可编辑修改)
2018 年武汉市中考数学试卷及答案解析 Word 版(word 版可编辑修改)
∵是⊙O 的直径,∴∠=90° ∵易证⊥,∴∠=∠=90°,即∥ ∴∠=∠=∠=x,∴= 易证△∽△,∴ = = ,设=a,∴==2a 易证△∽△,∴ = ,∴设=,∴ =
解得
(舍)或
2018年武汉市中考数学模拟试题及答案

2018年武汉市中考数学模拟题及答案一、选择题(共10小题,每小题 3分,共30分) 1•月球表面白天的温度可达 123 C,夜晚可降到一 A . 110C B110C C . 356C 233 C ,那么月球表面昼夜的温差为( D . — 356C 2. 如果分式 —没有意义,那么X 1x 的取值范围是 X M 0 计算 3ab 2 - 4ab A. - ab 2 B . X = 0 2的结果是(B. ab 2C . X M — 1D . X =— 1 .7ab 2 色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性, 抽取体检表,统计结果如表: D . - 1 从男性体检信息库中随机 抽取的体检表数 n 50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数 m 3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069 0.01)( )根据表中数据,估计在男性中,男性患色盲的概率为(结果精确到 A . 0.069 B . 0.07 5. 计算(a — 1)2正确的是(A . a 2— 1B .6. 在平面直角坐标系中,点 A . ( — 1, 2)C . 0.070 ) a 2 — 2a — 1 C . —2)关于 2) )D . 0.06 P (1 , B. (1 , a 2 — 2a + 1 X 轴的对称点的坐标为 C. ( — 1 , — 2) a 2— a + 1)D. ( — 2, — 1)7. 图中三视图对应的正三棱柱是( D 童老师随机调查了 每天使用零花钱(单位:元)5 10 15 20 25 人数 2 5 8 X6 30名同学,结果如下表: 则这30名同学每天使用的零花钱的众数和中位数分别是( ) B C 8 .为调查某班学生每天使用零花钱的情况, A . 15、 15 B . 20、17.5 C . 20、 20 D . 20、 15 9.如图,动点P 从(0 , 3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射 角等于入射角.当点 P 第17次碰到矩形的边时,点 P 的坐标为( )A. (3 , 0)B. (0 , 3)C. (1 , 4)D. (8 , 3)10 .如图,FA 、PB 切O O 于AB 两点,CD 切O O 于点E 交FA 、PB 于C 、D .若△ PCD 的半径 为3r ,则tan / APB 的值为()、填空题(本大题共 6个小题,每小题 3分,共18分)11 .计算J8逅的结果是 ________________16 .已知关于 x 的二次函数 y = x 2-2x -2,当a < x < a + 2时,函数有最大值 1,贝U a 的值为三、解答题(共 8题,共72 分)5,1312 3.13 512 •计算: 2x 2 x 1 x 113•学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了 从这6名学生中选取2名同时跳绳,恰好选中一男一女的概率是 4名女生和2名男生,则14•如图,将矩形 ABCD 沿BD 翻折,点 C 落在P 点处,连接AP.若/ ABP = 26 ° 贝APB =60。
湖北省武汉市2018年中考数学试题(含答案)-推荐

2018年武汉市初中毕业生考试数学试卷考试时间:2018年6月20日14:30~16:30 、 一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃B .-3℃C .11℃D .-11℃2.若分式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2B .x <-2C .x =-2D .x ≠-23.计算3x 2-x 2的结果是( ) A .2B .2x2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42 D .42、40 5.计算(a -2)(a +3)的结果是( )A .a 2-6 B .a 2+a -6 C .a 2+6D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A .3B .4C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41B .21 C .43 D .65 9.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是( ) A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235 D .265 二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算3)23(-+的结果是___________ 12.下表记录了某种幼树在一定条件下移植成活情况由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1) 13.计算22111m m m---的结果是___________14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图 学生读书数量统计表 学生读书数量扇形图(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数) (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且PA =PB(1) 求证:PB 是⊙O 的切线 (2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标 ② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠PAC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B(1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标。
湖北省武汉市2018年中考数学试题(含答案)

2018年武汉市初中毕业生考试数学试卷考试时间:2018年6月20日1430~1630 、 一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃B .-3℃C .11℃D .-11℃2.若分式21x 在实数范围内有意义,则实数的取值范围是( ) A .>-2 B .<-2C .=-2D .≠-2 3.计算32-2的结果是( )A .2B .22C .2D .424.五名女生的体重(单位:g )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38C .40、42D .42、40 5.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +6 6.点A (2,-5)关于轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( ) A .3 B .4 C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41B .21 C .43 D .65 9 1 2 3 4 56789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ……平移表中带阴影的方框,方框中三个数的和可能是( )A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( ) A .32 B .23C .235D .265二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算3)23(-+的结果是___________ 12移植总数n 400 1500 3500 7000 9000 14000 成活数m3251336 3203 6335 8073 12628 成活的频率(精确到0.01) 0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1) 13.