电流型固定化酶生物传感器的研究进展
酶电极中酶固定化方法研究进展_孔维琴

38酶电极中酶固定化方法研究进展孔维琴 陈志伟(山东理工大学 化学工程学院,中国 淄博 255049)摘要 酶电极是最常用也是最早开发的生物传感器,而固定化酶作为酶电极的关键也得到了广泛的关注。
本文介绍了酶电极及固定化酶的特点,重点讨论了制作酶电极的关键技术即酶固定化的方法,包括吸附法、包埋法、共价键合法和交联法等传统方法和静电纺丝法、纳米技术处理等一些新型的固定化方法,并进一步探讨了各种固定化方法的优缺点。
关键词 酶电极,固定化酶,研究进展作者简介:孔维琴(1986-),女,硕士研究生,应用化学。
E-mail:kongweiqin1986@通信作者:陈志伟(1972-),男,教授,主要从事生物化学及分析测试方面的研究。
E-mail:12chen@引言酶电极是指将活性物质酶固定在电极表面,探测电流型或电位型催化反应信号。
酶电极是最常用也是最早开发的生物传感器。
早在1962年Clark [1]等人将酶片和电极结合起来,产生了酶电极的雏形,并在1967年由Updike和HickS [2]用聚丙烯酰胺凝胶固定葡萄糖氧化酶(GOD)成膜和氧电极组装在一起,制成了第一种生物传感器,即葡萄糖酶电极生物传感器。
因为酶与电化学电极的匹配很容易,所以对酶电极的研究最成熟。
到目前为止,酶电极被广泛应用于食品[3]、医药、化学分析、环境监测甚至军事等领域,中国专利CN 1452717A(2003)还公开了利用酶电极测定三磷酸腺苷(ATP)浓度的方法[4]。
酶是一类具有催化功能的活性物质,和化学催化剂相比,具有反应速度快、选择性好、反应条件温和、底物专一性强、可在水溶液和中性pH下操作等优点,同时酶本身可以被微生物降解,符合绿色化学的要求。
但是游离酶也有对外界因素非常敏感容易失活、不易分离和纯化等问题。
为了克服这些缺点,酶固定化技术应运而生。
酶的固定化是用一定的材料将活性酶束缚或限制于一定的区域内,但仍能进行酶所特有的催化反应,并可回收及重复使用的一种新技术。
固定化酶的研究进展和应用前景

固定化酶的研究进展和应用前景固定化酶是指将酶固定在固体载体上,并保持其生物活性的一种技术。
它有许多优点,如可重复使用、稳定性高、易于回收等,因此成为了生物技术领域一种非常有前途的研究方向。
一、固定化酶的发展历程固定化酶的概念最早可以追溯到20世纪50年代。
第一种固定化酶的载体是硅胶,随后又发展了许多种载体,如凝胶、海藻酸盐、纳米材料、磁性颗粒等。
随着技术的进步,目前已有各种方法来制备纳米载体和比之前更优异的凝胶载体。
同时,各种固定化酶的制备方法也在不断改进,包括共价结合、吸附、交联、包埋等。
二、固定化酶的应用固定化酶的应用范围非常广泛,包括生物催化、食品工业、医药工业、制药工业等。
其中,固定化酶在食品工业中的应用最为广泛。
如生产葡萄糖、果汁、醋等。
固定化酶也可以用于制药工业中的药品合成。
此外,还可以在纳米技术、环境保护、制垃圾处理等领域中找到应用。
三、固定化酶的优势1. 重复使用:固定化酶具有可重复使用的优势,节省了时间和成本,具有广泛应用前景。
2. 稳定性:与游离酶相比,固定化酶具有较高的稳定性和耐受性,并可在极端环境中保持其生物活性。
3. 易于回收:固定化酶可以设计成可在固定化酶中回收,增加了其经济价值。
四、固定化酶仍需解决的问题尽管固定化酶在许多领域中具有潜力,但仍存在一些问题。
1. 优化载体:优化载体并不是一件容易的事情,其选择需要结合具体的酶种和应用需求,存在一定的技术难度。
2. 降低成本:目前固定化酶的生产成本仍比较高,限制了其在一些领域中的推广。
3. 稳定性问题:目前许多固定化酶在长时间的储存或使用过程中还会出现酶失活的情况,这需要更好的研究与解决。
综合而言,固定化酶的广泛应用前景与其固有的优势是显而易见的。
在未来,我们需要持续关注固定化酶领域的研究与发展,加快技术优化和成本降低,更好地服务于人类的需求。
固定化酶技术及应用的研究进展

