OLAP 联机分析处理 (珍藏版)
联机事务处理(OLTP)和联机分析处理(OLAP)

联机事务处理(OLTP)和联机分析处理(OLAP)1.概述当今的数据处理大致可以分成两大类:联机事务处理OLTP(on-line transaction processing)、联机分析处理OLAP(On-Line Analytical Processing)。
OLTP是传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。
OLAP是数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。
2.什么是联机事务处理(OLTP)联机事务处理系统(OLTP),也称为面向交易的处理系统,其基本特征是顾客的原始数据可以立即传送到计算中心进行处理,并在很短的时间内给出处理结果。
这样做的最大优点是可以即时地处理输入的数据,及时地回答。
也称为实时系统(Real time System)。
衡量联机事务处理系统的一个重要性能指标是系统性能,具体体现为实时响应时间(Response Time),即用户在终端上送入数据之后,到计算机对这个请求给出答复所需要的时间。
OLTP数据库旨在使事务应用程序仅写入所需的数据,以便尽快处理单个事务。
OLTP数据库通常具有以下特征:1.支持大量并发用户定期添加和修改数据;2.反映随时变化的单位状态,但不保存其历史记录;3.包含大量数据,其中包括用于验证事务的大量数据;4.具有复杂的结构;5.可以进行优化以对事务活动做出响应;6.提供用于支持单位日常运营的技术基础结构;7.个别事务能够很快地完成,并且只需访问相对较少的数据。
OLTP 系统旨在处理同时输入的成百上千的事务。
OLTP系统中的数据主要被组织为支持如下事务:1.记录来自销售点终端或通过网站输入的订单;2.当库存量降到指定级别时,订购更多的货物;3.在制造厂中将零部件组装为成品时对零部件进行跟踪;4.记录雇员数据。
通常在数据库系统中,事务是工作的离散单位。
例如,一个数据库事务可以是修改一个用户的帐户平衡或库存项的写操作。
第4章-OLAP-在线联机分析

OLTP与OLAP对比表
OLTP OLAP
数据库原始操作
细节性数据 当前数据 经常性更新数据 一次性处理的数据量少 对响应时间要求高 用户量大
数据库导出数据或数据仓库数据
综合性数据 历史性数据 不可更新,但可周期性刷新数据 一次性处理的数据量多 响应时间合理 用户量少
面向操作人员、支持日常操作
面向应用、实物驱动
– (‘2000年’, ‘家电’, ‘南京市’, ‘1亿’) – (‘2000年7月’,‘女性服装’,‘江苏省’, ‘10亿’)
数据单元(单元格)
多维数组的取值称为数据单元。 当多维数组的各个维都选中一个维成员,
这些维成员的组合就唯一确定了一个观 察对象的值,即(维成员1,维成员 2,……,维成员n,对象值)。
面向决策人员、支持管理需要
面向分析、分析驱动
OLAP特性
快速性:用户对OLAP的快速反应能力有很高的要求。系统应能在5
秒内对用户的大部分分析要求做出反应。客户/服务器体系结构 -两层或三层C/S结构。
可分析性 :OLAP 系统应能处理与应用有关的任何逻辑分析和统计
分析。
多维性 :多维性是 OLAP 的关键属性。系统必须提供对数据的多维
问、处理和分析,通过直观的方式从多个维度、 多种数据综合程度将系统的运营情况展现给使 用者。
OLTP与OLAP
随着数据库系统广泛应用,数据库系统记录和
处理的数据越来越多,及时地记录和处理企业 的各种业务数据,这些系统成为联机事务处理 (OLTP)系统。数据库技术的广泛应用和技术的 发展,人们已经不再满足于仅仅用数据库系统 来记录企业的业务活动数据和对数据的简单处 理,人们需要对企业业务活动的数据进行各种 分析,以便发现企业业务趋势,这些系统称为 联机分析处理(OLAP)系统。
联机事务处理与联机分析处理

数据库管理系统
与用户,应用程序和数据库本身进行交 互,以对数据进行定义、增、删、改、 查和控制等操作的软件。
3
数据库类型
目前主流数据库类型有关系型数据 库和非关系型数据库。