计算22111mm m---的结果是___________14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图 学生读书数量统计表 学生读书数量扇形图 阅读量/本学生人数1 152 a3 b 45(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板块(为整数) (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且P A =PB (1) 求证:PB 是⊙O 的切线 (2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标 ② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(>0)沿y 轴折叠得到双曲线xy 8-=(<0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(<0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-2+b +c 经过点A (0,1),与它的对称轴直线=1交于点B (1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =-+4(<0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标。
湖北省武汉市四校联考2018年中考数学模拟试卷(3月份,带答案)

2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)一.选择题(每小题3分,共30分)1.(3分)化简的结果为()A .±5B .25C .﹣5D .52.(3分)若代数式在实数范围内有意义,则实数x 的取值范围是()A .x <3B .x >3C .x ≠3D .x=33.(3分)下列计算结果是x 5的为()A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 3)24.(3分)在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.504.604.654.704.754.80人数232341则这些运动员成绩的中位数、众数分别是()A .4.65、4.70B .4.65、4.75C .4.70、4.75D .4.70、4.705.(3分)计算(x +2)(x +3)的结果为()A .x 2+6B .x 2+5x +6C .x 2+5x +5D .x 2+6x +66.(3分)点P (2,﹣3)关于x 轴对称点的坐标为()A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(﹣3,2)7.(3分)如图所示的正方体的展开图是()A .B .C .D .8.(3分)按照一定规律排列的n 个数:1,﹣2,4,﹣8,16,﹣32,64…若最后两个数的差为﹣1536,则n为()A.9B.10C.11D.129.(3分)已知一个三角形的三边长分别是6、7、8,则其内切圆直径为()A.B.C.D.210.(3分)已知抛物线y1=(x﹣x1)(x﹣x2)交x轴于A(x1,0)B(x2,0)两点,且点A在点B的左边,直线y2=2x+t经过点A.若函数y=y1+y2的图象与x轴只有一个公共点时,则线段AB的长为()A.4B.8C.16D.无法确定二.填空题(每小题3分,共18分)11.(3分)计算﹣2+3×4的结果为12.(3分)计算:=.13.(3分)将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,则摸出两个颜色不同小球的概率是.15.(3分)如图,等边△ABC的边长为8,D、E两点分别从顶点B、C出发,沿边BC、CA以1个单位/s、2个单位/s的速度向顶点C、A运动,DE的垂直平分线交BC边于F点,若某时刻tan∠CDE=时,则线段CF的长度为.16.(3分)在平面直角坐标系中,A(4,0),直线l:y=6与y轴交于点B,点P是直线l上点B右侧的动点,以AP为边在AP右侧作等腰Rt△APQ,∠APQ=90°,当点P的横坐标满足0≤x≤8,则点Q的运动路径长为.三、解答题(共8小题,满分72分)17.(8分)解方程:7x﹣5=3x﹣1.18.(8分)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司为了掌握职工的工作成绩,随机抽取了部分职工的平时成绩(得分为整数,满分为160分)分为5组,第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)写出本次调查共抽取的职工数为(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,求该公司1500名工作人员中,成绩评为“B”的人员大约有多少名?20.(8分)某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.21.(8分)如图,⊙O为正方形ABCD的外接圆,E为弧BC上一点,AF⊥DE于F,连OF、OD.(1)求证:AF=EF;(2)若=,求sin∠DOF的值.22.(10分)如图,在△ABC中,AC=BC,AB⊥x轴于A,反比例函数y=(x >0)的图象经过点C,交AB于点D,已知AB=4,BC=.(1)若OA=4,求k的值.(2)连接OC,若AD=AC,求CO的长.23.(10分)如图,在四边形ABCD中,AB∥CD,∠ADC=90°,DE⊥BC于E,连AE,FE⊥AE交CD于点F.(1)求证:△AED∽△FEC;(2)若AB=2,求DF的值;(3)若AD=CD,=2,则=.24.(12分)如图,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y 轴交于点C,OB=OC,点D在函数图象上,CD∥x轴且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图1,连BE,线段OC上的点F关于直线l的对称点F’恰好在线段BE 上,求点F的坐标;(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?若存在,求出点Q的坐标;若不存在,说明理由.2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)参考答案与试题解析一.选择题(每小题3分,共30分)1.【解答】解:∵表示25的算术平方根,∴=5.故选:D.2.【解答】解:依题意得:x﹣3≠0,解得x≠3,故选:C.3.【解答】解:A、x10÷x2=x8,不符合题意;B、x6﹣x不能进一步计算,不符合题意;C、x2•x3=x5,符合题意;D、(x3)2=x6,不符合题意;故选:C.4.【解答】解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.5.【解答】解:(x+2)(x+3)=x2+3x+2x+6=x2+5x+6,故选:B.6.【解答】解:点P(2,﹣3)关于x轴对称点的坐标为(2,3),故选A.7.【解答】解:根据带有各种符号的面的特点及位置,可得如图所示的正方体的展开图是.故选:A.8.【解答】解:观察数列,可知:第n个数为(﹣2)n﹣1.设倒数第二个数为x,则最后一个数为﹣2x,根据题意得:x﹣(﹣2x)=﹣1536,解得:x=﹣512,∴﹣2x=1024,∴(﹣2)n﹣1=1024,∴n=11.故选:C.9.【解答】解:AB=7,BC=6,AC=8,内切圆的半径为r,切点为G、E、F,作AD⊥BC于D,设BD=x,则CD=6﹣x,在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(6﹣x)2,解得,x=,则AD==,×AD×BC=×AB×r+×AC×r+×CB×r,解得,r=,∴其内切圆直径为2,故选:D.10.【解答】解:∵线y2=2x+t经过点A(x1,0),∴2x1+t=0∴x1=﹣,A(﹣,0)∵若函数y=y1+y2的图象与x轴只有一个公共点,∴这个公共点就是点A,∴可以假设y=(x+)2=x2+tx+,∴y1=y﹣y2=x2+(t﹣2)x+﹣t.∴AB=====8.