函数单调性奇偶性经典例题
函数单调性与奇偶性典型例题讲解

∴原不等式的解集为{x|-3<x<1 }.
变式:定义在 R 上的函数 y=f(x),f(0)≠0,当 x>0 时,f(x)>1, 且对任意的 a,b∈R,有 f(a+b)=f(a)·f(b).
(1)证明:f(0)=1; (2)证明:对任意的 x∈R,恒有 f(x)>0; (3)证明:f(x)是 R 上的增函数; (4)若 f(x)·f(2x-x2)>1,求 x 的取值范围.
设奇函数 f(x)的定义域为[-5,5].若当 x∈[0,5]时,f(x) 的图象如图 2-2-5 所示,则不等式 f(x)<0 的解集是 ________.
图 2-2-5
解:注意到奇函数的图象关于原点成中心对称,用对称的思 想方法画全函数 f(x)在[-5,5]上的图象(如图),数形结 合,得 f(x)<0 的解集为{x|-2<x<0 或 2<x≤5}.
变式:已知 f(x)是(-∞,0)∪(0,+∞)上的偶函数,且当 x >0 时,f(x)=x3+x+1,求 f(x)的解析式.
解:①当 x<0 时,-x>0,
∴f(-x)=(-x)3-x+1=-x3-x+1.
又∵f(x)为偶函数,∴f(-x)=f(x).
∴f(x)=-x3-x+1.
∴f(x)=x-3+x3x-+x1+,1,
已知 f(x)是定义在 R 上的不恒为 0 的函数,且对于任意的 x, y∈R,有 f(x·y)=xf(y)+yf(x). (1)求 f(0),f(1)的值; (2)判断函数 f(x)的奇偶性,并证明你的结论.
解:(1)在 f(xy)=xf(y)+yf(x)中, 令 x=y=0,得 f(0)=0+0=0,即 f(0)=0. 令 x=y=1,得 f(1)=1·f(1)+1·f(1), ∴f(1)=0;
函数的单调性与奇偶性-练习题-基础

1 函数单调性(一) (一)选择题 1.函数xx f 3)(=在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1B .x y 2=C .y =x 2-4x +5D .y =|x -1|+23.设函数y =(2a -1)x 在R 上是减函数,则有 A .21≥a B .21≤a C .21>a D .21<a ~4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( )A .必是增函数B .不一定是增函数C .必是减函数D .是增函数或减函数 (二)填空题5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______.6.若函数xax f =)(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)43(f 的大小关系是______。
*9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. -(三)解答题10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断:甲说f (x )在定义域上是增函数;乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。
;11.已知函数.21)(-=xx f (1)求f (x )的定义域;(2)证明函数f (x )在(0,+∞)上为减函数.12.已知函数||1)(x x f =. (1)用分段函数的形式写出f (x )的解析式;&(2)画出函数f (x )的图象,并根据图象写出函数f (x )的单调区间及单调性.2 函数单调性(二) (一)选择题1.一次函数f (x )的图象过点A (0,3)和B (4,1),则f (x )的单调性为( )(A .增函数B .减函数C .先减后增D .先增后减 2.已知函数y =f (x )在R 上是增函数,且f (2m +1)>f (3m -4),则m 的取值范围是( ) A .(-∞,5)B .(5,+∞)C .),53(+∞D .)53,(-∞3.函数f (x )在区间(-2,3)上是增函数,则下列一定是y =f (x )+5的递增区间的是( )A .(3,8)B .(-2,3)C .(-3,-2)D .(0,5) 4.已知函数f (x )在其定义域D 上是单调函数,其值域为M ,则下列说法中 ①若x 0∈D ,则有唯一的f (x 0)∈M ②若f (x 0)∈M ,则有唯一的x 0∈D !③对任意实数a ,至少存在一个x 0∈D ,使得f (x 0)=a ④对任意实数a ,至多存在一个x 0∈D ,使得f (x 0)=a 错误的个数是( ) A .1个 B .2个 C .3个 D .4个 (二)填空题 5.已知函数f (x )=3x +b 在区间[-1,2]上的函数值恒为正,则b 的取值范围是_____. 6.函数])2,1[(12∈-=x xx y 的值域是______. *7.已知函数f (x )的定义域为R ,且对任意两个不相等的实数x ,y ,都有0)()(<--yx y f x f 成立,则f (x )在R 上的单调性为________(填增函数或减函数或非单调函数). -8.若函数y =ax 和x by -=在区间(0,+∞)上都是减函数,则函数1+=x ab y 在(-∞,+∞)上的单调性是______(填增函数或减函数或非单调函数).9.若函数⎩⎨⎧<-≥+=)1(1)1(1)(2x ax x x x f 在R 上是单调递增函数,则a 的取值范围是______.(三)解答题10.某同学在求函数]4,1[,)(∈+=x x x x f 的值域时,计算出f (1)=2,f (4)=6,就直接得值域为[2,6].他的答案对吗,他这么做的理由是什么11.用max{a ,b }表示实数a ,b 中较大的一个,对于函数f (x )=2x ,xx g 1)(=,记F (x )=max{f (x ),g (x )},试画出函数F (x )的图象,并根据图象写出函数F (x )的单调区间.