初二数学暑假作业参考答案(二)
2022八年级暑假作业数学答案大全

2022八年级暑假作业数学答案大全在时钟的滴答声中,时间又定格到了一年中的暑假,你们是不是应为做暑假作业而烦恼呢?下面为大家收集整理了2022八年级暑假作业数学答案参考大全,欢迎阅读与借鉴!八年级暑假作业数学答案11-5.daaaa6-10bdcba11.125;12.1.2;13.7;32;14.815.∵是平行四边形,∵∵bad∵adc互补,∵ae平分∵bad,∵adc的平分线平分∵adc∵∵ado与∵dao互余∵∵aod是90度所以do垂直于ae,又∵∵ado与∵cdo相等,∵aod等于doe等于90度且do等于do∵三角形ado与三角形doe全等,∵ao等于oe,因此do垂直平分ae16.∵∵dce+∵ecb=90∵dce:∵ecb=1:3∵dce=22.5,∵ecb=67.5∵bdc+∵dce=90,∵bdc=67.5矩形对角线相等,ac=bd,∵co=do∵acd=∵bdc=67.5∵ace=∵acd-∵dce=4517.∵cd=bd,∵rt∵cde全等于rt∵bde;∵ce=be∵de垂直平分bc,∵ae=eb,:ace为60度等腰∵,因此:ac=ce=ae∵af=ce=ae,∵deb=∵aef=∵bac=60度,∵∵aef为60度等腰∵∵af=ae=ef 因此:ac=af=ef=ce因此四边形ecaf为菱形18.(1)∵e为bc的中点,ae∵bc,即ae是bc的垂直平分线,∵ab=ac,又∵abcd是菱形,∵∵abc是等边三角形,故∵bac=60°,∵ab=ac=4∵菱形abcd的面积=2∵abc的面积=2×(1/2)×4×4=8√2.(2)连接ac,因为e为bc的中点,ae∵bc,所以ae是bc的垂直平分线,所以ac=ab=bc,所以∵abc是等边三角形,所以∵b=∵d=60°,所以∵bad=180°-∵b=120°因为ae∵bc,af∵dc所以∵bae=∵daf=30°,∵eaf=∵bad-∵bae-∵daf=60°,,因为ae‖cg,∵∵ecg=90°所以∵cha=180°-∵eaf=120°19.(1)∵四边形abcd是平行四边形∵∵b=∵cdn,ab=cd,ad=bc.又m.n分别是ad.bc的中点,∵bn=dm=am=cn.∵∵abn全等于∵cdm.(2)解:∵m是ad的中点,∵and=90°,∵mn=md=12ad,∵∵1=∵mnd,∵ad∵bc,∵∵1=∵cnd,∵∵1=∵2,∵∵mnd=∵cnd=∵2,∵pn=pc,∵ce∵mn,∵∵cen=90°,∵∵2=∵pne=30°,∵pe=1,∵pn=2pe=2,∵ce=pc+pe=3,∵cn=cecos30°=2√3,∵∵mnc=60°,cn=mn=md,∵∵cnm是等边三角形,∵∵abn∵∵cdm,∵an=cm=2√3.八年级暑假作业数学答案21.答案:B2.解析:∵α=30°+45°=75°.答案:D3.解析:延长线段CD到M,根据对顶角相等可知∵CDF=∵EDM.又因为AB∵CD,所以根据两直线平行,同位角相等,可知∵EDM=∵EAB=45°,所以∵CDF=45°.答案:B4.解析:∵CD∵AB,∵∵EAB=∵2=80°.∵∵1=∵E+∵EAB=120°,∵∵E=40°,故选A.答案:A5.答案:B6.答案:D7.答案:D8.答案:D9.解析:根据四个选项的描述,画图如下,从而直接由图确定答案. 答案:①②④10.答案:如果两个角是同一个角或相等角的余角,那么这两个角相等11.答案:40°12.答案:112.5°13.解:(1)如果一个四边形是正方形,那么它的四个角都是直角,是真命题;(2)如果两个三角形有两组角对应相等,那么这两个三角形相似,是真命题;(3)如果两条直线不相交,那么这两条直线互相平行,是假命题,如图中长方体的棱a,b所在的直线既不相交,也不平行.14.解:平行.理由如下:∵∵ABC=∵ACB,BD平分∵ABC,CE平分∵ACB,∵∵DBC=∵ECB.∵∵DBF=∵F,∵∵ECB=∵F.∵EC与DF平行.15.证明:∵CE平分∵ACD(已知),∵∵1=∵2(角平分线的定义).∵∵BAC∵1(三角形的一个外角大于任何一个和它不相邻的内角),∵∵BAC∵2(等量代换).∵∵2∵B(三角形的一个外角大于任何一个和它不相邻的内角),∵∵BAC∵B(不等式的性质).16.证明:如图④,设AD与BE交于O点,CE与AD交于P点,则有∵EOP=∵B+∵D,∵OPE=∵A+∵C(三角形的外角等于和它不相邻的两个内角的和).∵∵EOP+∵OPE+∵E=180°(三角形的内角和为180°),∵∵A+∵B+∵C+∵D+∵E=180°.如果点B移动到AC上(如图⑤)或AC的另一侧(如图⑥)时,∵EOP,∵OPE仍然分别是∵BOD,∵APC的外角,所以可与图④类似地证明,结论仍然成立.17.解:(1)∵3=∵1+∵2;证明:证法一:过点P作CP∵l1(点C在点P的左边),如图①,则有∵1=∵MPC.图①∵CP∵l1,l1∵l2,∵CP∵l2,∵∵2=∵NPC.∵∵3=∵MPC+∵NPC=∵1+∵2,即∵3=∵1+∵2.证法二:延长NP交l1于点D,如图②.图②∵l1∵l2,∵∵2=∵MDP.又∵∵3=∵1+∵MDP,∵∵3=∵1+∵2.(2)当点P在直线l1上方时,有∵3=∵2-∵1;当点P在直线l2下方时,有∵3=∵1-∵2.八年级暑假作业数学答案3(一)答案:1-8、DABDDDCA;9、1,2,3;10、a≤b;11、a4且a≠0;12、a-1;13、7; 14、(1)x2,(2)x-3;15、a≤;16、1;17、18厘米;18、2121、18题;22、(1)a=0.6,b=0.4;(2)35%到50%之间(不含35%和50%)。
初二数学暑假作业答案参考优选篇

