湖北省巴东一中数学选修2-2教案 1.2函数的极值与导数

合集下载

湖北省巴东一中高二数学教案 选修2-2:2.3 复合函数的导数

湖北省巴东一中高二数学教案 选修2-2:2.3 复合函数的导数

§1.2.3复合函数的导数【学情分析】:在学习了用导数定义这种方法计算常见函数的导数,而且已经熟悉了导数加减运算法则后.本节将继续介绍复合函数的求导方法.【教学目标】:(1)理解掌握复合函数的求导法则.(2)能够结合已学过的法则、公式,进行一些复合函数的求导(3)培养学生善于观察事物,善于发现规律,认识规律,掌握规律,利用规律.【教学重点】:简单复合函数的求导法则,也是由导数的定义导出的,要掌握复合函数的求导法则,须在理解复合过程的基础上熟记基本导数公式,从而会求简单初等函数的导数并灵活应用.【教学难点】:复合函数的求导法则的导入,复合函数的结构分析,可多配例题,让学生对求导法则有一个直观的了解.教学环节教学活动设计意图一、情景引入回忆我们上一节课的例1,如果式子()(15%)tp t p=+o中某商品的5p=o,那么在第10个年头,这种商品的价格上涨的速度大约是多少?根据上一节课的内容,我们知道,求在第10个年头,这种商品的价格上涨的速度,只需求p关于t的导数.但是如何求()5 1.05tp t=⨯关于t的导数呢?我们需要用到新的知识,即“导数的运算法则”.从实际生活的例子出发,使学生对导数的运算法则有一个更深刻的认识。

二、讲授新课(1)导数的四则运算导数的四则运算公式:'''1.[()()]()()f xg x f x g x±=±;'''2.[()()]()()()()f xg x f x g x f x g x=+g;'''2()()()()()3.[](()0)()[()]f x f xg x f x g xg xg x g x-=≠例1.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数。