故选:B.二.填空题(每小题3分,共18分)11.【解答】解:﹣2+3×4=﹣2+12=10,故答案为:10.12.【解答】解:==x+2.故答案为x+2.13.【解答】解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:62°.14.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色不同的有12种结果,∴两次取出的小球颜色不同的概率为=,故答案为:.15.【解答】解:作EH⊥BC于H,设线段DE的垂直平分线交DE于G.∵△ABC是等边三角形,∴∠C=60°,在Rt△EHC中,EC=2t,∴CH=t,EH=2t,在Rt△DEH中,∵tan∠CDE==,∴DH=4t,∵BD=t,BC=8,∴t+4t+t=8,∴t=,∴DH=,EH=,CH=,∵GF垂直平分线段DE,∴DF=EF,设DF=EF=x,在Rt△EFH中,∵EF2=EH2+FH2,∴x2=()2+(﹣x)2,解得x=,∴CF=﹣+=2.故答案为2.16.【解答】解:如图,过点P作PE⊥OA,垂足为E,过点Q作QF⊥BP,垂足为F,∵BP∥OA,PE⊥OA,∴∠EPF=∠PEO=90°.∵∠APQ=90°,∴∠EPA=∠FPQ=90°﹣∠APF.在△PEA和△PFQ中,∵,∴△PEA≌△PFQ(AAS),∴PE=PF,EA=QF,若点P的坐标为(a,6),则PF=PE=6,QF=AE=|4﹣a|.∴点Q的坐标为(a+6,10﹣a).∵无论a为何值,点Q的坐标(a+6,10﹣a)都满足一次函数解析式y=﹣x+16,∴点Q始终在直线y=﹣x+16上运动.当点P的横坐标满足0≤x≤8时,点Q的横坐标满足6≤x≤14,纵坐标满足2≤y≤10,则Q的运动路径长为=8,故答案为:8.三、解答题(共8小题,满分72分)17.【解答】解:(1)移项得7x﹣3x=5﹣1,合并同类项得4x=4,系数化为1得x=1.18.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.【解答】解:(1)本次调查共抽取的职工数为20÷40%=50(人),故答案为:50;(2)1500×=420(人),答:成绩评为“B”的人员大约有420名.20.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元.(1分)根据题意可得(3分)解这个方程组得(4分)答:甲种笔记本的单价是3元,乙种笔记本的单价是5元.(5分)(2)设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个.(6分)根据题意可得m+(2m﹣10)≥80,解这个不等式得m≥30,3(2m﹣10)+5m≤320(8分)解这个不等式得m≤31.(9分)因为m为正整数,所以m的值为:30或31故本次购进甲笔记本50个、乙笔记本30个;或购进甲笔记本52个、乙笔记本31个.(10分)21.【解答】证明:(1)如图,过B作BG⊥AF于G,连接BE、OB,∵AF⊥DE,∴∠AGB=∠AFD=90°,∴∠BAF+∠ABG=90°,∵四边形ABCD是正方形,∴BD为⊙O的直径,AD=AB,∠BAD=90°,∴∠DAF+∠BAF=90°,∠BED=90°,∴∠ABG=∠DAF,∴△ABG≌△DAF,∴BG=AF,∵∠BED=∠BGF=∠AFE=90°,∴四边形GBEF是矩形,∴EF=BG,∴AF=EF;(2)作OH⊥BE于H,连接AO,GO.∵OH⊥BE,∴BH=HE,∴OH垂直平分线段BE,∵四边形GBEF是矩形,∴BE=GF,BE∥GF,∴OH垂直平分线段FG,∴OG=OF,∵∠AOD=∠AFD=90°,∴A、D、F、O四点共圆,∴∠DOF=∠DAF,∠OFG=∠ADO=45°,∴△FOG是等腰直角三角形,∴FG=OF,∵EF=BG=AF=2OF,∴AF=2FG,AG=FG=DF,设DF=a,则AF=2a,AD=a,∴sin∠DOF=sin∠DAF==.22.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在y=(x>0)的图象上,∴k=11;(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m+,2).∵点C,D都在y=(x>0)的图象上,∴m=2(m+),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC==.23.【解答】解:(1)∵DE⊥BC,EF⊥AE,∴∠BED=∠CED=90°,∵∠2+∠3=90°,∠2+∠CEF=90°,∴∠CEF=∠3,∵∠AEF=∠ADF=90°∴∠6+∠4=180°,∵∠5+∠6=180°,∴∠5=∠4,∴△ADE∽△FEC.(2)∵∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,∵AB∥CD,∠ADC=90°,∴∠BAD+∠ADC=180°,∴∠BAD=90°,∵∠BED+∠BAD=180°,∴四边形ABCD四点共圆,∵∠AEF+∠ADF=180°,∴四边形AEFD四点共圆,∴A、B、E、F、D五点共圆,∵∠1=∠2,∴DF=AB=2.(3)作CN⊥AB交AB的延长线于N,过点E作EG⊥AN垂足为G交CD于H,延长DE交CN于M.∵==2,AB=FD,∴EG=2EH,∵GB∥CH,∴△EGB∽△EHC,∴==2,设EC=a,AB=x,CD=y,则EB=2a,∵∠NCD=∠ADC=∠DAN=90°,∴四边形ADCN是矩形,∵AD=DC∴四边形ADCN是正方形,∴AN=CN=CD=y,NB=y﹣x,∵∠NCB+∠CMD=90°,∠CMD+∠MDC=90°∴∠NCB=∠MDC,∵CN=CD,∴△CNB≌△DCM,∴CM=BN=y﹣x,DM=BC=3a,∵∠MCD=∠MEC,∠CME=∠CMD,∴△MCE∽△MDC,∴=,∴=,∴y2﹣xy=3a2①∵CM2+CD2=MD2,∴(y﹣x)2+y2=9a2②由①②消去a得x2+xy﹣y2=0∴x=y,(或x=y舍弃)∴=,∴=.故答案为:.24.【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴﹣=1,b=2.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=﹣c2+2c+c,解得c=3或c=0(舍去),∴c=3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴E(1,4),∵直线BE经过点B(3,0),E(1,4),∴利用待定系数法可得直线BE的表达式为y=﹣2x+6.∵点F在BE上,∴m=﹣2×2+6=2,即点F的坐标为(0,2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,=S△APM,∵S△PQN∴(n+1)(3﹣n)=(﹣n2+2n+3)•QR,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,﹣n2+4n),R点的坐标为(n,﹣n2+4n),N点的坐标为(n,﹣n2+2n+3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,);②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,).综上可知存在满足题意的点Q,其坐标为(,)或(,).。
(完整版)2018年武汉市中考数学试卷及答案解析,推荐文档

(3) 如图 3,D 是边 CA 延长线上一点,AE=AB,∠DEB=90°,sin∠BAC= 3 , AD 2 ,直 5 AC 5
接写出 tan∠CEB 的值
24.(本题 12 分)抛物线 L:y=-x2+bx+c 经过点 A(0,1),与它的对称轴直线 x=1 交于点 B (1) 直接写出抛物线 L 的解析式 (2) 如图 1,过定点的直线 y=kx-k+4(k<0)与抛物线 L 交于点 M、N.若△BMN 的面积等 于 1,求 k 的值 (3) 如图 2,将抛物线 L 向上平移 m(m>0)个单位长度得到抛物线 L1,抛物线 L1 与 y 轴交于 点 C,过点 C 作 y 轴的垂线交抛物线 L1 于另一点 D.F 为抛物线 L1 的对称轴与 x 轴的交点,P 为线段 OC 上一点.若△PCD 与△POF 相似,并且符合条件的点 P 恰有 2 个,求 m 的值及相 应点 P 的坐标
获利最大的方案为购买 A 型 20 块,B 型 80 块.