初二数学暑假作业答案参考优选篇初二数学暑假作业答案参考 11~9 ACACB DDBC 11. 21ab; 12. 100; 14. ①③. 15. 原式A A1 B C B1 C1 A2 B2 C2 ・O初二全科目课件教案习题汇总语文数学英语物理历史 2 又A点在函数xky22上,所以212k,解得22k所以xy22解方程组xyxy2,3 得.2,111yx .1,222yx 所以点B的坐标为(1, 2) (2)当02时,y1y2; 当x=1或x=2时,y1=y2. 21.(1)易求得60CDA, DCCA, 因此得证. (2)易证得AAC∽__,且相似比为3:1,得证. (3)120°,a23 23.(1)过A点作AF⊥l3分别交l2、l3于点E、F,过C点作CH⊥l2分别交l2、l3于点H、G,证△ABE≌△CDG即可. (2)易证△ABE≌△BCH≌△CDG≌△DAF,且两直角边长分别为h1、h1+h2,四边形EFGH是边长为h2的正方形,初二数学暑假作业答案参考 2二、夯实基础1.3ab2.4b3.7. -m____2x+1 4.2x3y x2y 5.-10×1010 6.-2yz,x(答案不惟一) __xyz 8.3 9.x2+2 10.C 11.B 12.D 13.A 14.C 15.D 252216.(1)5xy-2xy-4__4y (2)117.由m517m 3 解得 n2m n1n ∴m32 1. 91, 5__ ∴原式=(15)[15()]15. 555三.拓展能力18.a=-1,b=5,c=-19.∵__2x+a__1=(b__1)(__+2)+1=b__(b+1)x+(2b+1)__1 __20.设个位数字为x,百位数字为x+3,十位数字为y,则三位数是100(x+3)+10y+x交换百位数字与个位数字100x+10y+x+3扣减(大数减小数) 300-3=297交换差的百位数字与个位数字792做加法297+792=1089在进行计算后含x、y的项最后都被消掉,也就是说最后结果与x、y无关.十一、1、二四2、C3、长10m 宽6m 创新展台(1)30min (2)无效十二、1、C2、D3、(1)1:__ (2)1:__ (3)单位换算4、(1)1/2,1/4,1/2(2)AC,DB,CD,AB 5、(1)5/2 (2)5/2 6、(1)8 (2)略(提示:DB/AB=2/5,EC/AC=2/5 DB/AB=EC/AC) 创新舞台32cm(不清楚2cm和0.5cm算不算,这题不同人不同理解,多写应该也没事- -)十三、基础展现(1)盲区(2)不能。
初二数学暑假作业参考答案(二)

初二数学暑假作业参考答案(二)暑假作业十参考答案: 1.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC , 得45QF t =.∴45QF t =.∴14(3)25S t t =-⋅,即22655S t t =-+.(3)能.①当DE ∥QB 时,如图2.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形.此时∠AQP =90°.由△APQ ∽△ABC ,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图3,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 此时∠APQ =90°.由△AQP ∽△ABC ,得 AQ AP AB AC=, 即353t t -=. 解得158t =.综上所述,当98t =或158t =时,四边形QBED 是直角梯形。
2.(1)证明:分别过点C ,D ,作CG ⊥AB ,DH ⊥AB ,垂足为G ,H ,则∠CGA =∠DHB =90°.∴ CG ∥DH .∵ △ABC 与△ABD 的面积相等, ∴ CG =DH . ∴ 四边形CGHD 为平行四边形. ∴ AB ∥CD . (2)①证明:连结MF ,NE . 设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2).∵ 点M ,N 在反比例函数(k >0)的图象上, ∴ ,. ∵ ME ⊥y 轴,NF ⊥x 轴, ∴ OE =y 1,OF =x 2. ∴ S △EFM = , S △EFN =k y x 212122=⋅. ∴S △EFM =S △EFN .由(1)中的结论可知:MN ∥EF .(3) 连接FM 、EN 、MN ,同(2)可证MN ∥EF ,同法可证GH ∥MN ,故EF ∥GH .图2图3xky =k y x 212111=⋅k y x =11k y x =22(4),17(,0)5,0)5. (1)由题意得k 2=6 ∴反比例函数的解析式为xy 6=又B (a,3)在反比例函数图像上,∴a=2 ∴B(2,3) ∵直线y=k 1x+b 过A ,B 两点, k 1+b=62k 1+b=33.解4.解:解之得 k 1=--3 b=9 (2)1<x <2(3)过A 、B 作垂直X 轴的垂线,AM ⊥X 轴;BN ⊥X 轴S △AOB = S 梯形AMBN =1(36)12+⨯= 4.5 (4)根据题意得:=1(2)3924,(4,0),(4,3)3333(4),32222x x x E C P P PE PC PE PC∴∴∴∴+-⨯=∴=∴==-=∴=梯形OBCE,CE ⊥轴直角梯形OBCE B (2,3)梯形的高3,EC=3设E(x,0),C(x,3)S 梯形=点在反比例函数上,,6.(1)A (2,2) (2)k=4(3)存在,Q(4,1). 提示:过点B 作BQ ⊥x 轴交双曲线于Q 点,连接AQ ,过点A 作AP ⊥AQ 交x 轴于点P ,再证△AOP ≌△ABQ ,可得△PAQ 即为所求作的等腰直角三角形。
八年级数学暑假作业(二)含答案

初中八年级数学(人教版)暑假作业(二)一、选一选,看完四个选项再做决定!(每小题5分,共25分)1、多项式x 2+y2、-x 2+y 2、-x 2-y 2、x 2+(-y 2)、8x 2-y 2、(y -x )3+(x -y )、2x 2-12y 2中,能在有理数范围内用平方差公式分解的有( B )A. 3个B. 4个C. 5个D. 6个2、把代数式ax 2-4ax +4a 分解因式,下列结果中正确的是( A )A. a (x -2)2B. a (x +2)2C. a (x -4)2D. a (x +2)(x -2) 3、若x 2-2(k +1)x +4是完全平方式,则k 的值为( D )A. ±1B. ±3C. -1或3D. 1或-34、设一个正方形的边长为a 厘米,若边长增加3厘米,则新正方形的面积增加了( C )A. 9平方厘米B. 6a 平方厘米C. (6a +9)平方厘米D. 无法确定5、在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图1),把余下的部分拼成一个矩形(如图2),根据两个图形中阴影部分的面积相等,可以验证( C )a abbba b图2图1 A. (a +b )2=a 2+2ab +b 2B. (a -b )2=a 2-2ab +b 2C. a 2-b 2=(a +b )(a -b )D. (a +2b )(a -b )=a 2+ab -2b 2认真想想再作答哦!二、填一填,要相信自己的能力!(每小题5分,共25分)1、利用因式分解计算100022522-2482=____500______.2、在一个边长为12.75cm 的正方形内挖去一个边长为7.25cm 的正方形,则剩下部分的面积为____110______ cm 2.。