导数的乘、除运算比较容易出。

湖北省巴东一中数学(人教A)选修2-2教案 1.3.1函数的单调性与导数

湖北省巴东一中数学(人教A)选修2-2教案 1.3.1函数的单调性与导数

§1.3.1函数的单调性与导数(1课时)【学情分析】:高一学过了函数的单调性,在引入导数概念与几何意义后,发现导数是描述函数在某一点的瞬时变化率。

在此基础上,我们发现导数与函数的增减性以及增减的快慢都有很紧密的联系。

本节内容就是通过对函数导数计算,来判定可导函数增减性。

【教学目标】:(1)正确理解利用导数判断函数的单调性的原理;(2)掌握利用导数判断函数单调性的方法(3)能够利用导数解释实际问题中的函数单调性【教学重点】:利用导数判断函数单调性,会求不超过三次的多项式函数的单调区间【教学过程设计】:教学环节教学活动设计意图情景引入过程从高台跳水运动员的高度h随时间t变化的函数:2() 4.9 6.510h t t t=-++分析运动动员的运动过程:上升→最高点→下降运动员瞬时速度变换过程:从实际问题中物理量入手学生容易接受减速→0→加速实际意义向函数意义过渡从函数的角度分析上述过程:()h t先增后减'()h t由正数减小到0,再由0减小到负数将实际的量与函数及其导数意义联系起来,过渡自然,突破理解障碍引出函数单调性与导数正负的关系通过上述实际例子的分析,联想观察其他函数的单调性与其导数正负的关系解:各函数的图象大概如下:(1)'()10f x↔=>增函数(2)0'()2x<0f x∞↔=(-,)减函数(0'()2x0f x∞↔=>,+)增函数(3)200'()3x0f x∞∞↔=>(-,)(,+)增函数进一步的函数单调性与导数正负验证,加深两者之间的关系判断单调性→计算导数大小→能否判断导数正负 →Y ,得出函数单调性;→N ,求“导数大于(小于)0”的不等式的解集→得出单调区间补充例题: 已知函数y =x +x1,试讨论出此函数的单调区间. 解:y ′=(x +x1)′=1-1·x -2=222)1)(1(1x x x x x -+=- 令2)1)(1(xx x -+>0. 解得x >1或x <-1. ∴y =x +x1的单调增区间是(-∞,-1)和(1,+∞).令2)1)(1(x x x -+<0,解得-1<x <0或0<x <1. ∴y =x +x1的单调减区间是(-1,0)和(0,1)要求根据函数单调性画此函数的草图 3、实际问题中利用导数意义判断函数图像例3.如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像.-22-11f x () = x+1x xOy课后练习: 1、函数3yx x 的递增区间是( )A ),0(+∞B )1,(-∞C ),(+∞-∞D ),1(+∞ 答案C '2310y x 对于任何实数都恒成立2、已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( )A ),3[]3,(+∞--∞B ]3,3[-C ),3()3,(+∞--∞D )3,3(-答案B '2()3210f x x ax =-+-≤在),(+∞-∞恒成立,24120a a ∆=-≤⇒≤≤3、函数xx y 142+=单调递增区间是( ) A ),0(+∞ B )1,(-∞ C ),21(+∞ D ),1(+∞答案C 令3'222181180,(21)(421)0,2x y x x x x x x x -=-=>-++>>4、对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A (0)(2)2(1)f f f +< B (0)(2)2(1)f f f +≤ C(0)(2)2(1)f f f +≥ D (0)(2)2(1)f f f +>答案C 当1x ≥时,'()0f x ≥,函数()f x 在(1,)+∞上是增函数;当1x <时,'()0f x ≤,()f x 在(,1)-∞上是减函数,故()f x 当1x =时取得最小值,即有(0)(1),(2)(1),f f f f ≥≥得(0)(2)2(1)f f f +≥5、函数32x x y -=的单调增区间为 ,单调减区间为___________________答案2(0,)3 2(,0),(,)3-∞+∞ '22320,0,3y x x x x =-+===或6、函数5523--+=x x x y 的单调递增区间是___________________________ 答案5(,),(1,)3-∞-+∞ '253250,,13y x x x x =+-><->令得或7、已知c bx ax x f ++=24)(的图象经过点(0,1),且在1x =处的切线方程是2y x =- (1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间解:(1)c bx ax x f ++=24)(的图象经过点(0,1),则1c =,'3'()42,(1)421,f x ax bx k f a b =+==+=切点为(1,1)-,则c bx ax x f ++=24)(的图象经过点(1,1)- 得591,,22a b c a b ++=-==-得 4259()122f x x x =-+(2)'3()1090,0,f x x x x x =-><<>或单调递增区间为()+∞。

湖北省巴东一中数学选修2-2教案 1.2基本初等函数和导数运算法则

湖北省巴东一中数学选修2-2教案 1.2基本初等函数和导数运算法则

§1.2.2基本初等函数和导数运算法则
【学情分析】:
上一节课已经学习了用导数定义这种方法计算2
1
,,,,y c y x y x y y x
====
=函数的导数,而且已经初步接触了导数加减运算法则.本节将继续介绍导数乘除运算法则.
【教学目标】:
(1)能用基本初等函数的导数公式和导数加减运算法则求简单函数的导数. (2) 会用导数乘除运算法则求简单函数的导数.
(3)加强学生对运算法则的理解与掌握,学会归纳与概括.
【教学重点】:
两个乃至多个函数四则运算的求导法则,复合函数的求导法则等,都是由导数的定义导出的,要掌握这些法则,须在理解的基础上熟记基本导数公式,从而会求简单初等函数的导数.
【教学难点】:
合理应用四则运算的求导法则简化函数的求导过程.。