第六章 离婚制度
二、离婚制度的历史沿革
(一)外国离婚制度的历史沿革
1.禁止离婚主义
2.许可离婚主义
(1)专权离婚主义 (2)限制离婚主义 (3)自由离婚主义
(二)协议离婚是较为简便的离婚方式,这种离婚方式成 本低,充分尊重当事人的意愿。
二、协议离婚的条件
《民法典》第五编婚姻家 庭第1076条规定了协议离 婚的条件。“夫妻双方自 愿离婚的,应当签订书面 离婚协议,并亲自到婚姻 登记机关申请离婚登记。 离婚协议应当载明双方自 愿离婚的意思表示和对子 女抚养、财产以及债务处 理等事项协商一致的意 见。”
2.1 联机事务处理-OLTP
数据库与联机事务处理 关系数据库简介 关系数据库的设计范式 联机事务处理的主要操作 事务的特性
2.1.1 数据库与联机事务处理
数据库
商业智能技术的重
要基础、有组织的
数据结合、存储的
2
数据可供多用户和
程序共享。
1
4
联机事务处理
基于数据库的数据处理过程,前端将接收到的 用户数据传递到后台进行处理,系统在短时间 内对用户的进行反应并显示处理结果。
三、协议离婚的程序
我国内地协议离婚需要按照行政程序进行,夫妻双方需要办理 离婚登记手续。协议离婚应当符合以下程序:
三十日内,任何一方不愿意离婚的,可以向婚姻登 记机关撤回离婚登记申请
“离婚冷静期”(自婚姻
申
登记机关收到离婚登记
请
申请之日起三十日内)
联机分析处理系统OLAP概述

OLAP概述 OLAP分析,又称多维分析,是使分析人员、管理人员或执行人员能够从多种角度对从原始数据中转化出来的、能够真正为用户所理解的并真实反映企业维特性的信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。
OLAP也可以简单定义成使用户能够以多维视图分析数据的工具。
通常用来进行多维分析的维有时间、地点、产品、度量值(如销售额)等。
例如,在销售经理查看销售数据时,他可能想了解某个产品在某个地区、某段时间的销售额,并通过交叉表的功能来按不同的维对销售数据进行分析和通过挖掘功能来了解深层次的信息。
图3-20:数据的多维形式通过三维方式展现数据,并在此基础上进行分析,能够揭示出在二维方式下隐藏的关系;并通过方便的数据导航功能,使用户更易比较数据变量之间的关系,从而可以发现数据中隐藏的信息。
关系型数据库往往不能支持对数据进行逻辑分析和统计分析。
而采用OLAP系统,用户无须编程就可以定义新的逻辑、统计等方面的计算,并可将其做为分析的一部分,并以用户理想的方式给出报告。
用户可以在OLAP平台上进行数据分析,也可以连接到其他外部分析工具上,如时间序列分析工具、数据挖掘工具等。
OLAP产品根据其实现多维分析的技术以及要实现的目标而分为三类: (1)、MOLAP(多维联机分析处理)。
MOLAP将事务型数据进行综合,通过多维结构的“立方体”的数据结构来储存经综合的数据。
MOLAP通过其层次型数据库及在内存内的索引来保障数据访问的性能。
用户可以利用数据导航工具来进行钻取、交叉查询及产生关于“立方体”的报告。
根据MOLAP的技术特点,MOLAP擅长于对一定数量的数据进行大量、复杂、快速的、反复的分析。
MOLAP通常用来进行假设分析和问题求解,如在预算应用中。
图3-21:MOLAP架构图(2)、ROLAP(关系型联机分析处理)。
ROLAP在分析数据是直接到关系型数据库中取数据,而不建立自己的“立方体”。
OLAP分析

14
多维数据分析视图
对于更多维度的数据显示,需要选择维度及其成员分布在行或者列中。 在页面上可选定多个维度,但每个维度只能显示一个成员。在行或者列 中一般只选择二个维,每个维可以多个成员。例如对6维度数据,其 MTS如下图所示。 六维MTS例
鞋
鞋 鞋 鞋 …
上海
广州 广州 广州 …
3月
1月 2月 3月 …
400
150 250 300 …
11
多维类型结构(MTS)
表示方法是:每一个维度用一条线段来表示。维度中的每 一个成员都用线段上的一个单位区间来表示。
例如,用三个线段分别表示时间、产品和指标三个维的多维类型结构 如图所示。
三维MTS例
06 年 60 230 210
05 年 80 110 210