3、若整式4x 2+Q +1是完全平方式,请你写出满足条件的单项式Q 是___4x ___或 -4x .4、当s =t +12时,代数式s 2-2st +t 2的值为14. 5、在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x 4-y 4,因式分解的结果是(x -y )(x +y )(x 2+y 2),若取x =9,y =9时,则各个因式的值是:(x -y )=0,(x +y )=18,(x 2+y 2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x 3-xy 2,取x =10,y =10时,用上述方法产生的密码是:__101030 ,或103010 ,或 301010_。
八年级数学下学期暑期作业含答案和解释

八年级数学下学期暑期作业(含答案和解释)暑假作业:1. 一条带有刻度的直尺上AB=6cm,BC=4cm,用这条直尺测量边长为8cm的正方形的对角线CD,测量结果是多少?答案:4√5cm解释:根据勾股定理,对角线的平方等于两个直角边的平方和。
正方形的对角线等于边长的√2倍,所以CD=8√2cm。
根据题意,直尺上BC=4cm,所以CD=DC=4√2cm=4√(2×2)=4√4=4√(2×2)=4√2×√2=4√5cm。
2. 一辆汽车从A地开往B地,全程240km,上午开了3小时,下午开了4小时,下午平均速度比上午平均速度快20km/h。
求上午和下午的平均速度各是多少?答案:上午平均速度为60km/h,下午平均速度为80km/h解释:设上午的平均速度为v km/h,则下午的平均速度为v+20 km/h。
根据题意,上午开了3小时,行驶了3v km;下午开了4小时,行驶了4(v+20) km。
根据题意,全程为240km,所以有3v+4(v+20)=240,解得v=60。
所以上午的平均速度为60km/h,下午的平均速度为80km/h。
3. 一个水库中有两个出水口,分别是A和B,A单独开启1小时可以将水库放空,B单独开启2小时可以将水库放空,如果同时开启A和B,那么多久可以将水库放空?答案:40分钟解释:设A每小时放水x,B每小时放水y。
根据题意,A单独开启1小时可以将水库放空,所以有x=1。
B单独开启2小时可以将水库放空,所以有2y=1,解得y=0.5。
如果同时开启A和B,他们的放水速度叠加,所以有x+y=1+0.5=1.5。
所以同时开启A和B可以将水库放空的时间为1/1.5=2/3小时=40分钟。
4. 一条绳子长3.6m,分成两段,一段长x,另一段长2.4m,两段绳子的比值是3:2。
求x的值。
答案:x=1.8m解释:设x为第一段绳子的长度,则有x/2.4=3/2,解得x=1.8。
(人教版)八年级数学暑假作业答案

〔人教版〕2022八年级数学暑假作业答案多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。
在此查字典数学网初中频道为您提供2022八年级数学暑假作业答案,希望给您学习带来帮助,使您学习更上一层楼!暑假乐园?(一)答案:1-8、DABDDDCA;9、1,2,3;10、a11、a 4且a12、a13、7;14、(1)x2,(2)x15、a16、1;17、18厘米;18、2121、18题;22、(1)a=0.6 ,b=0.4;(2)35%到50%之间(不含35%和50%)。
暑假乐园(2)答案:1:D 2:A 3:A 4::A 5:C 6:C7:-2 8:1,9:x=2,10:x.0且x1,11、略,12、略,13、2-a,14、a-3、1,15、(1)x=4,(2)x=-2/3,16、B,17、C,18、2,19、-1,20、k=1、4、7,21、互为相反数,22、47,23、375,24、略,暑假乐园?三答案1,-1 2,y=2/x 3,B 4,D 5,B 6,C 7,B 8,1/2 9,2 10, B 11,(1)y=4-x (2)略 12,(1)x =1 m=1(2)与x轴交点(-1,0),与y轴交点(0,1) 13,x 0) (2)3000 (3)6000暑假乐园?四答案(四)1、B; 2、B ; 3、B; 4、A; 5、B; 6、B; 7、D; 8、D;9、= 10、t1;11、12、减小;13、a14、3和4;15、19; 16、3或4/3;17、x 18、x19、x3,原式=- ;20、略;21、x=4;22、y=-x+2,6;23、略,BD=6暑假乐园?五答案(五)1.4:3 2.6 3.3858 4.18 5.1:9 6.18 7.①④ 8.D暑假乐园?六答案1-8: CCCBBABC 9:1.6,26;10:8.75;11:A,AFE=B, AEF=C, 12:7;13:6.4;14: 8:5;15: 48;16: 6, 4.8, 8.64; 17: 9:4; 18: 1:3 ;19: 4 20: 13, ;21: 8.3暑假乐园?七答案1、C2、A3、D4、C5、B6、B7、B8、D9、假设在一个三角形中有两个角相等,那么这个三角形是直角三角形。
苏教版初二年级数学暑假作业答案

苏教版初二年级数学暑期作业答案查词典数学网近期推出苏教版初二年级数学暑期作业答案,供同学们参照学习,希望广大考生能度过一个快乐的暑期。