高中数学选修2-2教学设计9:1.3.2 函数的极值与导数教案

高中数学选修2-2教学设计9:1.3.2 函数的极值与导数教案

1.3.2 函数的极值与导数一.教学目标知识与技能:理解极大值、极小值的概念;能够运用判别极大值、极小值的方法来求函数的极值;掌握求可导函数的极值的步骤;过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣.二.教学重点难点教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤.三.教学过程:函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便.四.学情分析我们的学生属于平行分班,学生已有的知识和实验水平有差距.需要教师指导并借助动画给予直观的认识.五.教学方法发现式、启发式新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六.课前准备1.学生的学习准备:2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案.七.课时安排:1课时八.教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性.提问(二)情景导入、展示目标.设计意图:步步导入,吸引学生的注意力,明确学习目标. 1.有关概念(1).极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点(2).极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点 (3).极大值与极小值统称为极值在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点:(ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是大或小;并不意味着它在函数的整个的定义域内最大或最小.(ⅱ)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个(ⅲ)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值,如上图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 2. 判别f (x 0)是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值3. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x )(2)求方程f ′(x )=0的驻点(一阶导数为0的x 的值)(3)检查 f ′(x )=0的驻点左右的符号;如果左正右负,那么f (x )在这个驻点处取得极大值;如果左负右正,那么f (x )在这个驻点处取得极小值;如果左右不改变符号,那么f (x )在这个驻点处无极值(三)合作探究、精讲点拨.例1:求()31443f x x x =-+的极值. 解: 因为()31443f x x x =-+,所以()'24(2)(2)f x x x x =-=-+.令()'0fx =,得2,2x x ==-下面分两种情况讨论: (1)当()'fx >0,即2x >,或2x <-时;(2)当()'f x <0,即22x -<<时. 当x 变化时, ()'fx ,()f x 的变化情况如下表: x(),2-∞—2 (-2,2) 2 ()2,+∞y ' + 0 -0 +y↗极大值283↘极小值43-↗因此,()极大值f x =28(2)3f -=; ()极小值f x =4(2)3f =-.函数()31443f x x x =-+的图象如图所示:例2:求y =(x 2-1)3+1的极值解:y ′=6x (x 2-1)2=6x (x +1)2(x -1)2, 令y ′=0解得x 1=-1,x 2=0,x 3=1 当x 变化时,y ′,y 的变化情况如下表x(),1-∞- -1 (-1,0) 0 (0,1) 1()1,+∞y ' - 0 - 0 + 0 + y↘无极值↘极小值0↗无极值↗∴当x =0时,y 有极小值且y 极小值=0.例3:设32()f x ax bx cx =++,在1x =和1x =-处有极值,且(1)f -=-1,求a ,b ,c 的值, 并求出相应的值.解:2'()32f x ax bx c =++,∵1x =±是函数的极值点,则-1,1是方程'()0f x =的根,即有211313b ac a -⎧-+=⎪⎪⎨⎪-=⎪⎩⇒03b c a =⎧⎨=-⎩,又(1)1f =-,则有1a b c ++=-,由上述三个方程可知12a =,0b =,32c =-, 此时,函数的表达式为313()22f x x x =-,∴233'()22f x x =-,令'()0f x =,得1x =±, 当x 变化时,'()f x ,()f x 的变化情况表:x(),1-∞- -1 (-1,1) 1()1,+∞y ' +0 - 0 +y↗极大值1↘极小值-1↗由上表可知, 13(1)122极大值f -=-+=,13(1)122极大值f =-=- (学生上黑板解答) 多媒体展示探究思考题.在学生分组实验的过程中教师巡回观察指导. (四)反思总结,当堂检测.教师组织学生反思总结本节课的主要内容,并进行当堂检测.设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正. (五)发导学案、布置预习.设计意图:布置下节课的预习作业,并对本节课巩固提高.教师课后及时批阅本节的延伸拓展训练.九.板书设计极大值:极大值点:极小值:极小值点:极值:十.教学反思本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方.课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的.在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!。

高中数学《函数的极值与导数》教案(新人教A版选修2-2)

高中数学《函数的极值与导数》教案(新人教A版选修2-2)