OA OB 21.(1)证明:如图①,连接 OB,OP,在△OAP 和△OBP 中, OP OP ,
AP BP
∴△OAP≌△OBP(SSS),∴∠OBP=∠OAP,∵PA 是⊙O 的切线, ∴∠OBP=∠OAP=90°,∴PB 是⊙O 的切线.
BF CE
∴△ABF≌△DCE(SASA),∴∠DEC=∠AFB,∴GE=GF.
19.解析 (1)m=50,a=10,b=20
(2) 115 210 3 20 4 5 500 1150 (本) 50
答:该年级全体学生在这次活动中课外阅读书箱的总量大约是 1150 本.
20.解析
(1)设 A 型钢板 x 块,则 B 型钢板有(100-x)块.
D.2013
2018年湖北省武汉市中考数学试卷真题含答案

教习网 - 海量精品中小学课件试卷教案免费下载2018 年湖北省武汉市中考数学试卷真题含答案一、选择题(共10 小题,每小题 3 分,共 30 分)1 .(3 分)温度由﹣ 4 ℃上7升℃是()A. 3℃B.﹣ 3℃ C. 11 ℃D.﹣ 11 ℃2 .(3 分)若分式在实数范围内有意义,则实数x 的取值范围是()A . x>﹣ 2 B.x<﹣ 2 C.x= ﹣2 D .x≠﹣23 .(3 分)计算 3x2﹣x2的结果是()A . 2 B.2x 2 C . 2x D . 4x 24 .(3 分)五名女生的体重(单位:kg )分别为: 37 、 40 、 38 、42 、42 ,这组数据的众数和中位数分别是()A.2、40B.42 、38 C .40 、42 D .42 、405.(3分)计算( a﹣2)( a+3 )的结果是()A . a2﹣6 B.a2 +a ﹣ 6C. a2 +6 D . a2﹣a+66.(3分)点 A( 2 ,﹣ 5)关于 x 轴对称的点的坐标是()A.(2,5)B.(﹣ 2,5) C.(﹣ 2,﹣5)D.(﹣ 5,2)7 .(3 分)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.68 .(3 分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字 1 、2 、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.9 .(3 分)将正整数1 至 2018 按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A . 2019B.2018C.2016 D .201310 .(3 分)如图,在⊙ O 中,点 C 在优弧上,将弧沿BC折叠后刚好经过AB的中点 D.若⊙ O 的半径为,AB=4,则BC的长是()A.B.C.D.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11 .(3 分)计算的结果是12 .(3 分)下表记录了某种幼树在一定条件下移植成活情况移植总数 n400150350700900140000000成活数 m325133320633807126635328成活的频率(精确到 0.01 ) 0.810.890.910.900.890.90315572由此估计这种幼树在此条件下移植成活的概率约是(精确到 0.1 )13.(3分)计算﹣的结果是.14.(3分)以正方形 ABCD 的边 AD 作等边△ADE ,则∠BEC 的度数是.15.(3分)飞机着陆后滑行的距离y (单位: m )关于滑行时间 t(单位: s)的函数解析式是 y=60t ﹣.在飞机着陆滑行中,最后4s 滑行的距离是m .16.(3 分)如图.在△ ABC 中,∠ACB=60 °AC=1,,D 是边 AB 的中点, E 是边 BC 上一点.若 DE 平分△ABC 的周长,则 DE 的长是.三、解答题(共8 题,共 72 分)17 .(8 分)解方程组:18 .(8 分)如图,点 E、F 在 BC 上, BE=CF,AB=DC ,∠B= ∠C,AF 与 DE 交于点 G,求证: GE=GF .19 .(8 分)某校七年级共有 500 名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量 /学生人本数1152a3b45(1 )直接写出 m 、a、b 的值;(2 )估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20 .(8 分)用 1 块 A 型钢板可制成 2 块 C 型钢板和 1 块 D 型钢板;用 1 块 B 型钢板可制成 1 块 C 型钢板和 3 块 D 型钢板.现准备购买 A 、B 型钢板共 100 块,并全部加工成C、D 型钢板.要求 C 型钢板不少于 120 块, D 型钢板不少于 250 块,设购买 A 型钢板x块( x 为整数)(1 )求 A 、 B 型钢板的购买方案共有多少种?(2 )出售 C 型钢板每块利润为 100 元, D 型钢板每块利润为 120 元.若童威将 C、 D型钢板全部出售,请你设计获利最大的购买方案.21 .(8 分)如图, PA 是⊙ O 的切线, A 是切点, AC 是直径, AB 是弦,连接 PB、PC,PC 交 AB 于点 E,且 PA=PB .( 1)求证: PB 是⊙ O 的切线;( 2)若∠APC=3 ∠BPC,求的值.22 .(10 分)已知点 A( a,m )在双曲线 y=上且m<0,过点A作x轴的垂线,垂足为B.(1 )如图 1 ,当 a= ﹣2 时,P(t ,0)是 x 轴上的动点,将点 B 绕点 P 顺时针旋转 90 °至点 C,①若 t=1 ,直接写出点 C 的坐标;②若双曲线 y=经过点C,求t的值.(2 )如图 2 ,将图 1 中的双曲线 y= ( x >0)沿 y 轴折叠得到双曲线 y= ﹣( x< 0),将线段 OA 绕点 O 旋转,点 A 刚好落在双曲线 y= ﹣(x<0)上的点 D (d ,n )处,求 m 和n 的数量关系.23 .(10 分)在△ABC 中,∠ ABC=90 °.( 1)如图 1,分别过 A 、C 两点作经过点 B 的直线的垂线,垂足分别为 M 、 N ,求证:△ABM ∽△BCN ;( 2)如图 2,P 是边 BC 上一点,∠BAP= ∠C, tan ∠PAC=,求 tanC 的值;( 3)如图 3,D 是边 CA 延长线上一点, AE=AB ,∠ DEB=90 °sin,∠BAC= ,,直接写出 tan ∠CEB 的值.24 .