苏教版初二年级数学暑期作业答案1.B2.D3. D4. C5. B6. A7. A8. C9.B 10.A 11.B 12. D二、填空题13.10,10 或 42, 138 14. (3, 2) 15.217.32 18.60三、解答题19、 (1)解:化简得(2 分 )③3-④4 得: 7y=14 y=2 (3 分 )把 y=2 代入①得: x=2 (4 分)方程组解为(5 分)(2)、解:解不等式①,得.1 分解不等式②,得.2 分原不等式组的解集为. 4 分不等式组的整数解为-1,0,1, 2. 5 分20、解⑴由① -② 2 得: y=1-m ③ 1 分把③代入②得:x=3m+2原方程组的解为 3 分⑵∵原方程组的解为是一对正数4分解得 -m-1﹤ 0,m+ ﹥0 7 分=1-m+m+= 9 分21.A(2,3),B(1,0),C(5,1). (3 分)22证明:∵ AB ∥ CD(1 分 )BAE(2分)∵4(3 分)BAE( 4 分)∵2(5 分)CAE=CAE(6 分 )即 BAE=CAD 7 分CAD(9 分 )AD ∥BE( 10 分 )23.(1)m=10,n=50 (2) 略 (3)72 度 (4)44 人24解:依据题意可知四月份在安稳期和顶峰期的用电量分别为 4 万千瓦时, 8?万千瓦时 ;五月份在安稳期和顶峰期的用电量分别为 4 万千瓦时, 12 万千瓦时,则有25、解:(1)设改造一所类学校和一所类学校所需的改造资金分别为万元和万元.依题意得:解得答:改造一所类学校和一所类学校所需的改造资本分别为60 万元和 85 万元 .(2)设该县有、两类学校分别为所和所.则∵类学校不超出 5 所答:类学校起码有15 所.(3)设今年改造类学校所,则改造类学校为所,依题意得:解得∵ 取正整数共有 4种方案 .方案一、今年改造类学校 1 所,改造类学校 5所方案二、今年改造类学校 2 所,改造类学校 4所方案三、今年改造类学校 3 所,改造类学校 3所方案四、今年改造类学校 4 所,改造类学校 2所26、 (12 分)解: (1)依据题意可知,点 A 与点 B 对于 x 轴对称,点 C 与点 D 对于 x 轴对称,因此点 B 的坐标是 (-1 ,- ) ,点 D 的坐标是 (3, )。
暑假作业数学八年级(配人教版)答案

暑假作业㊀数学㊀八年级(配人教版)参考答案A 版㊀学习版练㊀习㊀一快乐基础屋一㊁选择题1.D ㊀2.B ㊀3.B ㊀4.C ㊀5.B ㊀6.D ㊀7.A ㊀8.B ㊀9.D ㊀10.C二㊁填空题11.3㊀-0.0212.<㊀=13.0.1m 14.2|a |c 2ab15.x x 2+y 216.1317.518.甲㊀被开方数是负数19.15320.当b >0时,a 2c 10c2b 当b <0时,-a 2c 10c2b三㊁解答题21.(1)解:原式=24ː3=8=22(2)解:原式=27ˑ33ˑ121=211(3)解:原式=12ː3=4=2(4)解:原式=273-123=9-4=3-2=1(5)解:原式=72ˑ-16117()ː14112=-16112ː14112=-23(6)解:原式=(2+26+3)(5-26)=25-(26)2=25-24=122.(1)解:原式=235=1155(2)解:原式=a 2(3)解:ȵxȡ0㊀ʑx+1>0ʑ(x+1)2=x+1(xȡ0) (4)解:原式=(|a+1|)2=(a+1)223.(1)解:原式=1(23)=3(23ˑ3) =36(2)解:原式=3210=(3ˑ10)(210ˑ10) =3020(3)解:原式=506=253=533(4)解:原式=15x35x=3x2=3x24.解:由题意可得2-xȡ0,x-2ȡ0ʑ可得x=2,y=5ʑx y=25欢乐提高吧1.解:原式=-23(m-n)2ˑa2ˑ1m-n =-a62.解:ȵa+1+b-1=0ʑa+1=0,b-1=0ʑa=-1,b=1ʑa2015+b2015=(-1)2015+12015=-1+ 1=0练㊀习㊀二快乐基础屋一㊁选择题1.C㊀2.C㊀3.B㊀4.C㊀5.A㊀6.A㊀7.D㊀8.D㊀㊀二㊁填空题9.010.-2211.29+125㊀66-36212.-24+4313.2+3314.-14215.-116.117.ʃ2318.219.42三㊁解答题20.(1)解:原式=7+27+97= 37+97=127(2)解:原式=32-22+3-33= 2-23(3)解:原式=22+32=52(4)解:原式=23-22+3+2= 33-2(5)解:原式=43+25+23-5 =63+5(6)解:原式=18-35-5=13-35(7)解:原式=22+33-32-2=-22-36(8)解:原式=62-22-2+342=154221.解:原式=2-1(2-1)(2+1)+3-2(3-2)(3+2)+2-3(2-3)(2+3)++10-3(10-3)(10+3)=2-1+3-2+2-3+ +10-3=-1+1022.(1)解:原式=43-(36)2+(3-3)3+33()=43-(36)2+2(2)解:原式=23ˑ3x +6ˑx 2-2x ˑx x=2x +3x -2x =3x23.解:原式=9a a -5a a +3aˑ2a 2a =9a a -5a a +6a a =10a a24.(1)解:ȵx =12(7+5),y =12(7-5)ʑx -y =5,xy =12ʑx 2-xy +y 2=(x -y )2+xy =112(2)解:ȵa =4+15,b =4-15ʑa +b =8,ab =1ʑa 2+5ab +b 2-3a -3b =(a +b )2-3(a +b )+3ab =4325.解:大正方形的边长为:4=2,小正方形的边长为2ʑ阴影部分的面积=(2-2)ˑ2=22-2欢乐提高吧1.解:原式=(25+1)2-12-1+3-23-2(+4-34-3+ +100-99100-99)=(25+1)[(2-1)+(3-2)+(4-3)+ +(100-99)]=(25+1)(100-1)=9(25+1)2.解:原式=(2x -1)2+(y -3)2=0要使两个数的平方和为0,只有使每项式为0,即:2x -1=0,y -3=0解得:x =12,y =323x9x-5x y x=23ˑ3x x-5xy=2x x-5xy=(2-56)2练㊀习㊀三快乐基础屋一㊁选择题1.D㊀2.A㊀3.C㊀4.B㊀5.C㊀6.D㊀7.D㊀8.A㊀9.B㊀10.C㊀11.D㊀12.B㊀13.C二㊁填空题14.13㊀15.20㊀16.11㊀17.24㊀18.601319.5㊀20.492㊀21.32㊀22.13或119㊀23.2㊁2㊁2㊀24.49㊀25.15三㊁解答题26.解:设矩形花池的长是a,宽是b根据题意得:ab=48①a2+b2=100②②+①ˑ2得:(a+b)2=196,即a+b =14ʑ矩形花池的周长是14ˑ2=28m27.