1.3.2 函数的极值与导数(1)一、教学目标:理解函数的极大值、极小值、极值点的意义.掌握函数极值的判别方法.进一步体验导数的作用.二、教学重点:求函数的极值.教学难点:严格套用求极值的步骤. 三、教学过程: (一)函数的极值与导数的关系 1、观察下图中的曲线a 点的函数值f (a )比它临近点的函数值都大.b 点的函数值f (b )比它临近点的函数值都小.2、观察函数 f (x )=2x 3-6x 2+7的图象,思考:函数y =f (x )在点x =0,x =2处的函数值,与它们附近所有各点处的函数值,比较有什么特点?(1)函数在x =0的函数值比它附近所有各点的函数值都大,我们说 f (0) 是函数的一个极大值;(2)函数在x =2的函数值比它附近所有各点的函数值都小,则f (2)是函数的一个极小值.函数y =2x 3-6x 2+7 的一个极大值: f (0); 一个极小值: f (2).函数y =2x 3-6x 2+7 的 一个极大值点: ( 0, f (0) ); 一个极小值点: ( 2, f (2) ). 3、极值的概念:一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )< f (x 0) 我们就说f (x 0)是函数f (x )的一个极大值,记作 y 极大值=f (x 0);如果对x 0附近的所有的点,都有f (x )>f (x 0)我们就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0). 极大值与极小值统称为极值. 4、观察下图中的曲线考察上图中,曲线在极值点处附近切线的斜率情况.上图中,曲线在极值点处切线的斜率为0,极大值点左侧导数为正,右侧为负;极小值点左侧导数为负,右侧为正. 函数的极值点x i 是区间[a , b ]内部的点,区间的端点不能成为极值点.函数的极大(小)值可能不止一个,并且函数的极大值不一定大于极小值,极小值不一定小于极大值.函数在[a , b ]上有极值,其极值点的分布是有规律的,像相邻两个极大值间必有一个极小值点.5、利用导数判别函数的极大(小)值:一般地,当函数f (x )在点x 0处连续时,判别f (x 0)是极大(小)值的方法是:f0)>0⑴如果在x 0附近的左侧f '(x )>0,右侧f '(x )<0,那么,f (x 0)是极大值; ⑵如果在x 0附近的左侧f '(x )<0,右侧f '(x )>0,那么,f (x 0)是极小值; 思考:导数为0的点是否一定是极值点?导数为0的点不一定是极值点.如函数f (x )=x 3,x =0点处的导数是0,但它不是极值点..)()()()()()('个内存在极小值点,在开区间图像如图,则函数内的函数,在,导函数,的定义域为开区间函数b a x f b a x f b a x f例1求函数3144.3y x x =-+的极值 解:y '=x 2-4=(x +2)(x -2).令 y '=0,解得 x 1=-2,x 2=2. 当343.求可导函数f (x )的极值的步骤:⑴ 求导函数f '(x );⑵ 求方程 f '(x )=0的根;⑶ 检查f '(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值; 如果左负右正,那么f (x )在这个根处取得极小值. 例2.求函数xex y -=2的极值例3 求函数y =(x 2-1)3+1的极值.解:定义域为R ,y '=6x (x 2-1)2.由y '=0可得x 1=-1,x 2=0,x 3=1极小值例4.23)1(22--=x x y 的极值 例5.32)1(x x y -=的极值思考:导数值为0的点一定为极值点吗?极值点一定导数值为0吗? 练习:求函数xex y -=3的极值(三)课堂小结1.考察函数的单调性的方法;2.导数与单调性的关系;3.用导数求单调区间的步骤. (四)课后作业。

高中数学选修2-2函数的极值与导数课件

高中数学选修2-2函数的极值与导数课件

B. y=cos2x
C. y=tanx-x
课堂练习
2.曲线y=x4-2x3+3x在点P(-1,0)处的切线的斜率为( B )
A. –5
B. –6
C. –7
D. –8
课堂练习 3. 下列说法正确的是 ( C )
A. 函数在闭区间上的极大值一定比极小值大 B. 函数在闭区间上的最大值一定是极大值 C. 对于f(x)=x3+px2+2x+1,若|p|<√6,则f(x)无极值 D. 函数f(x)在区间(a,b)上一定存在最值
一般地,求函数y=f(x)的极值的方法是:解方程 f ' x 0 .当 f ' x0 0 时:
x (1)如果在 0 附近的左侧f′(x)>0,右侧f′(x)<0,那么
2如果在x0附近的左侧f ' x 0,右侧 f ' x 0, 那么f x0 是极小值.
f x0
是极大值;
口诀:左负右正为极小,左正右负为极大.
例题讲解
求函数y=(x2-1)3+1的极值. 解:定义域为R,y ’=6x(x2-1)2.由y ’=0可得x1=-1,x2=0,x3=1 当x变化时,y ’ ,y的变化情况如下表:
当x=0时,y有极小值,并且y极小值=0.
课堂练习
1 . 下列函数中,x=0是极值点的函数是( B )
A. y=-x3 D. y=1/x
人教版高中数学选修2-2
第1章 导数及其应用
函数的极值与导数
课前导入
一般地,函数的单调性与导数的关系: 在某个区间a, b内, 如果f ' x > 0, 那么 函数y = f x在这个区间内单调递增; 如果 f ' x < 0,那么函数 y = f x在这个区间内