|*12.已知函数f (x )在其定义域内是单调函数,证明:方程f (x )=0至多有一个实数根.3 函数的奇偶性·(一)选择题1.下列函数中:①y =x 2(x ∈[-1,1]) ; ②y =|x |; ;1)(xx x f +=③ ④y =x 3(x ∈R ) 奇函数的个数是( ) A .1个 B .2个 C .3个 D .4个 2.对于定义域为R 的任意奇函数f (x )一定有( ) A .f (x )-f (-x )>0 B .f (x )-f (-x )≤0 C .f (x )·f (-x )<0 D .f (x )·f (-x )≤0¥3.函数⎩⎨⎧<+≥-=)0(1)0(1)(x x x x x fA .是奇函数不是偶函数B .是偶函数不是奇函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数 4.下面四个结论中,正确命题的个数是( ) ①偶函数的图象一定与y 轴相交 ②奇函数的图象一定通过原点 ③偶函数的图象关于y 轴对称④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R )。
函数的奇偶性与单调性

练习: 1.若函数 f(x)定义在 R 上,且 对任意 x,y∈R,都有 f(x+y) =f(x)+f(y) (1) 判断函数的奇偶性 (2) 当 x>0 时,f(x)<0,判断 函数的单调性
2. 已知函数 f(x)=1-x ,F(x) =f(f(x) )+mf(x) ,问是否存 在常数 m, 使F (x) 在区间 , 2 上 递增,在[-2,0]上递减?
练习: 1.偶函数 y=f(x)在[-1,0]上单 调递增,且满足 较 f(1.5),f(5.1)与 f(-2)的大 小
1 f ( x 1) f ( x) ,试比
2.定义在R上的函数f(x)满足f(x) +f(x—1)=1,当x∈[0,1]时, f(x)=x2,下列命题正确的是: (1)f(x)是周期函数 (2)当x∈[1,2]时,f(x)=2x-x2 (3)f(x)是偶函数 (4)f(x)在[2005,2006]上是减函数, 且f(-2005.5)=
1 [0、 ] 2 2
1 2 1 2
f x x) f ( x ) f ( x ),且() f 1 a 0。 恒有 (
(1)求:
1 1 f ( ), f ( ) 2 4
(2)求证: f ( x) 是周期函数
1 an f (2n ) lim(ln an ) (3)若 2n ,求 n
2
3 .函数
x2 2x a f ( x) x
,若
f ( x) >0 对任意 x>3 恒成立, 求实数 a 的x) x bx (b 为常数) , 且 y f ( x) 在(0,1)上单调递增, 并且方程 f ( x) 0 的根都在[-2,2]内, 求 b 的取值范围
《函数的单调性和奇偶性》经典例题

经典例题透析类型一、函数的单调性的证明1.证明函数上的单调性.举一反三:【变式1】用定义证明函数上是减函数.类型二、求函数的单调区间2. 判断下列函数的单调区间;(1)y=x2-3|x|+2;(2)举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|;(2)(3).类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.4. 求下列函数值域:(1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1);(2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]..举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x∈[1,3]时,求函数f(x)的值域.5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.举一反三:【变式1】(2011 北京理13)已知函数,若关于x的方程有两个不同的实根,则实数k的取值范围是________.类型四、判断函数的奇偶性6. 判断下列函数的奇偶性:(1)(2)(3)f(x)=x2-4|x|+3(4)f(x)=|x+3|-|x-3| (5)(6(7)举一反三:【变式1】判断下列函数的奇偶性:(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;(4).举一反三:【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).举一反三:【变式1】(2011 湖南文12)已知为奇函数,,则为:8. f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-x,求当x≥0时,f(x)的解析式,并画出函数图象.9.设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a的取值范围.类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).11. 求下列函数的值域:(1)(2)(3).12. 已知函数f(x)=x2-2ax+a2-1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3..14. 判断函数上的单调性,并证明.15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值.。
函数的单调性+奇偶性(含答案)