(12 分)抛物线 L: y= ﹣ x2 +bx+c经过点A (0,1),与它的对称轴直线x=1 交于点B.(1 )直接写出抛物线 L 的解析式;(2 )如图 1 ,过定点的直线 y=kx ﹣ k+4 (k <0 )与抛物线 L 交于点 M 、N .若△BMN 的面积等于 1,求 k 的值;( 3 )如图 2,将抛物线 L 向上平移 m (m >0 )个单位长度得到抛物线L1,抛物线 L1与y轴交于点 C,过点 C 作 y 轴的垂线交抛物线 L1于另一点 D.F 为抛物线 L1的对称轴与x 轴的交点, P 为线段 OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有 2找同步教案、找试卷、找练习题、找答案就上教习网个,求 m 的值及相应点 P 的坐标.2018年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10 小题,每小题 3 分,共 30 分)1 .【解答】解:温度由﹣ 4 ℃上7升℃是﹣ 4+ 7=3 ℃,故选: A.2 .【解答】解:∵代数式在实数范围内有意义,∴x+2 ≠0 ,解得: x≠﹣2.故选: D.3.【解答】解: 3x 2﹣ x2 =2x 2,故选: B.4.【解答】解:这组数据的众数和中位数分别42 , 38 .故选: B.5.【解答】解:(a﹣2 )( a+3 ) =a 2 +a ﹣ 6,故选: B.6.【解答】解:点 A(2 ,﹣ 5)关于 x 轴的对称点 B 的坐标为( 2 ,5 ).故选: A.7 .【解答】解:结合主视图和俯视图可知,左边上层最多有 2 个,左边下层最多有 2 个,右边只有一层,且只有 1 个.所以图中的小正方体最多 5 块.故选: C.8.【解答】解:画树状图为:共有 16 种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12 ,所以两次抽取的卡片上数字之积为偶数的概率 == .故选: C.9 .【解答】解:设中间数为 x,则另外两个数分别为x﹣1、x+1 ,∴三个数之和为( x﹣ 1) +x+ ( x+1 )=3x .根据题意得: 3x=2019、3x=2018 、3x=2016 、 3x=2013 ,解得: x=673 , x=672(舍去), x=672 ,x=671 .∵673=84 ×8+1 ,∴2019 不合题意,舍去;∵672=84 ×8 ,∴2016 不合题意,舍去;∵671=83 ×7+7 ,∴三个数之和为 2013 .故选: D.10.【解答】解:连接 OD 、 AC、 DC、OB 、OC ,作 CE⊥AB 于 E, OF⊥ CE 于 F,如图,∵D 为 AB 的中点,--教习网 - 海量精品中小学课件试卷教案免费下载∴OD ⊥AB,∴AD=BD= AB=2 ,在 Rt△OBD 中, OD==1 ,∵将弧沿 BC 折叠后刚好经过AB 的中点 D .∴弧 AC 和弧 CD 所在的圆为等圆,∴= ,∴AC=DC ,∴AE=DE=1 ,易得四边形 ODEF 为正方形,∴OF=EF=1 ,在 Rt△OCF 中, CF==2 ,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3 ,∴BC=3 .故选: B.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.【解答】解:原式 =+﹣=∴OD ⊥AB,∴AD=BD= AB=2 ,在 Rt△OBD 中, OD==1 ,∵将弧沿 BC 折叠后刚好经过AB 的中点 D .∴弧 AC 和弧 CD 所在的圆为等圆,∴= ,∴AC=DC ,∴AE=DE=1 ,易得四边形 ODEF 为正方形,∴OF=EF=1 ,在 Rt△OCF 中, CF==2 ,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3 ,∴BC=3 .故选: B.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.【解答】解:原式 =+﹣=∴OD ⊥AB,∴AD=BD= AB=2 ,在 Rt△OBD 中, OD==1 ,∵将弧沿 BC 折叠后刚好经过AB 的中点 D .∴弧 AC 和弧 CD 所在的圆为等圆,∴= ,∴AC=DC ,∴AE=DE=1 ,易得四边形 ODEF 为正方形,∴OF=EF=1 ,在 Rt△OCF 中, CF==2 ,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3 ,∴BC=3 .故选: B.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.【解答】解:原式 =+﹣=∴OD ⊥AB,∴AD=BD= AB=2 ,在 Rt△OBD 中, OD==1 ,∵将弧沿 BC 折叠后刚好经过AB 的中点 D .∴弧 AC 和弧 CD 所在的圆为等圆,∴= ,∴AC=DC ,∴AE=DE=1 ,易得四边形 ODEF 为正方形,∴OF=EF=1 ,在 Rt△OCF 中, CF==2 ,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3 ,∴BC=3 .故选: B.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.【解答】解:原式 =+﹣=∴OD ⊥AB,∴AD=BD= AB=2 ,在 Rt△OBD 中, OD==1 ,∵将弧沿 BC 折叠后刚好经过AB 的中点 D .∴弧 AC 和弧 CD 所在的圆为等圆,∴= ,∴AC=DC ,∴AE=DE=1 ,易得四边形 ODEF 为正方形,∴OF=EF=1 ,在 Rt△OCF 中, CF==2 ,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3 ,∴BC=3 .故选: B.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.