湖北省巴东一中数学选修2-2教案 1.2几个常见函数的导数

湖北省巴东一中数学选修2-2教案 1.2几个常见函数的导数

§1.2.1几个常见函数的导数【学情分析】:本节重要是介绍求导数的方法.根据导数定义求导数是最基本的方法.但是,由于最终总会归结为求极限,而本章并没有介绍极限知识,因此,教科书只是采用这种方法计算21,,,,y c y x y x y yx=====.学生只要会用导数公式和求简单函数的导数即可.【教学目标】:(1)用导数定义,求函数21,,,,y c y x y x y yx=====.(2)能用基本初等函数的导数公式和导数运算法则求简单函数的导数.(3)理解变化率的概念,解决一些物理上的简单问题,培养学生的应用意识. 【教学重点】:能用导数定义,求函数21,,,,y c y x y x y yx=====. 【教学难点】:能用基本初等函数的导数公式和导数加减运算法则求简单函数的导数.练习与测试: A .基础题.1.求下列函数的导数:(1)12y x = (2)y = (3)41y x=(4)y =答案:(1)'1112y x = (2)'y =(3)'54y x -=-(4)2'535y x -=2.已知函数2()f x x =,则'(3)f =( ) (A )0 (B )2x (C )6 (D )9答案:C3.已知函数1()f x x =,则'(2)f -=( ) (A )4 (B )14 (C )4- (D )14-答案:D4.已知函数3()f x x =的切线的斜率等于3,则其切线方程有( ) (A )1条 (B )2条 (C )多余2条 (D )不存在答案:BB .难题1.已知(1,1),(2,4)P Q -是曲线2y x =上两点,求与直线PQ 平行的曲线2y x =的切线方程.'(1,1),(2,4)12111,2411424410PQ P Q k y x x y y x x y -∴=====-=---=解:令得所以曲线的切线方程为:即2.设曲线3y x =过点3(,)a a 的切线与直线,0x a y ==所围成的三角形面积为13,求a . 3'23322333()|3(,)3()32020,;,312()1231x a k x a a a y a a x a a x a y y x a x a y a S a a a a ===∴-=---======-=∴=±解:过点的切线方程为即令得得。

湖北省巴东一中高二数学教案 选修2-2:1.1 变化率问题 1.2 导数的概念

湖北省巴东一中高二数学教案 选修2-2:1.1 变化率问题 1.2 导数的概念

§3.1.1 变化率问题§3.1.2 导数的概念【学情分析】:本节的中心任务是形成导数的概念.概念形成划分为两个层次:1、借助气球膨胀率问题,了解变化率的含义;借助高台跳水问题,明确瞬时速度的含义.2、以速度模型为出发点,结合其他实例抽象出导数概念,使学生认识到导数就是瞬时变化率,了解导数内涵.学生对导数概念的理解会有些困难,所以要对课本上的两个问题进行深入的探讨,以便顺利地使学生形成导数的概念。

【教学目标】:知道了物体的运动规律,用极限来定义物体的瞬时速度,学会求物体的瞬时速度掌握导数的定义.【教学重点】:理解掌握物体的瞬时速度的意义和导数的定义.【教学难点】:理解掌握物体的瞬时速度的意义和导数的定义.教学环节教学活动设计意图问题 1 气球膨胀率(一)问题提出问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是334)(rrVπ=⏹如果将半径r表示为体积V的函数,那么343)(πVVr=分析: 343)(πVVr=,(1)当V从0增加到1时,气球半径增加了)(62.0)0()1(dmrr≈-气球的平均膨胀率为)/(62.01)0()1(Ldmrr≈--(2)当V从1增加到2时,气球半径增加了)(16.0)1()2(dmrr≈-气球的平均膨胀率为)/(16.012)1()2(Ldmrr≈--为导数概念的引入做铺垫hto可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态? 思考计算:5.00≤≤t 和21≤≤t 的平均速度v在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:(1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.(二)平均变化率概念:1.上述问题中的变化率可用式子1212)()(x x x f x f --表示,称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆) 3. 则平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212思考:观察函数f (x )的图象平均变化率=∆∆xf1212)()(x x x f x f --表示什么? (1)一起讨论、分析,得出结果;(2)计算平均变化率的步骤:①求自变量的增量Δx=x 2-x 1; ②求函数的增量Δf=f(x 2)-f(x 1);③求平均变化率2121()()f x f x f x x x -∆=∆-. 注意:①Δx 是一个整体符号,而不是Δ与x 相乘;②x 2= x 1+Δx ; ③Δf=Δy=y 2-y 1;三.典例分析例1.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 解:)1()1(22x x y ∆+-+∆+--=∆+-,∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 例2. 求2x y =在0x x =附近的平均变化率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.3.2函数的极值与导数(1课时)
【学情分析】:
在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值。