函数的单调性+奇偶性(含解析)一、单选题1.函数1()lg(21)f x x =-的定义域为( ) A .1|2x x ⎧⎫>⎨⎬⎩⎭ B .12x x ⎧≥⎨⎩且}1x ≠ C .12x x ⎧⎨⎩且}1x ≠ D .1|2x x ⎧⎫≥⎨⎬⎩⎭2.函数()f x = ) A .1,3⎛⎫-+∞ ⎪⎝⎭ B .1,13⎛⎫- ⎪⎝⎭ C .1,13⎡⎫-⎪⎢⎣⎭ D .1,3⎛⎫-∞- ⎪⎝⎭3.已知函数,若方程有两个实数根,则实数k 的取值范围是( ) A .(−1,−12] B .[−12,0) C .[−1,+∞) D .[−12,+∞) 4.设函数()1,02,0x x x f x b x +≥⎧=⎨+<⎩是R 上的单调增函数,则实数b 的取值范围为( ) A .(),1-∞ B .[)0,+∞ C .(],0-∞ D .(]1,1- 5.下列函数既是偶函数,又在(),0-∞上单调递减的是()A .12x y ⎛⎫= ⎪⎝⎭B .23y x -=C .1y x x =-D .()2ln 1y x =+ 6.设 ()212,11,1x x f x x x ⎧--≤⎪=⎨+>⎪⎩,则()()2f f =( ) A .-2B .2C .5D .267.集合{|,P x y =={|,Q y y ==U =R ,则()U P Q ⋂是( ) A .[)1,+∞B .∅C .[)0,1D .[)1,1- 8.函数x x x f 431)(3-=的单调递减区间是( )A .)2,(--∞B .)2,2(-C .),2(∞+D .),2()2,(+∞⋃--∞9.已知集合214A x x ⎧⎫=⎨⎬⎩⎭∣,集合{B y y ==∣,则A B =( ) A .11,22⎡⎤-⎢⎥⎣⎦ B .[1,1]- C .[0,1] D .1[0,]210.若函数()f x 满足()2f x x =+,则()32f x +的解析式是( )A .()3298f x x +=+B .()3232f x x +=+C .()3234f x x +=--D .()3234f x x +=+11.函数f (x )是定义域为R 的奇函数,当x>0时,f (x )=x+1,则当x<0时,f (x )的 表达式为( )A .1)(+-=x x fB .1)(--=x x fC .1)(+=x x fD .1)(-=x x f12.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩, 则[(2)]f f -的值为( ) A .1B .2C .4D .5二、多选题13.已知函数()f x 是一次函数,满足()()98ff x x =+,则()f x 的解析式可能为( ) A .()32f x x =+B .()32f x x =-C .()34f x x =-+D .()34f x x =-- 14.已知函数2,[1,2)x y x ∈-=,下列说法正确的是( )A .函数是偶函数B .函数是非奇非偶函数C .函数有最大值是4D .函数的单调增区间是为(0,2)15.下列函数中,与y x =是同一个函数的是( ) A .3log 3x y = B.3log 3x y = C.y = D .2y = 16.中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function ”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合-{}1,1,2,4M =-,{}1,2,4,16N =,给出下列四个对应法则,请由函数定义判断,其中能构成从M 到N 的函数的是( )A .2y x =B .2y x =+C .2x y =D .2y x三、填空题17.函数()f x =_______.18.偶函数()f x 满足当0x >时,()34f x x =+,则()1f -=_____.19.已知定义在R 上的偶函数()f x 在(0,)+∞上单调递增,则()f x 在(,0)-∞上的单调性是________.20.设,0()ln ,0x e x g x x x ⎧≤=⎨>⎩则1()2g g ⎡⎤=⎢⎥⎣⎦____________.四、解答题21.已知()222f x x x =-+.(1)画出()f x 的图象.(2)根据图象写出()f x 的单调区间和值域.22.用函数的单调性的定义证明函数()4f x x x=+在()2,+∞上是增函数. 23.求解下列函数的定义域(1)(2) 24.求函数1,01(),12x f x x x x ⎧<<⎪=⎨⎪⎩的最值25.已知函数1(),f x a x=-其中0a >。
函数的单调性奇偶性综合应用练习

函数的单调性、奇偶性综合应用一、利用函数单调性求函数最值例1、已知函数y=f(x)对任意x,y ∈R 均为f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)= -32. (1)判断并证明f(x)在R 上的单调性;(2)求f(x)在[-3,3]上的最大、小值。
思维分析:抽象函数的性质要紧扣定义,并同时注意特殊值的应用。
解:(1)令x=y=0,f(0)=0,令x=-y 可得:f(-x)= -f(x),在R 上任取x 1<x 2,则x 2-x 1>0,所以f(x 2) -f(x 1)=f(x 2)+f(-x 1)=f(x 2-x 1).因为x 1<x 2,所以x 2-x 1>0。
又因为x>0时f(x)<0,所以f(x 2-x 1)<0,即f(x 2)<f(x 1).由定义可知f(x)在R 上是减函数.(2)因为f(x)在R 上是减函数,所以f(x)在[-3,3]上也是减函数.所以f(-3)最大,f(3)最小。
所以f(-3)= -f(3)=2即f(x)在[-3,3]上最大值为2,最小值为-2。
二、复合函数单调性例2、求函数y=322--x x 的单调区间,并对其中一种情况证明。
思维分析:要求出y=322--x x 的单调区间,首先求出定义域,然后利用复合函数的判定方法判断.解:设u=x 2-2x -3,则y=u .因为u ≥0,所以x 2-2x -3≥0.所以x ≥3或x ≤-1.因为y=u 在u ≥0时是增函数,又当x ≥3时,u 是增函数,所以当x ≥3时,y 是x 的增函数。