【解答】解:原式 =+﹣=∴OD ⊥AB,∴AD=BD= AB=2 ,在 Rt△OBD 中, OD==1 ,∵将弧沿 BC 折叠后刚好经过AB 的中点 D .∴弧 AC 和弧 CD 所在的圆为等圆,∴= ,∴AC=DC ,∴AE=DE=1 ,易得四边形 ODEF 为正方形,∴OF=EF=1 ,在 Rt△OCF 中, CF==2 ,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3 ,∴BC=3 .故选: B.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.【解答】解:原式 =+﹣=∴OD ⊥AB,∴AD=BD= AB=2 ,在 Rt△OBD 中, OD==1 ,∵将弧沿 BC 折叠后刚好经过AB 的中点 D .∴弧 AC 和弧 CD 所在的圆为等圆,∴= ,∴AC=DC ,∴AE=DE=1 ,易得四边形 ODEF 为正方形,∴OF=EF=1 ,在 Rt△OCF 中, CF==2 ,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3 ,∴BC=3 .故选: B.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.【解答】解:原式 =+﹣=∴OD ⊥AB,∴AD=BD= AB=2 ,在 Rt△OBD 中, OD==1 ,∵将弧沿 BC 折叠后刚好经过AB 的中点 D .∴弧 AC 和弧 CD 所在的圆为等圆,∴= ,∴AC=DC ,∴AE=DE=1 ,易得四边形 ODEF 为正方形,∴OF=EF=1 ,在 Rt△OCF 中, CF==2 ,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3 ,∴BC=3 .故选: B.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.【解答】解:原式 =+﹣=∴OD ⊥AB,∴AD=BD= AB=2 ,在 Rt△OBD 中, OD==1 ,∵将弧沿 BC 折叠后刚好经过AB 的中点 D .∴弧 AC 和弧 CD 所在的圆为等圆,∴= ,∴AC=DC ,∴AE=DE=1 ,易得四边形 ODEF 为正方形,∴OF=EF=1 ,在 Rt△OCF 中, CF==2 ,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3 ,∴BC=3 .故选: B.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.【解答】解:原式 =+﹣=∴OD ⊥AB,∴AD=BD= AB=2 ,在 Rt△OBD 中, OD==1 ,∵将弧沿 BC 折叠后刚好经过AB 的中点 D .∴弧 AC 和弧 CD 所在的圆为等圆,∴= ,∴AC=DC ,∴AE=DE=1 ,易得四边形 ODEF 为正方形,∴OF=EF=1 ,在 Rt△OCF 中, CF==2 ,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3 ,∴BC=3 .故选: B.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.【解答】解:原式 =+﹣=∴OD ⊥AB,∴AD=BD= AB=2 ,在 Rt△OBD 中, OD==1 ,∵将弧沿 BC 折叠后刚好经过AB 的中点 D .∴弧 AC 和弧 CD 所在的圆为等圆,∴= ,∴AC=DC ,∴AE=DE=1 ,易得四边形 ODEF 为正方形,∴OF=EF=1 ,在 Rt△OCF 中, CF==2 ,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3 ,∴BC=3 .故选: B.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.【解答】解:原式 =+﹣=∴OD ⊥AB,∴AD=BD= AB=2 ,在 Rt△OBD 中, OD==1 ,∵将弧沿 BC 折叠后刚好经过AB 的中点 D .∴弧 AC 和弧 CD 所在的圆为等圆,∴= ,∴AC=DC ,∴AE=DE=1 ,易得四边形 ODEF 为正方形,∴OF=EF=1 ,在 Rt△OCF 中, CF==2 ,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3 ,∴BC=3 .故选: B.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.【解答】解:原式 =+﹣=∴OD ⊥AB,∴AD=BD= AB=2 ,在 Rt△OBD 中, OD==1 ,∵将弧沿 BC 折叠后刚好经过AB 的中点 D .∴弧 AC 和弧 CD 所在的圆为等圆,∴= ,∴AC=DC ,∴AE=DE=1 ,易得四边形 ODEF 为正方形,∴OF=EF=1 ,在 Rt△OCF 中, CF==2 ,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3 ,∴BC=3 .故选: B.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.【解答】解:原式 =+﹣=∴OD ⊥AB,∴AD=BD= AB=2 ,在 Rt△OBD 中, OD==1 ,∵将弧沿 BC 折叠后刚好经过AB 的中点 D .∴弧 AC 和弧 CD 所在的圆为等圆,∴= ,∴AC=DC ,∴AE=DE=1 ,易得四边形 ODEF 为正方形,∴OF=EF=1 ,在 Rt△OCF 中, CF==2 ,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3 ,∴BC=3 .故选: B.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.【解答】解:原式 =+﹣=∴OD ⊥AB,∴AD=BD= AB=2 ,在 Rt△OBD 中, OD==1 ,∵将弧沿 BC 折叠后刚好经过AB 的中点 D .