在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫。

【教学目标】:
(1)理解极大值、极小值的概念.
(2)能够运用判别极大值、极小值的方法来求函数的极值.
(3)掌握求可导函数的极值的步骤
【教学重点】:
极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.
【教学难点】:
极大、极小值概念的理解,熟悉求可导函数的极值的步骤
教学
环节
教学活动设计意图
创设情景
观察图3.3-8,我们发现,t a
=时,高台跳水运动员距水面高度最大.那么,函数()
h t在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律?
放大t a
=附近函数()
h t的图像,如图3.3-9.可以看出()
h a
';在t a
=,当t a
<时,函数()
h t单调递增,()0
h t'>;当t a
>时,函数()
h t单调递减,()0
h t'<;这就说明,在t a
=附近,函数值先增(t a
<,()0
h t'>)后减(t a
>,()0
h t'<).这样,当t在a的附近从小到大经过a时,()
h t'先正后负,且()
h t'
连续变化,于是有()0
h a
'=.
对于一般的函数()
y f x
=,是否也有这样的性质呢?
附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号
利用教材
在§3.3.1中的例1引入函数的极值概念①观察y=f(x)的图像在x=1点的函数值f(1)与x=1附近的其他点的函数值的特
征,并描述在x=1点及其附近导数的正负:
f(1)在x=1点及其附近是最小——'(1)0
f=;
y=f(x)在x=1附近的左侧是单减的——'()0
f x<;
y=f(x)在x=1附近的右侧是单增的——'()0
f x>;
提问:y=f(x)在x=1处是否整个函数的最小值?
不是,只是y=f(x)在x=1处附近的局部最小值
②观察y=f(x)的图像在x=4点的函数值f(4)与x=4附近的其他点的函数值的特
征,并描述在x=4点及其附近导数的正负:
学生模仿完成
考虑到极
值与最值
容易混淆,
学生对已
有知识的
同化易接
受,我们以
§3.3.1中
的例1引出
极值的概
念,具体直
观,同时对
极值与最
值区分是
一目了然
的。

概念抽象y=f(x)在定义域上可导,
①若'()0
f a=,且y=f(x)在x=a附近的左侧满足'()0
f x<;在x=a附近的右
侧满足'()0
f x>,则称点a叫做y=f(x)的极小值点,f(a)叫做函数y=f(x)的极
小值
②若'()0
f b=,且y=f(x)在x=b附近的左侧满足'()0
f x>;在x=b附近的右
侧满足'()0
f x<,则称点b叫做y=f(x)的极大值点,f(b)叫做函数y=f(x)的极
大值
由具体函
数图像抽
象上升到
一般极值
概念
函数极值概念强化练习概念判断练习:
(1)函数的极大值是函数在定义域上的最大值
(2)函数在某个区间或定义域上的极大值是唯一的
(3)函数某区间上的极大值一定大于极小值
(4)函数的极值点,导数一定为零
(5)导数为零的点一定是函数的极值点
答案:(1)错(2)错(3)错(4)对(5)错
深化学生
对函数极
值的概念,
以及函数
取极值与
'()0
f a=
的逻辑关

课后练习
1、函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )
A 充分条件
B 必要条件
C 充要条件
D 必要非充分条件
答案 D 对于3
'
2
'
(),()3,(0)0,f x x f x x f ===不能推出()f x 在0x =取极值,反之成立
2、函数32
3922y
x x x x 有( )
A 极大值5,极小值27-
B 极大值5,极小值11-
C 极大值5,无极小值
D 极小值27-,无极大值
答案C '
2
3690,1,3y x x x x =--==-=得,当1x <-时,'0y >;当1x >-时,'
0y <
当1x =-时,5y =极大值;x 取不到3,无极小值
3、函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,
则函数)(x f 在开区间),(b a 内有极小值点( )
A 1个
B 2个
C 3个
D 4个
答案 A 极小值点应有先减后增的特点,即
'''()0()0()0f x f x f x <→=→>
4、函数3
2
()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a=( ) A, 2 B. 3
C. 4
D. 5
答案: 5、若函数2
f x
x x c 在2x =处有极大值,则常数c 的值为_________;
答案6 '
2
2
'
2
()34,(2)8120,2,6f x x cx c f c c c =-+=-+==或,2c =时取极小值
6、函数1()cos sin 22f x m x x =+在4
x π
=处取得极值,则m=__________ 答案
7、已知函数2
3
bx ax y +=,当1x =时,有极大值3; (1) 求,a b 的值;(2)求函数y 的极小值
解:(1)'2
32,y ax bx =+当1x =时,'11|320,|3x x y a b y a b ===+==+=,
即320
,6,93a b a b a b +=⎧=-=⎨
+=⎩
(2)3
2
'
2
69,1818y x x y x x =-+=-+,令'
0y =,得0,1x x ==或
0|0x y y =∴==极小值。

相关文档
最新文档