又当 x ≤-1时,u 是减函数,所以当x ≤-1时,y 是x 的减函数。
所以y=322--x x 的单调递增区间是[3,+ ∞),单调递减区间是(-∞,-1]。
证明略三、利用奇偶性,讨论方程根情况例3、已知y=f(x)是偶函数,且图象与x 轴四个交点,则方程f(x)=0的所有实根之和是( )A.4B.2C.0D.不知解析式不能确定 思维分析:因为f(x)是偶函数且图象与x 轴有四个交点,这四个交点每两个关于原点一定是对称的,故x 1+x 2+x 3+x 4=0.答案:C四、利用奇偶性,单调性解不等式例4、设f(x)是定义在[-2,2]上的偶函数,当x ≥0时,f(x)单调递减,若f(1-m)<f(m)成立,求m 的取值范围。
《函数的单调性和奇偶性》经典例题解析

类型二、求函数的单调区间2. 判断下列函数的单调区间;(1)y=x2-3|x|+2;(2)解:(1)由图象对称性,画出草图∴f(x)在上递减,在上递减,在上递增.(2)∴图象为∴f(x)在上递增.举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|;(2)(3).解:(1)画出函数图象,∴函数的减区间为,函数的增区间为(-1,+∞);(2)定义域为,其中u=2x-1为增函数,在(-∞,0)与(0,+∞)为减函数,则上为减函数;(3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.解:又f(x)在(0,+∞)上是减函数,则.4. 求下列函数值域:(1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1);(2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2].1)f(x)在[5,10]上单增,;2);(2)画出草图1)y∈[f(1),f(-1)]即[2,6];2).举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x∈[1,3]时,求函数f(x)的值域.解:(1)上单调递增,在上单调递增;(2)故函数f(x)在[1,3]上单调递增∴x=1时f(x)有最小值,f(1)=-2 x=3时f(x)有最大值∴x∈[1,3]时f(x)的值域为.5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.解:(1)∵对称轴是决定f(x)单调性的关键,联系图象可知只需;(2)∵f(2)=22-2(a-1)+5=-2a+11又∵a≤2,∴-2a≥-4∴f(2)=-2a+11≥-4+11=7 .举一反三:【变式1】(2011 北京理13)已知函数,若关于x的方程有两个不同的实根,则实数k的取值范围是________.解:单调递减且值域(0,1],单调递增且值域为,由图象知,若有两个不同的实根,则实数k的取值范围是(0,1).类型四、判断函数的奇偶性6. 判断下列函数的奇偶性:(1)(2)(3)f(x)=x2-4|x|+3 (4)f(x)=|x+3|-|x-3| (5)(6(7)解:(1)∵f(x)的定义域为,不关于原点对称,因此f(x)为非奇非偶函数;(2)∵x-1≥0,∴f(x)定义域不关于原点对称,∴f(x)为非奇非偶函数;(3)对任意x∈R,都有-x∈R,且f(-x)=x2-4|x|+3=f(x),则f(x)=x2-4|x|+3为偶函数;(4)∵x∈R,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(5),∴f(x)为奇函数;(6)∵x∈R,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数;(7),∴f(x)为奇函数.举一反三:【变式1】判断下列函数的奇偶性:(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;(4).思路点拨:利用函数奇偶性的定义进行判断.解:(1);(2)f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x) ∴f(x)为奇函数;(3)f(-x)=(-x)2+(-x)+1=x2-x+1∴f(-x)≠-f(x)且f(-x)≠f(x) ∴f(x)为非奇非偶函数;(4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x2-2x-1=-(-x2+2x+1)=-f(x)任取x<0,则-x>0 f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-(x2+2x-1)=-f(x)x=0时,f(0)=-f(0) ∴x∈R时,f(-x)=-f(x) ∴f(x)为奇函数.类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).解:法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26法二:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.举一反三:【变式1】(2011 湖南文12)已知为奇函数,,则为:解:,又为奇函数,所以.8. f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-x,求当x≥0时,f(x)的解析式,并画出函数图象.解:∵奇函数图象关于原点对称,∴x>0时,-y=(-x)2-(-x)即y=-x2-x又f(0)=0,,如图9.设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a的取值范围.