固定化酶技术及应用的研究进展一、固定化酶的制备方法研究进展固定化酶的制备方法包括物理吸附、共价键结和交联结构等。
近年来,研究者们发展了一系列新型的固定化酶制备方法,如钙凝胶法、包埋法、凝胶微球法和溶胶凝胶法等。
这些新方法不仅提高了固定化酶的稳定性和活性,还大幅度降低了制备成本,提高了酶的重复使用性。
固定化酶在生物工程领域的应用主要集中在酶催化反应、生物催化剂制备以及生物催化剂的应用等方面。
例如,固定化酶可以用于生物反应器中进行酶催化反应,实现对废水处理、医药合成和食品工业等的高效处理。
此外,固定化酶还可以用于制备各类生物催化剂,如药物微胶囊和生物传感器,用于治疗疾病和检测生物分子。
固定化酶在食品工业中的应用主要包括生产酶制剂、降解保健食品、生产高价值添加物以及改善食品品质等方面。
固定化酶可以用于生产各类酶制剂,如发酵酶、复合酶和水解酶等,以加速酶催化反应。
此外,固定化酶还可以用于生产特殊功能食品,如降解保健食品、胶原蛋白等,以满足不同人群的需求。
固定化酶在医药学领域的应用主要包括药物制剂、生物芯片、药物代谢和生物传感器等方面。
例如,固定化酶可以用于制备缓控释药物制剂,以提高药物的疗效和降低副作用。
此外,固定化酶还可以用于制备生物芯片,用于分析疾病标志物和药物代谢产物等。
固定化酶在环境保护领域的应用主要包括废水处理、大气污染控制和土壤修复等方面。
固定化酶可以用于废水处理中,加速有害物质的降解和去除。
此外,固定化酶还可以用于大气污染控制,将有害气体转化为无害物质。
固定化酶还可以用于土壤修复,加速土壤中有毒物质的降解和去除。
综上所述,固定化酶技术在多个研究领域取得了重要的进展。
通过不断创新和改进固定化酶制备方法,研究者们加强了固定化酶的稳定性和重复使用性,提高了酶的应用效果和利用价值。
固定化酶技术的进一步发展,将为生物工程、食品工业、医药学和环境保护等领域带来更多创新和突破。
生物传感器的研究进展综述

生物传感器的研究进展综述一、本文概述生物传感器作为一种集成了生物识别元件和信号转换器的设备,其在生物、医学、环境、食品安全等领域的应用日益广泛。
本文旨在综述生物传感器的研究进展,包括其基本原理、分类、应用领域以及存在的挑战和未来的发展趋势。
我们将重点关注近年来在生物传感器领域的创新技术和研究成果,以期为读者提供一个全面而深入的理解。
我们将简要介绍生物传感器的基本原理,包括其工作机制和主要构成部分。
接着,我们将根据生物识别元件的不同,对生物传感器进行分类,并详细讨论各类生物传感器的特点和应用领域。
在此基础上,我们将重点分析近年来在生物传感器研究方面的主要进展,包括新材料、新技术和新方法的开发和应用。
我们还将探讨生物传感器在实际应用中所面临的挑战,如灵敏度、特异性、稳定性和寿命等问题,并就此提出可能的解决方案。
我们将展望生物传感器未来的发展趋势,预测其在未来可能的应用领域和发展方向。
通过本文的综述,我们希望能够为研究者提供一个关于生物传感器研究进展的全面视角,为其未来的研究和开发提供有益的参考。
二、生物传感器的基本原理与技术生物传感器是一种利用生物分子识别元件与物理或化学换能器相结合,对生物物质进行高选择性、高灵敏度检测的新型分析装置。
其基本原理是将生物分子识别过程(如酶促反应、抗原抗体反应、核酸杂交等)与信号转换器(如电化学电极、光学器件、压电晶体等)相结合,通过生物识别元件与待测物之间的特异性相互作用,将生物化学反应产生的信息转化为可检测的电信号、光信号或其他形式的信号,从而实现对待测物的定性或定量分析。
生物传感器的核心技术包括生物识别元件的制备与固定化技术、信号转换与处理技术,以及传感器的微型化与集成化技术。
生物识别元件的制备是实现生物传感器特异性与灵敏度的关键,常见的生物识别元件包括酶、抗体、核酸适配体、细胞和组织等。
信号转换与处理技术是生物传感器将生物识别信号转化为可测量电信号的核心,常见的信号转换方式有电化学转换、光学转换、热学转换等。
生物传感器的研究进展与应用研究