06 年 50 250 280
05 年 100 270 310
06 年 50 330 270
05 年 50 200 320
06 年 40 220
维的层次关系图
全国
江苏
北京
上海
苏州市
扬州市
宝应县
6
OLAP 概念
维的层次与类组合图
产品维
产品产地类
产品销地类
产品用途类
产品大类
产品小类
7
OLAP 数据显示与分析
8
多维数据显示
多维数据显示方法 多维类型结构(MTS) 多维数据分析视图
数据仓库第二章——OLAP联机分析处理

析。
(3)多维性:系统必须提供对数据分析的多维视图和分析。 (4)信息性:OLAP系统应能及时获得信息,并且管理大容量
的信息。
4.1.2 OLAP准则
1993年,E.F.Codd提出OLAP的12条准则,其主 要的准则有:
6
4.1.1 OLAP的定义
1. OLAP理事会给出的定义 联机分析处理(OLAP)是一种软件技术,它
使分析人员能够迅速、一致、交互地从各个 方面观察信息,以达到深入理解数据的目的。 这些信息是从原始数据转换过来的,按照用 户的理解,它反映了企业真实的方方面面。
7
2. OLAP的简单定义
联机分析处理是共享多维信息的快速分析。 它体现了四个特征:
同时计算一些可能同时的聚集,避免不必要 的单元再次访问。
总结:
由于分块技术设计“重叠”某些聚集计算, 称该技术为多路数组聚集(Multiway array aggregation)
它同时聚集——即同时对多个维计算聚集。
44
4.2.4 MOLAP与ROLAP的比较
1.数据存取速度 2.数据存储的容量 3.多维计算的能力 4.维度变化的适应性 5.数据变化的适应性 6.软硬件平台的适应性 7.元数据管理
图4.4多维类型结构中的空间数据点
4.3.3多维数据的分析视图
在平面的屏幕上显示多维数据,是利用行、 列和页面三个显示组来表示的。例如,对上 例的四维MTS实例,在页面上选定商店维度 中“商店3”,在行中选定时间维的“1月、2 月、3月”共3个成员,在列中选定产品维中 的“上衣、裤、帽子”三个成员,以及指标 维中的“固定成本、直接销售”二个成员。 该四维数据的显示如图4.6所示。
什么是联机分析处理(OLAP)
OS Java CORBA COM+ Middleware XML&WebService Patterns ONE&NET P2P Development Database Download Doc什么是联机分析处理(OLAP )(转载自北大高科网站,/)联机分析处理 (OLAP) 的概念最早是由关系数据库之父E.F.Codd 于1993年提出的,他同时提出了关于OLAP 的12条准则。
OLAP 的提出引起了很大的反响,OLAP 作为一类产品同联机事务处理 (OLTP) 明显区分开来。
当今的数据处理大致可以分成两大类:联机事务处理OLTP (on-line transaction processing )、联机分析处理OLAP (On-Line Analytical Processing )。
OLTP 是传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。
OLAP 是数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。
下表列出了OLTP 与OLAP 之间的比较。
OLAP是使分析人员、管理人员或执行人员能够从多角度对信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。
OLAP的目标是满足决策支持或者满足在多维环境下特定的查询和报表需求,它的技术核心是"维"这个概念。
“维”是人们观察客观世界的角度,是一种高层次的类型划分。
“维”一般包含着层次关系,这种层次关系有时会相当复杂。
通过把一个实体的多项重要的属性定义为多个维(dimension),使用户能对不同维上的数据进行比较。
因此OLAP也可以说是多维数据分析工具的集合。
OLAP的基本多维分析操作有钻取(roll up和drill down)、切片(slice)和切块(dice)、以及旋转(pivot)、drill across、drill through 等。