∴弧 AC 和弧 CD 所在的圆为等圆,∴= ,∴AC=DC ,∴AE=DE=1 ,易得四边形 ODEF 为正方形,∴OF=EF=1 ,在 Rt△OCF 中, CF==2 ,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3 ,∴BC=3 .故选: B.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.【解答】解:原式 =+﹣=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年武汉市中考数学模拟试题及答案2018年武汉市中考数学模拟题及答案一、选择题(共10小题,每小题3分,共30分)1.月球表面白天的温度可达123℃,夜晚可降到-233℃,那么月球表面昼夜的温差为()A.110℃ B.-110℃ C.356℃D.-356℃2.如果分式1xx没有意义,那么x的取值范围是()A.x≠0 B.x=0 C.x≠-1 D.x=-13.计算3ab2 - 4ab2的结果是()A.- ab2B.ab2 C.7ab2D.- 14.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n 50 1020400 500 800 1001201502000色盲患者的频数m3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n 0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为(结果精确到0.01)()A.0.069 B. 0.07 C. 0.070 D.0.065.计算(a-1)2正确的是()A.a2-1 B.a2-2a-1 C.a2-2a+1 D.a2-a+1 6.在平面直角坐标系中,点P(1,-2)关于x 轴的对称点的坐标为()A.(-1,2) B.(1,2) C.(-1,-2) D.(-2,-1)7.图中三视图对应的正三棱柱是()A B C D8.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表: 每天使用零花钱(单位:元)5 10 15 20 25 人数258x6则这30名同学每天使用的零花钱的众数和中位数分别是( ) A .15、15B .20、17.5C .20、20D .20、159. 如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第17次碰到矩形的边时,点P 的坐标为( )A. (3,0)B. (0,3)C. (1,4)D. (8,3)10.如图,PA 、PB 切⊙O 于AB 两点,CD 切⊙O 于点E 交PA 、PB 于C 、D .若△PCD 的半径为3r ,则tan ∠APB 的值为( )A .12135 B .512 C .5133 D .3132二、填空题(本大题共6个小题,每小题3分,共18分)11.计算28-的结果是___________12.计算:1212---x x x =___________ 13.学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了4名女生和2名男生,则从这6名学生中选取2名同时跳绳,恰好选中一男一女的概率是___________14.如图,将矩形ABCD 沿BD 翻折,点C 落在P 点处,连接AP .若∠ABP =26°,则∠APB =___________15.已知平行四边形内有一个内角为60°,且60°的两边长分别为3、4.若有一个圆与这个平行四边形的三边相切,则这个圆的半径为___________16.已知关于x 的二次函数y =x 2-2x -2,当a ≤x ≤a +2时,函数有最大值1,则a 的值为三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+832152y x y x18.(本题8分)如图,A 、D 、B 、E 四点顺次在同一条直线上,AC =DF ,BC =EF ,∠C =∠F ,求证:AD =BE19.(本题8分)某厂签订48000辆自行车的组装合同,这些自行车分为L1、L2、L3三种型号,它们的数量比例及每天能组装各种型号自行车的数量如图所示:若每天组装同一型号自行车的数量相同,根据以上信息,完成下列问题:(1) 从上述统计图可知,此厂需组装L1、L2、L3型自行车的辆数分别是:________辆,________辆,________辆(2) 若组装每辆不同型号的自行车获得的利润分别是L1:40元/辆,L2:80元/辆,L3:60元/辆,且a=40,则这个厂每天可获利___________元(3) 若组装L 1型自行车160辆与组装L3型自行车120辆花的时间相同,求a20.(本题8分)某移动通讯公司开设了两种通讯业务:“方式A ”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.4元;“方式B ”不缴月基础费,每通话1分钟,付话费0.6元(这里均指市内通话).若一个月内通话x 分钟,两种通讯方式的费用分别为y 1元和y 2元 (1) 写出y 1、y 2与x 之间的函数关系式(2) 一个月内通话多少分钟,两种通讯方式的费用相同?(3) 如果小童一个月的通话时间不超过150分钟,小郑一个月的通话时间不低于300分钟,请你分别为他们选一种便宜的通讯方式21.(本题8分)如图,P 是⊙O 的直径AB 延长线上一点,C 为⊙O 上一点,连接PC ,作PM 平分∠APC 交AC 于点M ,∠PMC =45° (1) 求证:PC 是⊙O 的切线 (2) 若AB =7,52AM CM ,求CM 的长22.(本题10分)已知:如图,一次函数y 1=x +5的图象与反比例函数xky=2的图象交于A 、B 两点.当x >1时,y 1>y 2;当0<x <1时,y 1<y 2 (1) 直接写出反比例函数y 2的解析式(2) 过点D (t ,0)(t >0)作x 轴的垂线,分别交双曲线xky =2和直线y 1=x +5于P 、Q 两点.