解:设E站建在离A站x km处时, C㊁D两村到E站的距离相等㊂在RtәADE 中,DE2=AD2+AE2=152+x2,在RtәCBE 中,CE2=CB2+BE2=102+(25-x)2ȵDE=CE,ʑDE2=CE2,即152+x2= 102+(25-x)2,解得:x=10答:E站建在离A站10km处时,C㊁D 两村到E站的距离相等㊂28.解:设旗杆AB的高为x m,则绳子AC的长为(x+1)mABCȵ在RtәABC中,øABC=90ʎ,BC=5, AB=xAC=x+1,ʑx2+52=(x+1)2解得:x=12答:旗杆的高度为12m㊂欢乐提高吧1.解:连接BD,øA=90ʎ,BD=AB2+AD2 =5cmȵBD2+CD2=BC2ʑәBCD为直角三角形ʑәBCD面积=12ˑBDˑCD=30cm2әABD 的面积=12ˑAB ˑAD =6cm 2故四边形ABCD 的面积为36cm 22.解:过点D 作DE ʅAB 于点E ,ȵø1=ø2,øC =øDEA =90ʎ,AD =AD ,ʑәACD ɸәAED ,ʑCD =DE =1.5,AC =AE在RtәBED 中,BE =BD 2-DE 2=2在RtәABC 中,AC 2=AB 2-BC 2=(AC +BE )2-BC 2即AC 2=(AC +2)2-42ʑAC =33.解:如图所示,过点B 作纸条一边的垂线BDACBDȵ纸条的宽度为3cm ʑBD =3cm ȵøBAD =30ʎʑAB =2BD =2ˑ3=6cm ʑ根据勾股定理得:BC =2AB =2ˑ6=62cm练㊀习㊀四快乐基础屋一㊁选择题1.A ㊀2.C ㊀3.A ㊀4.D ㊀5.C ㊀6.C二㊁填空题7.80ʎ8.8cm 9.3cm 10.1211.12cm 12.12三㊁解答题13.解:ȵ四边形ABCD 为平行四边形ʑAD ʊBC ,ʑøADE =øDEC 又ȵDE 平分øADC ,ʑøADE =øCDEʑøDEC =øCDE ,ʑәCDE 为等腰三角形ʑCD =CE ,则BE =BC -CE =BC -CD=8-6=2(cm)14.证明:ȵ四边形ABCD 是平行四边形ʑAD ʊBC ,AD =BC ȵAE =12AD ,FC =12BC ʑAE =FC ,AE ʊFC ʑ四边形AECF 是平行四边形ʑGF ʊEH同理可证ED ʊBF 且ED =BF ʑ四边形BFDE 是平行四边形ʑGE ʊFHʑ四边形EGFH是平行四边形欢乐提高吧1.DE=BF证明:ȵ四边形ABCD是平行四边形ʑAEʊCF㊀AD=BCʑøE=øFȵO是AC的中点㊀AO=CO在әOCF和әOAE中øAOE=øCOF㊀øE=øF㊀AO=CO ʑәOCFɸәOAE㊀ʑAE=CFʑAE-AD=CF-BC㊀即DE=BF2.(1)证明:ȵ四边形ABCD是平行四边形ʑABʊCD㊀ADʊBC㊀AB=CD㊀AD= BCȵøDAB=60ʎʑøDAB=øDCB=60ʎȵABʊCD㊀ʑøEDA=øDAB㊀øDCB=øCBF ȵøDAB=øDCB=60ʎʑøEDA=øDAB=øDCB=øCBF= 60ʎȵøEDA=øCBF=60ʎ㊀AE=AD㊀CF=CBʑәAED和әCBF均为等边三角形ʑAD=DE㊀BC=BFȵAD=DE㊀BC=BF㊀AD=BCʑDE=BFȵDE=BF㊀AB=CDʑAF=CEȵAFʊCEʑ四边形AFCE是平行四边形(2)解:上述结论还成立,理由如下:ȵ四边形ABCD是平行四边形ʑøADC=øCBA㊀AB=CD㊀AD=BC ㊀ABʊCD㊀ADʊBCȵøADC=øCBA㊀ʑøADE=øCBF ȵAE=AD㊀CF=CB㊀ʑøADE=øAED㊀øCBF=øCFBʑøADE=øAED=øCBF=øCFB ȵøADE=øAED=øCBF=øCFB㊀AD=BCʑәADEɸәCBF㊀ʑDE=BFȵCD=AB㊀ʑAF=CEȵAF=CE㊀AFʊCEʑ四边形AFCE是平行四边形练㊀习㊀五快乐基础屋一㊁选择题1.A㊀2.D㊀3.C㊀4.A㊀5.C㊀6.C㊀7.C㊀二㊁填空题8.129.610.3㊀3㊀菱㊀矩㊀AB=AC且øA= 90ʎ11.8三㊁解答题12.解:ȵ四边形ABCD是平行四边形ʑBC=AD=8cm㊀OA=OCOB=OD=12BD=6cmȵBDʅAD㊀ʑøADO=90ʎʑOA=AD2+OD2=10cmʑAC=2OA=20cm13.证明:ȵBD㊁CE为әABC的中线ʑED为әABC的中位线ʑEDʊBC㊀DE=12CBȵF㊁G分别是BO㊁CO的中点ʑFG是әBOC的中位线ʑFGʊCB㊀FG=12BCʑED=FG㊀DEʊFGʑ四边形DEFG为平行四边形14.证明:ȵ四边形ABCD是平行四边形ʑADʊBC㊀AD=BCȵE㊁F分别是AD㊁BC的中点ʑAE=DE=12AD㊀CF=BF=12BC ʑAEʊCF㊀AE=CFʑ四边形AECF是平行四边形ʑCEʊAFʑEM是әDAN的中位线,FN是әBCM的中位线ʑDM=MN㊀BN=MNʑBN=MN=DM15.证明:ȵ四边形ABCD是平行四边形ʑAB=CD㊀OA=OCʑøBAF=øCEF㊀øABF=øECFȵCE=DC在▱ABCD中,CD=ABʑAB=CEʑ在әABF和әECF中øBAF=øCEFAB=CEøABF=øECFʑәABFɸECF(ASA)ʑBF=CFȵOA=OCʑOF是әABC的中位线ʑAB=2OF欢乐提高吧1.证明:ȵ四边形ABCD是平行四边形ʑADʊBCʑøCBE=øFȵDF=ADʑDF=BC在әBCE和әFDE中,øF=øCBE㊀øDEF=øCEBDF=BC㊀ʑәBCEɸәFDE(AAS)ʑBE=FE㊀DE=CE即点E是CD㊁BF的中点㊂AB CED F2.证明:过点M作MGʅAB连接DG,ADCBMEF G123ȵCFʅABʑMGʊCFȵAM平分øCAB㊀ʑø2=ø3ȵMCʅCA㊀MGʅAB㊀ʑCM=MG ȵøCDM=ø1+ø2㊀øCMD=ø3+øB ø2=ø3㊀ø1=øBʑøCDM=øCMDʑCM=CD㊀ʑCD=CM=MGȵCDʊMG㊀ʑ四边形CDGM是菱形ʑCM=DG㊀且CBʊDGȵDEʊAB㊀ʑ四边形DEBG是平行四边形ʑDG=EB㊀ʑCM=EB练㊀习㊀六快乐基础屋一㊁选择题1.C㊀2.C㊀3.A㊀4.C㊀5.C㊀6.A㊀7.B㊀8.B㊀9.A二㊁填空题10.5311.312.60ʎ13.AB=AC或øB=øC或AD是øBAC的平分线或BD=CD14.AC=BD或ABʅBC15.3三㊁解答题16.