生物传感器的研究进展与应用研究在现代科学领域中,生物传感器是一种广泛应用的技术,不仅在医疗保健领域有重要的应用,也被广泛应用于环境监测、工业生产等领域。
生物传感器的研究已经发展了几十年,历经多次革新和进步,如今已形成了包括电化学传感器、光学传感器、质谱传感器、生物发光传感器等多种类型的传感器。
本文旨在概述生物传感器的基本原理和分类,以及目前已有的主要研究进展和应用研究。
一、生物传感器的基本原理及分类生物传感器作为一种生物分析技术,主要是利用生物反应的特异性和灵敏性将生物分析过程转化为可测量的电、光、声等信号,从而实现对生物分子的快速、精确检测。
生物传感器按照其信号转换机制可以分为电化学传感器、光学传感器、质谱传感器、生物发光传感器等多种类型。
其中,电化学传感器是利用电化学反应过程的一系列物理和化学变化,对反应过程中发生物质转化的电流、电势变化等参数进行检测和记录。
这种传感器具有灵敏度高、选择性好、响应速度快等优点,广泛应用于环境污染监测、食品检测、医学诊断等领域。
光学传感器是利用光学传感器反射特性基于光学原理进行测量,其中包括表面增强拉曼光谱传感器、表面等离子体共振传感器等等。
质谱传感器基于质谱分析原理,用来检测生物分子的质量和结构。
而生物发光传感器基于生物体内活性荧光物质特性,利用荧光发射强弱进行检测和记录。
二、生物传感器的主要研究进展随着科技不断发展,生物传感器也在不断地发展中。
生物传感器的主要研究进展体现在以下几方面。
1、灵敏度提高近年来,生物传感器的灵敏度得到了不断提高。
传统的“热点”识别法、荧光共振能量转移、表面等离子体共振等技术的出现为生物传感器的灵敏度提高提供了有力的支撑。
此外,研究人员也通过改变传感器表面形貌、优化传感器的工作液、加强传感层对于目标分子的覆盖度等方法提高灵敏度。
2、多样化应用生物传感器的应用范围越来越广泛。
传统的医疗监测、环境监测等领域,已经可以应用到食品安全、生物制药、无机化学等领域。
电化学生物传感器的研究与应用现状

电化学生物传感器的研究与应用现状电化学生物传感器的研究目前主要集中在三个方向:传感器构建、信号放大和检测仪器的开发。
传感器构建主要包括生物识别分子的修饰和载体材料的选择。
生物识别分子可以是抗体、酶、DNA等,通过与目标物质的特异性相互作用,实现对目标物质的检测。
载体材料选择需要考虑电化学活性、生物兼容性、稳定性等因素,常见的载体材料有玻碳电极、金属薄膜等。
信号放大主要通过引入纳米材料、纳米结构或功能材料,增强电化学传感器的灵敏度。
检测仪器的开发旨在提高传感器的检测性能和实用性,主要包括微流控技术、传感器阵列和便携式检测仪器等。
电化学生物传感器在医学诊断领域的应用已经取得了重要进展。
例如,血糖仪是最常见的电化学生物传感器之一,用于测试血液中的葡萄糖含量,对糖尿病患者的日常管理起到了重要作用。
此外,电化学生物传感器还可以用于监测血清中的肿瘤标志物、心肌酶等,辅助临床诊断,提高疾病的早期诊断率。
在食品安全方面,电化学生物传感器也发挥着重要作用。
传统的食品检测方法通常需要昂贵的仪器设备和复杂的分析程序,而电化学生物传感器则具有快速、灵敏和简单的优点。
通过检测食品样品中的有害物质,例如重金属、农药残留和毒素等,电化学生物传感器能够有效地保证食品安全,减少食品中的有害物质对人体的危害。
此外,电化学生物传感器还被广泛应用于环境监测。
例如,可以利用电化学生物传感器检测水体中的有毒金属离子、有机物污染物等,为环境污染监控提供有效手段。
另外,电化学生物传感器还可以用于检测空气中的污染物,例如二氧化硫、氮氧化物等,为空气质量监测提供帮助。
总之,电化学生物传感器是一种有着广泛应用前景的检测技术。
随着传感器构建、信号放大和检测仪器的不断改进和创新,电化学生物传感器将在医学诊断、食品安全、环境监测等领域发挥更加重要的作用。
我国电化学生物传感器的研究进展