解:∵f(a-1)<f(a) ∴f(|a-1|)<f(|a|)而|a-1|,|a|∈[0,3].类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).答案:①③.11. 求下列函数的值域:(1)(2)(3)思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t 的范围.解:(1);(2)经观察知,,;(3)令.12. 已知函数f(x)=x2-2ax+a2-1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.解:(1)∵f(x)=(x-a)2-1 ∴a≤0或a≥2(2)1°当a<-1时,如图1,g(a)=f(-1)=a2+2a2°当-1≤a≤1时,如图2,g(a)=f(a)=-13°当a>1时,如图3,g(a)=f(1)=a2-2a,如图13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.解:令x=2,y=2,∴f(2×2)=f(2)+f(2)=2 ∴f(4)=2再令x=4,y=2,∴f(4×2)=f(4)+f(2)=2+1=3 ∴f(8)=3∴f(x)+f(x-2)≤3可转化为:f[x(x-2)]≤f(8).14. 判断函数上的单调性,并证明.证明:任取0<x1<x2,∵0<x1<x2,∴x1-x2<0,x1·x2>0(1)当时0<x1·x2<1,∴x1·x2-1<0∴f(x1)-f(x2)>0即f(x1)>f(x2)上是减函数.(2)当x1,x2∈(1,+∞)时,上是增函数.15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值. 解:当a=0时,f(x)=x2+|x|+1,此时函数为偶函数;当a≠0时,f(x)=x2+|x-a|+1,为非奇非偶函数.(1)当x≥a时,[1]且[2]上单调递增,上的最小值为f(a)=a2+1.(2)当x<a时,[1]上单调递减,上的最小值为f(a)=a2+1[2]上的最小值为综上:.。
《函数的单调性和奇偶性》经典例题

类型二、求函数的单调区间2. 判断下列函数的单调区间;(1)y=x2-3|x|+2;(2)解:(1)由图象对称性,画出草图∴f(x)在上递减,在上递减,在上递增.(2)∴图象为∴f(x)在上递增.举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|;(2)(3).解:(1)画出函数图象,∴函数的减区间为,函数的增区间为(-1,+∞);(2)定义域为,其中u=2x-1为增函数,在(-∞,0)与(0,+∞)为减函数,则上为减函数;(3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.解:又f(x)在(0,+∞)上是减函数,则.4. 求下列函数值域:(1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1);(2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2].1)f(x)在[5,10]上单增,;2);(2)画出草图1)y∈[f(1),f(-1)]即[2,6];2).举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x∈[1,3]时,求函数f(x)的值域.解:(1)上单调递增,在上单调递增;(2)故函数f(x)在[1,3]上单调递增∴x=1时f(x)有最小值,f(1)=-2 x=3时f(x)有最大值∴x∈[1,3]时f(x)的值域为.5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.解:(1)∵对称轴是决定f(x)单调性的关键,联系图象可知只需;(2)∵f(2)=22-2(a-1)+5=-2a+11又∵a≤2,∴-2a≥-4∴f(2)=-2a+11≥-4+11=7 .举一反三:【变式1】(2011 北京理13)已知函数,若关于x的方程有两个不同的实根,则实数k的取值范围是________.解:单调递减且值域(0,1],单调递增且值域为,由图象知,若有两个不同的实根,则实数k的取值范围是(0,1).类型四、判断函数的奇偶性6. 判断下列函数的奇偶性:(1)(2)(3)f(x)=x2-4|x|+3(4)f(x)=|x+3|-|x-3| (5)(6(7)解:(1)∵f(x)的定义域为,不关于原点对称,因此f(x)为非奇非偶函数;(2)∵x-1≥0,∴f(x)定义域不关于原点对称,∴f(x)为非奇非偶函数;(3)对任意x∈R,都有-x∈R,且f(-x)=x2-4|x|+3=f(x),则f(x)=x2-4|x|+3为偶函数;(4)∵x∈R,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(5),∴f(x)为奇函数;(6)∵x∈R,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数;(7),∴f(x)为奇函数.举一反三:【变式1】判断下列函数的奇偶性:(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;(4).思路点拨:利用函数奇偶性的定义进行判断.解:(1);(2)f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x) ∴f(x)为奇函数;(3)f(-x)=(-x)2+(-x)+1=x2-x+1∴f(-x)≠-f(x)且f(-x)≠f(x) ∴f(x)为非奇非偶函数;(4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x2-2x-1=-(-x2+2x+1)=-f(x)任取x<0,则-x>0 f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-(x2+2x-1)=-f(x)x=0时,f(0)=-f(0) ∴x∈R时,f(-x)=-f(x) ∴f(x)为奇函数.