证明:ȵDEʊAC㊀DFʊABʑ四边形AEDF是平行四边形ʑøADE=øDAFȵAD平分øBAC㊀ʑøDAE=øDAF ʑøDAE=øADE㊀ʑAE=DEʑ平行四边形AEDF是菱形17.(1)证明:ȵ四边形ABCD是矩形ʑABʊCD㊀ʑøOAE=øOCF㊀øOEA=øOFCȵAE=CF㊀ʑәAEOɸCFO(ASA)ʑOE=OF(2)解:连接BOȵOE=OF㊀BE=BFʑBOʅEF且øEBO=øFBOʑøBOF=90ʎȵ四边形ABCD是矩形ʑøBCF=90ʎ又ȵøBEF=2øBAC㊀øBEF=øBAC+øEOAʑøBAC=øEOA㊀ʑAE=OEȵAE=CF㊀OE=OF㊀ʑOF=CF又ȵBF=BF㊀ʑәBOFɸәBCF(HL)ʑøOBF=øCBF㊀ʑøCBF=øFBO =øOBEȵøABC=90ʎ㊀øOBE=30ʎ㊀øBEO =60ʎʑøBAC=30ʎ㊀ʑAB=3BC=618.(1)证明:ȵ对角线BD平分øABC ʑøABD=øCBD又ȵAB=BC㊀BD=BDʑәABDɸәCBD(SAS)ʑøADB=øCDB(2)证明:ȵPMʅAD㊀PNʅCDʑøPMD=øPND=90ʎȵøADC=90ʎʑ四边形MPND是矩形由(1)知øADB=øCDB又ȵPMʅAD㊀PNʅCDʑPM=MDʑ四边形MPND是正方形欢乐提高吧1.(1)证明:ȵ四边形ABCD是矩形ʑAB=CD㊀AD=BC㊀øA=øC=90ʎȵ在矩形ABCD中,M㊁N分别是AD㊁BC的中点ʑAM=12AD㊀CN=12BCʑAM=CN在әMBA和әNDC中ȵAB=CD㊀øA=øC=90ʎ㊀AM= CNʑәMBAɸәNDC(2)四边形MPNQ是菱形证明:连接MN㊀ȵәMBAɸәNDC ʑMB=ND㊀ȵ四边形ABCD是矩形ʑADʊBC㊀øA=90ʎ㊀AD=BCȵM㊁N分别是AD㊁BC的中点ʑAM=BNʑ四边形AMNB是矩形ʑøMNB=90ʎ在RtәMNB中ȵP是BM的中点ʑPN=12BM=PM同理MQ=NQȵBM=ND㊀P㊁Q分别是BM㊁DN的中点ʑPM=NQ㊀ʑPM=PN=NQ=MQ ʑ四边形MPNQ是菱形2.(1)解:猜想结果,图2结论为BE+ CF=2AG图3结论为BE-CF=2AG (2)证明:连接CE,过D作DQʅl,垂足为点Q,交CE于点HȵøAGO=øDQO=90ʎ㊀øAOG=øDOQ(对顶角相等)且O为AD的中点即AO=DOʑәAOGɸәDOQ(AAS)即AG=DQ ȵBEʊDHʊFC㊀BD=DCʑCHʒEH=CDʒBD=FQʒEQʑQH是三角形EFC的中位线ʑBE=2DH㊀CF=2QHʑBE-CF=2(DQ+QH)-2QH=2DQ =2AGDQFlCH OE A G B练㊀习㊀七快乐基础屋一㊁选择题1.C ㊀2.B ㊀3.C ㊀4.C ㊀5.B ㊀6.B二㊁填空题7.y =100x -408.y =8x ㊀40㊀809.s =2n +110.S =2x 2-4x +411.y =0.25x +6(0ɤx ɤ10)三㊁解答题12.(1)解:由题意可得,甲㊁乙两条生产线投入生产后,甲生产线生产时对应的函数关系式是y 1=20x +200乙生产线生产时对应的函数关系式是y 2=30x(2)令20x +200=30x ㊀解得x =20故第20天结束时,两条生产线的产量相同ʑ甲生产线对应的函数图像一定经过点(0,200)和(20,600)画出函数图像,如下图所示:y x观察图像可知,当第10天结束时甲生产线的总产量高,当第30天结束时乙生产线的总产量高㊂13.(1)由图像得:出租车的起步价是8元,当x >3时,设y 与x 的函数关系式为y =kx +b (k ʂ0),将坐标(3,8)和(5,12)代入函数关系式得:3k +b =8①5k +b =12②{②-①得:2k =4㊀ʑk =2代入①得:b =2解得:k =2,b =2ʑy 与x 的函数关系式为y =2x +2(2)ȵ32元>8元,ʑ把y =32代入函数解析式y =2x +2,解得:x =15ʑ这位乘客乘车的里程是15km欢乐提高吧1.(1)解:设y 1=k 1x 1,将(10,600)代入上式得:k 1=60,ʑy 1=60x (0ɤx ɤ10)设y 2=k 2x 2+b ,将(0,600),(6,0)代入上式得:k 2=-100,b =600ʑy 2=-100x +600(0ɤx ɤ6)(2)根据题意可知当y 1=y 2时,x =154,故当0ɤx ɤ154时,S =600-160x当154ɤx<6时,S=160x-600当6ɤxɤ10时,S=y2=60x,即S关于x的函数关系式为:S=600-160x0ɤx<154() 160x-600154ɤx<6() 60x(6ɤxɤ10)ìîíïïïïïï(3)根据题意,当A加油站在甲地与B 加油站之间时,60x+200=-100x+600,解得:x=52,此时A加油站离甲地的距离为:60ˑ52 =150km,当B加油站在甲地与A加油站之间时, -100x+600+200=60x解得:x=5,此时A加油站离甲地的距离为:60ˑ5=300km综上所述,A加油站离甲地的距离为150km或300km㊂2.解:如图所示,过点B作BDʅOC于点D,则øO=øBDC设OC=x,根据光的反射原理,øACO=øBCD,故әAOCʐәBDC根据三角形的性质可得:OCʒDC= AOʒBD即xʒ(4-x)=2ʒ3解得:x=85故根据勾股定理得:AC=22+85()2 =2415BC=32+4-85()2=3415故这束光从点A到点B所经过的路径的长度为:AC+BC=41练㊀习㊀八快乐基础屋一㊁选择题1.D㊀2.D㊀3.C㊀4.D㊀5.A㊀6.A㊀二㊁填空题7.k<28.y=-2x9.y=x10.(2,0)㊀(0,4)11.6㊀-32三㊁解答题12.(1)解:设y=kx+b则40k+b=7537k+b=70{解得k=53㊀b=253ʑy=53x+253(2)当x=39时,y=53ˑ39+253ʂ78.2ʑ一把高39cm 的椅子和一张高78.2cm的课桌不配套13.如图所示:y 14.解:把(4,a )代入y =12x 得:a =12ˑ4=2ʑ一次函数y =kx +b 的图像经过点(-2,-4)和点(4,2)ʑ-2k +b =-44k +b =2{解得k =1,b =-2ʑ该一次函数的解析式为y =x -215.(1)解:把x =0,y =0代入y =(3-k )x -2k +18可得:k =9(2)解:把x =0,y =-2代入y =(3-k )x -2k +18可得:k =10欢乐提高吧1.