在线分析处理OLAP在数据分析中的应用
在线分析处理OLAP在数据分析中的应用近年来,随着数据量的快速增长和复杂性的增加,数据分析在各行各业中的重要性不断凸显。
为了能够高效地进行数据分析,许多组织和企业开始采用在线分析处理(OLAP)技术。
本文将介绍OLAP的基本原理、主要功能以及在数据分析中的应用。
一、OLAP基本原理OLAP是一种基于多维数据模型的数据分析技术。
它以多维数据立方体为基础,将数据按照不同的维度进行组织和存储,使得用户可以方便地从不同的角度对数据进行分析和探索。
OLAP具有以下几个基本概念:1. 多维数据模型:OLAP使用多维数据模型来描述分析对象和分析结果。
多维数据模型以立方体为基础,将数据按照事实表和维度表进行组织,形成多维数据空间。
2. 维度和指标:维度是描述事实的属性,如时间、地理位置、产品等;指标是需要分析的事实数据,如销售额、访问量等。
OLAP通过对维度和指标的组合,形成多维数据立方体。
3. 切片和钻取:切片是指根据某个维度或者指标对数据进行筛选,只保留满足条件的数据;钻取是指根据需要,从总体数据中逐步细化到更详细的细节。
4. 聚集和计算:OLAP可以对多维数据进行聚集操作,从而实现对数据进行汇总和计算。
聚集操作可以提高数据分析的效率。
二、OLAP主要功能OLAP具有以下几个主要的功能,这些功能使得OLAP成为数据分析的有力工具:1. 多维数据分析:OLAP可以根据不同的维度对数据进行切片、钻取和旋转等操作,从而使用户可以从不同的角度对数据进行分析,发现数据中的规律和趋势。
2. 查询和报表功能:OLAP可以通过灵活的查询和报表工具,帮助用户快速获取需要的数据,并生成丰富的报表和图表,便于数据的可视化展示和沟通。
3. 高性能计算:由于OLAP采用了多维数据模型和聚集技术,可以对大规模数据进行高效的计算和分析,减少了数据查询和分析的时间消耗。
4. 数据挖掘和预测:OLAP可以结合数据挖掘和预测算法,从海量的数据中挖掘出有价值的信息和规律,为组织和企业的决策提供支持。
SAS9联机分析处理(OLAP)在宝钢企业级营销数据分析中的应用
关键 词 :A 9 联机 分析 处理 ; SS ; 维度 ; 据 立方体 数 中图分 类号 : P 7 . T 24 2 文献标 识 码 : B 文章编 号 :6 2 6 6 2 0 )1 0 4一 5 1 7 —1 1 (0 8 0 —0 1 O
1
收 稿 日期 :0 7—1 —2 20 1 3
作者简介 : 杨
仪( 9 9 , ( 16 一)女 回族 )江苏镇江人 , 山钢铁股份有限公司工程 师 , , 宝 主要研究方 向为营销信息管理系统。
9 机分析处理 ( 联 O
) 述 概
) 述 概
应能在 5 内对 用 户 的 大 部 分 分 析 要 求 做 出 反 应 , s 这也是 OL P最 为显 著 的一 个 特 点 。 ( ) 分 析 A 2可 性 。OL AP数据 分 析 系统 能 够 处 理 与 应 用 有 关 的 任何 逻辑 分析 和统 计分 析 , 户无 需 编程 就可 以定 用
2 10 ) 0 9 0
摘要 : 简要 描 述 了联 机 分析 处J OL )  ̄( AP 的定 义 、 工作原 理 、 点 和 S 9联 机 分析 处理 工具 ; 特 AS 分析 了宝钢企 业级 营销 数据 分析 现状 与 需 求 ; 以竞 争产 品 多维分 析 和 库存 多维分 析 两个 应 用 实例 探
oL 技术 的核心 是 多维 结 构 , 在一 个 oL P A
数据模 型 中, 息被抽 象 为一个 立方体 , 信 包括 维 ( i n i ) 度 量 ( aue 。 利 用 多 维 数 据 模 Dmes n 和 o Mesr) 型可以使得终端用户提交的复杂查询 、 报表数据分 类排 列 、 要数 据 向详 细 数 据 的转 化 和过 滤 、 据 概 数 的切片等 工作 变得 简 单 而 直 观 。应 用 oL 工具 建 立 的数据 分析 系 统 具 有快 速 性 、 分 析性 、 可 多维 性 、 享 性 和 信 息 性 几 个 特 点 J ( ) 速 性 。用 共 : 1快 户对 OL P的快 速 反 应 能 力 有 很 高 的 要 求 , 统 A 系