若PQ =3PD 时,求t 的值(3) 若直线l 过点D (-2,-3),且与函数||x ky =的图象恰好有2个交点 ① 在网格中画出||x ky =的图象 ② 请直接写出直线l 的解析式23. (本题10分) 在等腰Rt △ABC 中,CA=BA ,∠CAB=90°,点M 是AB 上一点.(1)点N 为BC 上一点,满足∠CNM=∠ANB.①如图1,求证:BM BN;BA CN②如图2,若点M是AB的中点,连接CM,CM的值;求AN(2)如图3,点P为射线CA(除点C外)上一个动点,直线PM交射线CB于点D,若AM=1,BM=2,直接写出△CPD的面积的最小值为__________.24.(本题12分)如图1,直线y=mx+4与x 轴交于点A,与y轴交于点C,CE∥x轴交∠CAO 的平分线于点E,抛物线y=ax2-5ax+4经过点A、C、E,与x轴交于另一点B(1) 求抛物线的解析式(2) 点P是线段AB上的一个动点,连CP,作∠CPF=∠CAO,交直线BE于F.设线段PB的长为x,线段BF的长为6y,当P点运动时,求5y 与x 的函数关系式,并写出自变量x 的取值范围(3) 如图2,点G 的坐标为(316,0),过A 点的直线y =kx +3k (k <0)交y 轴于点N ,与过G 点的直线k x k y 3161+-=交于点P ,C 、D 两点关于原点对称,DP 的延长线交抛物线于点M .当k 的取值发生变化时,问:tan ∠APM 的值是否发生变化?若不变,求其值,若变化,请说明理由参考答案一、选择题(共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 CDABCBADCB二、填空题(共6小题,每小题3分,共18分) 11. 212.213.15814.32° 15.3或33416.1-1或 a第16题 提示:(1)0122<,即<a a a ++ 当1222=--==a ay a x 最大时, 舍去),(31=-=a a(2)0122==++a a a ,即 12)2(2)2(22222=-+-+=--=+=a a a a y a a x 最大时,或 无解。
(3)0122>,即>a a a ++ 1222222=-+-+=+=)()(最大时,a a y a x ,1(3=-=a a 舍去)或综上 1-1或=a三、解答题(共8题,共72分)17.⎩⎨⎧-==523y x18.略19.解:(1) 28800, 12000, 7200;(2) 10000; (3)40.20.解:(1) y1=50+0.4x,y2=0.6x(2)当y1=y2时,50+0.4x=0.6x,解得x=250(3)小童选择“方式B”,小郑选择“方式A”21.证明:(1) 连接OC、BC∵AB为⊙O的直径∴∠ACB=90°∵∠PMC=45°∴△CMN为等腰直角三角形∵PM平分∠APC∴∠CPM=∠APM∵∠CMN=∠CAP+∠MPA,∠CNM=∠MPC+∠BCP ∴∠BCP=∠CAP∵OB=OC∴∠OBC=∠OCB在△ABC中,∠CAB+∠CBA=90°∴∠BCP+∠OCB=90°∴∠OCP=90°∴PC是⊙O的切线(2) 过点M 作MD ⊥MC 交AB 于D ∵∠PMC =45° ∴∠PMC =∠PMD可证:△PMC ≌△PMD (ASA ) ∴MC =MD ∵52=AM CM ∴设CM =2a =DM ,AM =5a ∵DM ∥BC ∴75==AC AM BC MD ,a BC 514= 在Rt △ABC 中,2227)514()7(=+a a ,整理得49254494922=⨯+a a ∴125422=+a a ,解得29295=a ∴CM =2a =29291022.解:(1)xy 6=(2)∵PQ ∥y 轴 ∴)5,(),6,(+t t Q tt P 当10<<t 时)5-6+=t t PQ ( tPD 6=∵PD PQ 3= ∴tt t 18)5(6=+- 方程无解 当t ≥1时t t PQ 6)5(-+= tPD 6=∵PD PQ 3= ∴tt t 186-)5(=+ 024-52=+t t 舍去)(8,321-==t t(3)266269+++=x y 23.(1)①证明:∵CA=BA ,∠CAB=900 , ∴∠C =∠B=450 ········1分∵∠CNM =∠ANB, ∴∠CNM −∠ANM=∠ANB −∠ANM,∴∠ANC =∠BNM, ········2分 ∴△CNA ∽△BNM,∴BM BNAC CN=∵CA=BA,∴BM MN.BA AN=· ·······3分②作BH ⊥BA 交AN 的延长线于H ,可得△BMN ≌△BHN,△ACM≌△BAH,得CM=AH=AN+NH=AN+NM,········5分由①△CNA∽△BNM及点M是AB的中点AN AC=2=MN BM········6分∴CM3.=AN2········8分(2) 当点M是PD中点,△CPD面积的最小值为4. ········10分提示:先证明当点M是PD中点,△CPD面积的最小.点M是PD中点,则点M不是P1D1的中点,不妨设MD1>MP1,在MD1上截取ME=MP1,连接DE,可得△MPP1≌△MDE,∴S△P1CD1>S四P1CDE =S△PCD.再求点M是PD中点,S△PCD.的值是4.作DH⊥AB于H,则AM=1,MH=1,BH=1,DH=BH=AP=1,∠PDC=90024.(1)y=-61x 2+65x+4 (2)由y=-61x 2+65x+4知:y 最大= 24121 ,AB=11 易证:∠ACP=∠FPB ,由抛物线对称性知∠CAO=∠FBP ,故:△APC ∽△BEP ,AP BF =AC x即xy 1156=5x ,∴y=61(11-x)x=-61x 2+611x(0< x<11) (3)设PG 交于y 轴于Q ,易求A (-3,0)、N (0,3K )、G (316,0)、Q (0,k316)、D (0,-4) 易证:OG OQ =-k 1,ON OA =-k1,∴OG OQ=ON OA ,△OQG ∽△OAN证∠NPQ=∠QOG=900,OD 2=OA ·OG ,∠ADG=900,∴AD 2=AO ·AG=AP ·AN∴△APD ∽△ADN ∴∠APD=∠ADN ∴∠DPN=∠ADO ∴∠APM=∠ADO ∴tan ∠APM=tan ∠ADO=43 另:本题还可证∠APG=∠ADG=900 ,A 、P 、D 、G 共圆,∠APM=∠NPD=∠OGD。