解:ȵ一次函数y =-x +a 和一次函数y =x +b 的交点坐标为(m ,8)ʑ8=-m +a ①㊀8=m +b ②①+②得:16=a +b 即a +b =162.解:如图所示,由题意可知A 点坐标为(-1,2+m ),B 点坐标为(1,m -2)C 点坐标为(2,m -4),D 点坐标为(0,2+m ),E 点坐标为(0,m ),F 点坐标为(0,-2+m ),G 点坐标为(1,m -4)ʑDE =EF =BG =2又ȵAD =BF =GC =1ʑ图中阴影部分的面积和等于12ˑ2ˑ1ˑ3=3练㊀习㊀九快乐基础屋一㊁选择题1.B ㊀2.C ㊀3.C ㊀4.B ㊀5.A ㊀6.A ㊀7.A ㊀二㊁填空题8.56㊀80㊀156.89.y =10000+16x ㊀x ȡ110.a <b ㊀011.-212.-213.ʃ414.3<x <6三、解答题15.解:设这个一次函数的解析式为y =kx+bȵ该一次函数的图像经过点(2,3)和点(-1,4)ʑ2k+b=3-k+b=4{解得k=-13,b=113ʑ这个一次函数的解析式为y=-13x+ 11316.解:直线y=kx+b与直线y=5-4x 平行ʑk=-4直线y=-3(x-6)与y轴的交点是(0,18)将x=0,y=18代入y=-4x+b解得b=18ʑ直线的函数解析式是y=-4x+1817.解:设正比例函数的解析式为y= kx,则有-6=3k㊀ʑk=-2即正比例函数解析式为y=-2xȵA(a,a+3)是正比例函数图像上的点ʑa+3=-2a㊀ʑa=-1则平行该图像的一次函数y=kx+a的解析式为y=-2x-1欢乐提高吧1.(1)解:由题意得:x-2y=-k+6x+3y=4k+1{解得:x=k+4,y=k-1ʑ两直线的交点坐标为(k+4,k-1)又ȵ交点在第四象限内ʑk+4>0k-1<1{解得-4<k<1(2)解:由于k为非负整数且-4<k<1ʑk=0㊀ʑ直线方程x-2y=6,x+3y=1两直线相交,即x-2y=6x+3y=1{㊀解得:x=4,y=-1ʑ两直线的交点坐标为(4,-1)ȵ直线x-2y=6与y轴的交点为(0,-3)直线x+3y=1与y轴的交点为0,13()ʑ围成的三角形的面积=12ˑ3+13()ˑ4=2032.(1)解:直线y=-x+b交y轴于点P(0,b),由题意得:b>0,tȡ0,b=1+t,当t=3时,b=4ʑy=-x+4(2)解:当直线y=-x+b过点M(3,2)时,2=-3+b㊀解得:b=55=1+t㊀解得:t=4当直线y=-x+b过点N(4,4)时4=-4+b㊀解得:b=88=1+t㊀解得:t=7故若点M㊁N位于l的异侧,t的取值范围是4<t<7练㊀习㊀十快乐基础屋一㊁选择题1.C㊀2.A㊀3.C㊀4.C㊀5.C㊀6.D二㊁填空题7.29㊀298.769.乙10.711.甲12.87三㊁解答题13.(1)解:70ˑ10%+80ˑ40%+88ˑ50%=83(分)(2)解:80ˑ10%+75ˑ40%+50%㊃x >83ʑx>90ʑ小文同学的总成绩是83分,小明同学要在总成绩上超过小文同学,则他的普通话成绩应超过90分㊂14.解:甲:数据10.8出现2次,次数最多,所以众数是10.8平均数=(10.8+10.9+11+10.7+ 11.2+10.8)ː6=10.9中位数=(10.8+10.9)ː2=10.85乙:数据10.9出现3次,次数最多,所以众数是10.9平均数=(10.9+10.9+10.8+10.8+ 10.5+10.9)ː6=10.8中位数=(10.8+10.9)ː2=10.85所以从众数上看,乙的整体成绩大于甲的整体成绩从平均数上看,甲的平均成绩优于乙的平均成绩从中位数看,甲㊁乙的成绩一样好欢乐提高吧(1)解:观察表格,可知这组样本的平均数=(0ˑ3+1ˑ13+2ˑ16+3ˑ17+4ˑ1)ː50=2样本数据中,3出现17次,出现的次数最多,所以这组数据的众数是3ȵ将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2ʑ这组数据的中位数=(2+2)2=2 (2)解:ȵ在50名学生中,读书多于2册的学生有18名,则该校七年级300名学生在本次活动中读书多于2册的人数为: 300ˑ1850()=108(人)ʑ根据样本数据,可以估计该校八年级300名学生在本次活动中读书多于2册的有108人㊂假期总结测试题一㊁选择题1.B㊀2.D㊀3.D㊀4.D㊀5.C㊀6.B㊀7.D㊀8.A二㊁填空题9.83310.311.等腰直角三角形12.20cm13.y=-x14.4815.y=t-0.6(tȡ3)㊀2.4㊀6.4三㊁解答题16.(1)选①(答案不唯一,任选其一) (2)证明:ȵ四边形ABCD是正方形ʑAB=CD㊀øA=øC=90ʎ又ȵAE=CF,øA=øC,AB=CD ʑәAEBɸCFD(SAS)ʑBE=DF选②:ȵ四边形ABCD是正方形ʑADʊBC又ȵBEʊDFʑ四边形EBFD是平行四边形ʑBE=DF选③:ȵ四边形ABCD是正方形ʑAB=CD㊀øA=øC=90ʎ又ȵø1=ø2ʑәAEBɸәCFD(AAS)ʑBE=DF17.(1)甲:7.5㊀3.8乙:7㊀7.5㊀ 5.4(2)因为甲的方差小于乙的方差,甲的成绩比较稳定,故甲胜出㊂18.(1)解:ȵAD平分øCAB㊀DEʅAB ㊀øC=90ʎʑCD=DE㊀ȵCD=3㊀ʑDE=3 (2)解:在RtәABC中,由勾股定理得: AB=AC2+BC2=62+82=10ʑәADB的面积为:SәADB=12AB㊃DE=12ˑ10ˑ3=1519.解:设一次函数解析式为y=kx+ b,把x=4,y=9和x=6,y=-1,分别带入得:4k+b=9①6k+b=-1②{①-②得:-2k=10㊀ʑk=-5把k=-5代入①得:b=29ʑ一次函数解析式为:y=-5x+2920.(1)解:y=8000-500(x-60)即y=38000-500x(xȡ60) (2)解:当x=70时y=38000-500ˑ70=3000当价格为70元时,这种商品的需求量是3000件㊂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学暑假作业参考答案(二)
暑假作业十参考答案: 1.解:(1)1,85
;
(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC
,4BC ==, 得45QF t =.∴45QF t =.