【商务智能 精】第6章 OLAP
——第六章 联机分析处理
第六章 联机分析处理
教学要点
• 联机分析处理多维分析操作 • 联机分析处理的数据组织形式 • 联机分析处理操作语言 • 联机分析处理的系统结构 • 联机分析处理智能分析工具
OLAP技术概念
OLAP一类软件技术,它可使企业数据分析人员、企业经理 及企业其他管理人员通过对企业信息的多种可能的观察角 度进行快速、一致和交互性的存取,以获得对信息的深入 理解。
(1)快速性。用户对OLAP的快速反应能力有很高的要求。 要求系统能在几秒钟内对用户的多数分析要求做出反应。
(2)可分析性。OLAP系统应能处理与应用有关的任何逻辑 分析和统计分析。尽管系统可以事先编程,但并不意味着 系统定义了所有的应用。
(3)多维性。多维性是OLAP的关键属性。系统能够提供对 数据分析的多维视图和分析,包括对层次维和多重层次维 的支持。事实上,多维分析是分析企业数据最有效的方法, 是OLAP的灵魂。
促销维 促销键 待定促销
001
是
002
否
属性 买一送一 赠送礼物
图4.2 以时间、销售地区、产品三个维所构成的多维数据集
▪
三维以上的多维数据集
数据立方体——一个方体的格
all
0-D(apex) cuboid
time
item
location supplier
1-D cuboids
time,location
5.聚集。
6.数据单元(单元格)。多维数组的取值称为数据单元。
时间维
日期 星期几 星期数 月份
商店维
商店键 商店标识号 商店名称 地址 地区 楼层类型
零售营销
时间键 产品键 商店键 客户键 促销键 销售额 销售数量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OLAP --- 联机分析处理随着数据库技术的发展和应用,数据库存储的数据量从20世纪80年代的兆(M)字节及千兆(G)字节过渡到现在的兆兆(T)字节和千兆兆(P)字节,同时,用户的查询需求也越来越复杂,涉及的已不仅是查询或操纵一张关系表中的一条或几条记录,而且要对多张表中千万条记录的数据进行数据分析和信息综合,关系数据库系统已不能全部满足这一要求。
操作型应用和分析型应用,特别是在性能上难以两全,人们常常在关系数据库中放宽了对冗余的限制,引入了统计及综合数据,但这些统计综合数据的应用逻辑是分散而杂乱的、非系统化的,因此分析功能有限,不灵活,维护困难。
在国外,不少软件厂商采取了发展其前端产品来弥补关系数据库管理系统支持的不足,他们通过专门的数据综合引擎,辅之以更加直观的数据访问界面,力图统一分散的公共应用逻辑,在短时间内响应非数据处理专业人员的复杂查询要求。
1993年,E.F.Codd(关系数据库之父)将这类技术定义为“联机分析处理”。
联机分析处理联机分析处理是共享多维信息的、针对特定问题的联机数据访问和分析的快速软件技术。
它通过对信息的多种可能的观察形式进行快速、稳定一致和交互性的存取,允许管理决策人员对数据进行深入观察。
决策数据是多维数据,多维数据就是决策的主要内容。
OLAP专门设计用于支持复杂的分析操作,侧重对决策人员和高层管理人员的决策支持,可以根据分析人员的要求快速、灵活地进行大数据量的复杂查询处理,并且以一种直观而易懂的形式将查询结果提供给决策人员,以便他们准确掌握企业(公司)的经营状况,了解对象的需求,制定正确的方案。
联机分析处理具有灵活的分析功能、直观的数据操作和分析结果可视化表示等突出优点,从而使用户对基于大量复杂数据的分析变得轻松而高效,以利于迅速做出正确判断。
它可用于证实人们提出的复杂的假设,其结果是以图形或者表格的形式来表示的对信息的总结。
它并不将异常信息标记出来,是一种知识证实的方法。
联机分析处理联机分析处理(OLAP)的概念最早是由关系数据库之父E.F.Codd于1993年提出的,他同时提出了关于OLAP的12条准则。
OLAP的提出引起了很大的反响,OLAP作为一类产品同联机事务处理(OLTP) 明显区分开来。