类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).解:法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26法二:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.举一反三:【变式1】(2011 湖南文12)已知为奇函数,,则为:解:,又为奇函数,所以.8. f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-x,求当x≥0时,f(x)的解析式,并画出函数图象.解:∵奇函数图象关于原点对称,∴x>0时,-y=(-x)2-(-x)即y=-x2-x又f(0)=0,,如图9.设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a的取值范围.解:∵f(a-1)<f(a) ∴f(|a-1|)<f(|a|)而|a-1|,|a|∈[0,3].类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).答案:①③.11. 求下列函数的值域:(1)(2)(3)思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t 的范围.解:(1);(2)经观察知,,;(3)令.12. 已知函数f(x)=x2-2ax+a2-1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.解:(1)∵f(x)=(x-a)2-1 ∴a≤0或a≥2(2)1°当a<-1时,如图1,g(a)=f(-1)=a2+2a2°当-1≤a≤1时,如图2,g(a)=f(a)=-13°当a>1时,如图3,g(a)=f(1)=a2-2a,如图13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.解:令x=2,y=2,∴f(2×2)=f(2)+f(2)=2 ∴f(4)=2再令x=4,y=2,∴f(4×2)=f(4)+f(2)=2+1=3 ∴f(8)=3∴f(x)+f(x-2)≤3可转化为:f[x(x-2)]≤f(8).14. 判断函数上的单调性,并证明.证明:任取0<x1<x2,∵0<x1<x2,∴x1-x2<0,x1·x2>0(1)当时0<x1·x2<1,∴x1·x2-1<0∴f(x1)-f(x2)>0即f(x1)>f(x2)上是减函数.(2)当x1,x2∈(1,+∞)时,上是增函数.15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值. 解:当a=0时,f(x)=x2+|x|+1,此时函数为偶函数;当a≠0时,f(x)=x2+|x-a|+1,为非奇非偶函数.(1)当x≥a时,[1]且[2]上单调递增,上的最小值为f(a)=a2+1.(2)当x<a时,[1]上单调递减,上的最小值为f(a)=a2+1[2]上的最小值为综上:.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的性质的运用1.若函数y f x x R =∈()()是奇函数,则下列坐标表示的点一定在函数y f x =()图象上的是( )A.(())a f a ,-B.(())--a f a ,C.(())---a f a ,D.(())a f a ,-2. 已知函数)(1222)(R x a a x f x x ∈+-+⋅=是奇函数,则a 的值为( )A .1-B .2-C .1D .2 3.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为_______.4.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有 实根之和为________.5.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数;(2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立, 求实数k 的取值范围.6.已知定义在区间(0,+∞)上的函数f(x)满足f()21x x =f(x 1)-f(x 2),且当x >1时,f(x)<0. (1)求f(1)的值;(2)判断f(x )的单调性;(3)若f(3)=-1,解不等式f(|x|)<-2.7.函数f(x)对任意的a 、b ∈R,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)>1. (1)求证:f(x)是R 上的增函数;(2)若f(4)=5,解不等式f(3m 2-m-2)<3.8.设f (x )的定义域为(0,+∞),且在(0,+∞)是递增的,)()()(y f x f yxf -=(1)求证:f (1)=0,f (xy )=f (x )+f (y ); (2)设f (2)=1,解不等式2)31()(≤--x f x f 。