∴14(3)25S t t =-⋅,
即226
55
S t t =-+.
(3)能.
①当DE ∥QB 时,如图2.
∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形.
此时∠AQP =90°.
由△APQ ∽△ABC ,得AQ AP
=
, 即335t t -=. 解得98t =. ②如图3,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 此时∠APQ =90°.
由△AQP ∽△ABC ,得 AQ AP =
, 即353t t -=. 解得158
t =.
综上所述,当98t =或158
t =时,四边形QBED 是直角梯形。
2.(1)证明:分别过点C ,D ,作CG ⊥AB ,DH ⊥AB ,垂足为G ,H ,则∠CGA =∠DHB =90°.
∴ CG ∥DH .
∵ △ABC 与△ABD 的面积相等, ∴ CG =DH . ∴ 四边形CGHD 为平行四边形. ∴ AB ∥CD . (2)①证明:连结MF ,NE . 设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2).
∵ 点M ,N 在反比例函数
(k >0)的图象上, ∴ ,
. ∵ ME ⊥y 轴,NF ⊥x 轴, ∴ OE =y 1,OF =x 2. ∴ S △EFM = , S △EFN =k y x 2
1
2122=⋅. ∴S △EFM =S △EFN .
由(1)中的结论可知:MN ∥EF .
(3) 连接FM 、EN 、MN ,同(2)可证MN ∥EF ,同法可证GH ∥MN ,故EF ∥GH .
图2
图3
x
k
y =k y x 2
1
2111=⋅k y x =11k y x =22
17 (,0) 5
,0)
3.解
(4
),
5. (1)由题意得k 2=6 ∴反比例函数的解析式为x
y 6=
又B (a,3)在反比例函数图像上,∴a=2 ∴B(2,3) ∵直线y=k 1x+b 过A ,B 两点,
k 1+b=6 2k 1+b=3
解之得 k 1=--3 b=9 (2)
1<x <2
(3)过A 、B 作垂直X 轴的垂线,AM ⊥X 轴;BN ⊥X 轴
S △AOB = S 梯形AMBN =1
(36)12
+⨯= 4.5 (4)根据题意得:
4.解:
=1
(2)39
2
4,(4,0),(4,3)3333(4),32222x x x E C P P PE PC PE PC
∴∴∴∴+-⨯=∴=∴==-=
∴=梯形OBCE,CE ⊥轴直角梯形OBCE B (2,3)
梯形的高3,EC=3设E(x,0),C(x,3)S 梯形=点在反比例函数上
,,
6.(1)A (2,2) (2)k=4
(3)存在,Q(4,1). 提示:过点B 作BQ ⊥x 轴交双曲线于Q 点,连接AQ ,过点A 作AP ⊥AQ 交x 轴于点P ,再证△AOP ≌△ABQ ,可得△PAQ 即为所求作的等腰直角三角形。
7.(1)略
(2)2,提示:由△OEC ≌△BFA ,OE=BF ,过E 作EG ⊥OC 于G ,求出OE 与OC 的比值,从而得到OE 与BO 的比值,进而解决问题。
(3)n ,方法同上.
8.解:(1)①设直线AB 的解析式为y=kx+3, 把x=﹣4,y=0代入得:﹣4k+3=0, ∴k=
4
3
, ∴直线的解析式是:y=
4
3
x+3, ②由已知得点P 的坐标是(1,m ), ∴m=×1+3=
;
(2)∵PP′∥AC , △PP′D ∽△ACD , ∴=,即
=3
1, ∴a=
5
4
; (3)以下分三种情况讨论. ①当点P 在第一象限时,
1)若∠AP′C=90°,P′A=P′C (如图1) 过点P′作P′H ⊥x 轴于点H .
∴PP′=CH=AH=P′H=2
1
AC . ∴2a=2
1
(a+4) ∴a=
3
4 ∵P′H=PC=
2
1
AC ,△ACP ∽△AOB (24题图1) ∴==,即
4b =2
1, ∴b=2
2)若∠P′AC=90°,P′A=CA (如图2) 则PP′=AC ∴2a=a+4 ∴a=4
∵P′A=PC=AC ,△ACP ∽△AOB ∴
=
=1,即
4
b =1 ∴b=4 3)若∠P′CA=90°,
则点P′,P 都在第一象限内,这与条件矛盾.
∴△P′CA 不可能是以C 为直角顶点的等腰直角三角形.
②当点P 在第二象限时,∠P′CA 为钝角(如图3),此时△P′CA 不可能是等腰直角三角形; ③当P 在第三象限时,∠P′CA 为钝角(如图4),此时△P′CA 不可能是等腰直角三角形. ∴所有满足条件的a ,b 的值为
或
(6题图2) (6题图3) (6题图4)。