Codd提出OLAP的12条准则来描述OLAP系统:准则1 OLAP模型必须提供多维概念视图;准则2 透明性准则;准则3 存取能力推测;准则4 稳定的报表能力;准则5 客户/服务器体系结构;准则6 维的等同性准则;准则7 动态的稀疏矩阵处理准则;准则8 多用户支持能力准则;准则9 非受限的跨维操作;准则10 直观的数据操纵;准则11 灵活的报表生成;准则12 不受限的维与聚集层次;当今的数据处理大致可以分成两大类:联机事务处理OLTP(on-line transaction processi ng)、联机分析处理OLAP(On-Line Analytical Processing)。
OLTP是传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。
OLAP是数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。
下表列出了OLTP与OLAP之间的比较。
随着数据库技术的广泛应用,企业信息系统产生了大量的数据,如何从这些海量数据中提取对企业决策分析有用的信息成为企业决策管理人员所面临的重要难题。
传统的企业数据库系统(管理信息系统)即联机事务处理系统(On-LineTransactionProcessing,简称OLTP)作为数据管理手段,主要用于事务处理,但它对分析处理的支持一直不能令人满意。
因此,人们逐渐尝试对OLTP数据库中的数据进行再加工,形成一个综合的、面向分析的、更好的支持决策制定的决策支持系统(DecisionSupportSystem,简称DSS)。
企业目前的信息系统的数据一般由DBMS管理,但决策数据库和运行操作数据库在数据来源、数据内容、数据模式、服务对象、访问方式、事务管理乃至无力存储等方面都有不同的特点和要求,因此直接在运行操作的数据库上建立DSS是不合适的。
数据仓库(DataWarehouse)技术就是在这样的背景下发展起来的。
数据仓库的概念提出于20世纪80年代中期,20世纪90年代,数据仓库已从早起的探索阶段走向实用阶段。
业界公认的数据仓库概念创始人W.H.Inmon在《BuildingtheDataWarehouse》一书中对数据仓库的定义是:“数据仓库是支持管理决策过程的、面向主题的、集成的、随时间变化的持久的数据集合”。
构建数据仓库的过程就是根据预先设计好的逻辑模式从分布在企业内部各处的OLTP数据库中提取数据并对经过必要的变换最终形成全企业统一模式数据的过程。
当前数据仓库的核心仍是RDBMS管理下的一个数据库系统。
数据仓库中数据量巨大,为了提高性能,RDBMS一般也采取一些提高效率的措施:采用并行处理结构、新的数据组织、查询策略、索引技术等等。
包括联机分析处理(On-LineAnalyticalProcessing,简称OLAP)在内的诸多应用牵引驱动了数据仓库技术的出现和发展;而数据仓库技术反过来又促进了OLAP技术的发展。
联机分析处理的概念最早由关系数据库之父E.F.Codd于1993年提出的。
Codd认为联机事务处理(OLTP)已不能满足终端用户对数据库查询分析的要求,SQL对大数据库的简单查询也不能满足用户分析的需求。
用户的决策分析需要对关系数据库进行大量计算才能得到结果,而查询的结果并不能满足决策者提出的需求。
因此,Codd提出了多维数据库和多维分析的概念,即OLAP。
OLAP委员会对联机分析处理的定义为:使分析人员、管理人员或执行人员能够从多种角度对从原始数据中转化出来的、能够真正为用户所理解的、并真实反映企业维特性的信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。
OLAP的目标是满足决策支持或多维环境特定的查询和报表需求,它的技术核心是“维”这个概念,因此OLAP也可以说是多维数据分析工具的集合。
联机分析处理在过去的二十年中,大量的企业利用关系型数据库来存储和管理业务数据,并建立相应的应用系统来支持日常业务运作。
这种应用以支持业务处理为主要目的,被称为联机事务处理(OLTP,On-line Transaction Processing)应用,它所存储的数据被称为操作数据或者业务数据。