9.设函数()f x 对x R ∈都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同 的实数根,则这6个实根的和为( )A . 0B .9C .12D .1810.关于x 的方程 22(28)160x m x m --+-=的两个实根 1x 、2x 满足 1232x x <<,则实数m 的取值范围11.已知函数()()y f x x R =∈满足(3)(1)f x f x +=+,且x ∈[-1,1]时,()||f x x =, 则()y f x =与5log y x =的图象交点的个数是( )A .3B .4C .5D .612.已知函数()f x 满足:4x ≥,则()f x =1()2x;当4x <时()f x =(1)f x +,则2(2log 3)f +=A124 B 112C 18D 38 13.已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、 y ∈(-1,1)都有f (x )+f (y )=f (xyyx ++1),试证明: (1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减.14.函数f (x )=111122+++-++x x x x 的图象( ) A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称D.关于直线x =1对称15.函数f (x )在R 上为增函数,则y =f (|x +1|)的一个单调递减区间是_________.16.若函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x 1)=f (x 2)=0 (0<x 1<x 2),且在[x 2,+∞)上单调递增,则b 的取值范围是_________. 17.已知函数f (x )=a x +12+-x x (a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数. (2)用反证法证明方程f (x )=0没有负数根.18.求证函数f (x )=223)1(-x x 在区间(1,+∞)上是减函数.19设函数f (x )的定义域关于原点对称且满足: (i)f (x 1-x 2)=)()(1)()(1221x f x f x f x f -+⋅;(ii)存在正常数a 使f (a )=1.求证: (1)f (x )是奇函数.(2)f (x )是周期函数,且有一个周期是4a .20.已知函数f (x )的定义域为R ,且对m 、n ∈R ,恒有f (m +n )=f (m )+f (n )-1,且 f (-21)=0,当x >-21时,f (x )>0. (1)求证:f (x )是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证.21.已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0, 设不等式解集为A ,B =A ∪{x |1≤x ≤5}, 求函数g (x )=-3x 2+3x -4(x ∈B )的最大值.22.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于( ) A.0.5B.-0.5C.1.5D.-1.523.已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0,则a 的取值 范围是( ) A.(22,3) B.(3,10) C.(22,4)D.(-2,3)24.若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________. 25.如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ), 试比较f (31),f (32),f (1)的大小关系_________.参考答案6.(1)f(1) = f(1/1) = f(1) - f(1) = 0。
(2)当0 < x < y 时,y/x > 1,所以f(y) - f(x) = f(y/x) < 0 。
故f 单调减。
(3)f(3) = -1,f(3) = f(9/3) = f(9) - f(3),f(9) = -2而 f (|x |)<-2 = f(9),且f 单调减,所以| x | > 9 x >9或x <-97.(1)设x1,x2∈R ,且x1<x2, 则x2-x1>0,∴f(x2-x1)>1. f(x2)-f(x1)=f((x2-x1)+x1)-f(x1) =f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1>0.∴f (x2)>f(x1).即f(x)是R 上的增函数.(2)∵f (4)=f (2+2)=f (2)+f (2)-1=5,∴f (2)=3,∴原不等式可化为f(3m2-m-2)<f(2), ∵f(x)是R 上的增函数,∴3m2-m-2<2, 解得-1<m < ,故解集为 . 13.证明:(1)由f (x )+f (y )=f (xy y x ++1),令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21x xx --)=f (0)=0 ∴f (x )=-f (-x ).∴f (x )为奇函数. (2)先证f (x )在(0,1)上单调递减.令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)-f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴12121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0 ∴x 2-x 1<1-x 2x 1, ∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0,即f (x 2)<f (x 1).∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0. ∴f (x )在(-1,1)上为减函数.14.解析:f (-x )=-f (x ),f (x )是奇函数,图象关于原点对称. 答案:C15.解析:令t =|x +1|,则t 在(-∞,-1]上递减,又y =f (x )在R 上单调递增,∴y =f (|x +1|)在(-∞,-1]上递减. 答案:(-∞,-1]34⎪⎭⎫ ⎝⎛-34,116.解析:∵f (0)=f (x 1)=f (x 2)=0,∴f (0)=d =0.f (x )=ax (x -x 1)(x -x 2)=ax 3-a (x 1+x 2)x 2+ax 1x 2x , ∴b =-a (x 1+x 2),又f (x )在[x 2,+∞)单调递增,故a >0.又知0<x 1<x ,得x 1+x 2>0, ∴b =-a (x 1+x 2)<0. 答案:(-∞,0)17.证明:(1)设-1<x 1<x 2<+∞,则x 2-x 1>0, 12x x a ->1且1x a >0, ∴)1(12112-=--x x x x x a a a a >0,又x 1+1>0,x 2+1>0 ∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122++-=+++--+-=+--+-x x x x x x x x x x x x x x >0, 于是f (x 2)-f (x 1)=12x x a a -+12121122+--+-x x x x >0 ∴f (x )在(-1,+∞)上为递增函数.(2)证法一:设存在x 0<0(x 0≠-1)满足f (x 0)=0,则12000+--=x x a x 且由0<0x a <1得0<-1200+-x x <1,即21<x 0<2与x 0<0矛盾,故f (x )=0没有负数根.证法二:设存在x 0<0(x 0≠-1)使f (x 0)=0,若-1<x 0<0,则1200+-x x <-2,0x a <1,∴f (x 0)<-1与f (x 0)=0矛盾,若x 0<-1,则1200+-x x >0, 0x a >0,∴f (x 0)>0与f (x 0)=0矛盾,故方程f (x )=0没有负数根. 18.证明:∵x ≠0,∴f (x )=22422322)11(1)1(1)1(1x x x x x x x -=-=-, 设1<x 1<x 2<+∞,则01111,11121222122>->-<<x x x x .2211222222112222)11(1)11(1.0)11()11(x x x x x x x x -<-∴>->-∴∴f (x 1)>f (x 2),故函数f (x )在(1,+∞)上是减函数. 19.证明:(1)不妨令x =x 1-x 2,则f (-x )=f (x 2-x 1)=)()(1)()()()(1)()(12212112x f x f x f x f x f x f x f x f -+-=-+=-f (x 1-x 2)=-f (x ).∴f (x )是奇函数.(2)要证f (x +4a )=f (x ),可先计算f (x +a ),f (x +2a ). ∵f (x +a )=f [x -(-a )]=)1)((1)(1)()()(1)()()()(1)()(=+-=--+-=---+-a f x f x f x f a f x f a f x f a f x f a f .).(111)(1)(11)(1)(1)(1)(])[()2(x f x f x f x f x f a x f a x f a a x f a x f -=++--+-=++-+=++=+∴ ∴f (x +4a )=f [(x +2a )+2a ]=)2(1a x f +-=f (x ),故f (x )是以4a 为周期的周期函数.20.证明:设x 1<x 2,则x 2-x 1-21>-21,由题意f (x 2-x 1-21)>0, ∵f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1=f (x 2-x 1)+f (-21)-1=f [(x 2-x 1)-21]>0, ∴f (x )是单调递增函数. (2)解:f (x )=2x +1.验证过程略.21.解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得且x ≠0,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数, ∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, ∴B =A ∪{x |1≤x ≤5}={x |1≤x <6},又g (x )=-3x 2+3x -4=-3(x -21)2-413知:g (x )在B 上为减函数,∴g (x )max =g (1)=-4.22.解析:f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)=-f (1.5)=-f (-0.5+2)= f (-0.5)=-f (0.5)=-0.5. 答案:B23.解析:∵f (x )是定义在(-1,1)上的奇函数又是减函数,且f (a -3)+f (9-a 2)<0. ∴f (a -3)<f (a 2-9).∴⎪⎩⎪⎨⎧->-<-<-<-<-9319113122a a a a ∴a ∈(22,3). 答案:A24.解析:由题意可知:xf (x )<0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或∴x ∈(-3,0)∪(0,3) 答案:(-3,0)∪(0,3) 25.解析:∵f (x )为R 上的奇函数 ∴f (31)=-f (-31),f (32)=-f (-32),f (1)=-f (-1),又f (x )在(-1,0)上是增函数且-31> -32>-1. ∴f (-31)>f (-32)>f (-1),∴f (31)<f (32)<f (1).答案:f (31)<f (32)<f (1)。