随着市场竞争的日趋激烈,近年来企业更加强调决策的及时性和准确性,这使得以支持决策管理分析为主要目的的应用迅速崛起,这类应用被称为联机分析处理,它所存储的数据被称为信息数据。
联机分析处理的用户是企业中的专业分析人员及管理决策人员,他们在分析业务经营的数据时,从不同的角度来审视业务的衡量指标是一种很自然的思考模式。
例如分析销售数据,可能会综合时间周期、产品类别、分销渠道、地理分布、客户群类等多种因素来考量。
这些分析角度虽然可以通过报表来反映,但每一个分析的角度可以生成一张报表,各个分析角度的不同组合又可以生成不同的报表,使得IT人员的工作量相当大,而且往往难以跟上管理决策人员思考的步伐。
联机分析处理的主要特点,是直接仿照用户的多角度思考模式,预先为用户组建多维的数据模型,在这里,维指的是用户的分析角度。
例如对销售数据的分析,时间周期是一个维度,产品类别、分销渠道、地理分布、客户群类也分别是一个维度。
一旦多维数据模型建立完成,用户可以快速地从各个分析角度获取数据,也能动态的在各个角度之间切换或者进行多角度综合分析,具有极大的分析灵活性。
这也是联机分析处理在近年来被广泛关注的根本原因,它从设计理念和真正实现上都与旧有的管理信息系统有着本质的区别。
事实上,随着数据仓库理论的发展,数据仓库系统已逐步成为新型的决策管理信息系统的解决方案。
数据仓库系统的核心是联机分析处理,但数据仓库包括更为广泛的内容。
概括来说,数据仓库系统是指具有综合企业数据的能力,能够对大量企业数据进行快速和准确分析,辅助做出更好的商业决策的系统。
它本身包括三部分内容:数据层。
实现对企业操作数据的抽取、转换、清洗和汇总,形成信息数据,并存储在企业级的中心信息数据库中。
应用层。
通过联机分析处理,甚至是数据挖掘等应用处理,实现对信息数据的分析。
表现层。
通过前台分析工具,将查询报表、统计分析、多维联机分析和数据发掘的结论展现在用户面前。
从应用角度来说,数据仓库系统除了联机分析处理外,还可以采用传统的报表,或者采用数理统计和人工智能等数据挖掘手段,涵盖的范围更广;就应用范围而言,联机分析处理往往根据用户分析的主题进行应用分割,例如:销售分析、市场推广分析、客户利润率分析等等,每一个分析的主题形成一个OLAP应用,而所有的OLAP应用实际上只是数据仓库系统的一部分。
OLAP展现在用户面前的是一幅幅多维视图。
维(Dimension):是人们观察数据的特定角度,是考虑问题时的一类属性,属性集合构成一个维(时间维、地理维等)。
维的层次(Level):人们观察数据的某个特定角度(即某个维)还可以存在细节程度不同的各个描述方面(时间维:日期、月份、季度、年)。
维的成员(Member):维的一个取值,是数据项在某维中位置的描述。
(“某年某月某日”是在时间维上位置的描述)。
度量(Measure):多维数组的取值。
(2000年1月,上海,笔记本电脑,0000)。
OLAP的基本多维分析操作有钻取(Drill-up和Drill-down)、切片(Slice)和切块(Dice)、以及旋转(Pivot)等。
钻取:是改变维的层次,变换分析的粒度。
它包括向下钻取(Drill-down)和向上钻取(Drill-up)/上卷(Roll-up)。
Drill-up是在某一维上将低层次的细节数据概括到高层次的汇总数据,或者减少维数;而Drill-down则相反,它从汇总数据深入到细节数据进行观察或增加新维。
切片和切块:是在一部分维上选定值后,关心度量数据在剩余维上的分布。
如果剩余的维只有两个,则是切片;如果有三个或以上,则是切块。
旋转:是变换维的方向,即在表格中重新安排维的放置(例如行列互换)。
联机分析处理数据仓库与OLAP的关系是互补的,现代OLAP系统一般以数据仓库作为基础,即从数据仓库中抽取详细数据的一个子集并经过必要的聚集存储到OLAP存储器中供前端分析工具读取。
典型的OLAP系统体系结构如下图所示:OLAP系统按照其存储器的数据存储格式可以分为关系OLAP(RelationalOLAP,简称ROLAP)、多维OLAP(MultidimensionalOLAP,简称MOLAP)和混合型OLAP(HybridOLAP,简称HOLAP)三种类型。