我国电化学生物传感器的研究进展刘艳【摘要】介绍电化学生物传感器的基本原理及分类;阐述电化学生物传感器的发展历程;综述近三年来电化学生物传感器中研究最为广泛的电流型生物传感器的应用.【期刊名称】《重庆科技学院学报(自然科学版)》【年(卷),期】2010(012)006【总页数】3页(P153-155)【关键词】电化学;生物传感器;非特异性吸附;蛋白质吸附【作者】刘艳【作者单位】长江师范学院,重庆,408100【正文语种】中文【中图分类】O652在生命科学研究和医学临床检验中,需对各种各样的生物大分子进行选择性测定。
据统计,全世界每年要进行数亿次免疫学和遗传学病理检验。
常用的检验小型化分析装置和检测方法,成为目前现代分析化学研究领域的前沿课题。
1962年,Clark提出将生物和传感器联用的设想,并制得一种新型分析装置“酶电极”。
这为生命科学打开一扇新的大门,酶电极也成为发展最早的一类生物传感器。
生物传感器结合具有分子识别作用的生物体成分 (酶、微生物、动植物组织切片、抗原和抗体、核酸)或生物体本身 (细胞、细胞器、组织)作为敏感元件与理化换能器,能产生间断的或连续的信号,信号强度与被分析物浓度成比例。
电化学生物传感器是将生物活性材料(敏感元件)与电化学换能器(即电化学电极)结合起来组成的生物传感器。
当前,电化学生物传感器技术已在环境监测、临床检验、食品和药物分析、生化分析[2-4]等研究中有着广泛的应用。
本文在此综述电化学生物传感器的工作原理、分类及几个当今研究的热点。
电化学生物传感器是将生物活性材料(敏感元件)与电化学换能器(即电化学电极)结合起来组成的生物传感器。
当电化学池中溶液的化学成分变化时,电极上流过的电流或电极表面与溶液的电势差会随之发生变化,这样通过测定电流或电势的变化就可以获取溶液成分或相应的化学反应的变化信息。
电化学生物传感器是在上述电化学传感器原理的基础上,以具有生物活性的物质作为识别元件,通过特定反应使被测成分消耗或产生相应化学计量数的电活性物质,从而将被测成分的浓度或活度变化转换成与其相关的电活性物质的浓度变化,并通过电极获取电流或电位信息,最后实现特定物质的检测。
生物传感器信号技术现状发展及其研究

ቤተ መጻሕፍቲ ባይዱ
O科教 前沿0
S IN E&T C N L G F R A IN CE C E H O O Y N O M TO I
21 年 01
第 2 期 7
生物传感器信号技术现状发展及其研究
李 燕 陈建 军 2 (. 1 新疆兵团广播电视大学计算机教研室 新疆 乌鲁木齐 8 0 0 : 3 0 1 2新疆 医科 大学 医学 工程 技术 学 院 新 疆 乌鲁木 齐 8 0 1 ) . 3 0 1
力。
【 关键词】 生命科学; 信息科 学; 生物传 感器;固定化技术
例如: 可以利用 电化学 电极 、 场效应晶体管 、 敏电阻 、 热 光电器件 、 声学 装置等作为生物传感器中的信 号转 换器 。据此又将传感 器分为电化 从 2 0世纪 6 0年代 C r l k和 L o 出生物 传感 器 的设 想开始 , a yn提 学生物传感器 、 半导体 生物传感器 、 测热 型生物传感器 、 型生物传 测光 生物传感 器的发展已经距今已有 4 0多年的历史 了。随着社会 的进一 感器 、 测声型生物传感 器等。电子工程 学工作 者习惯于采用 这种分类 步信息 化. 作为- 1在生命科 学和信 息科学之 间发展 起来 的交叉 学 -' 7 方法。 科, 生物传感器在发酵工艺 、 环境监测、 食品工程 、 临床医学 、 军事及 军 事医学 等方面得 到了深度重视 和广泛应用 。 3 国 内产 业现 状 当前我 国自主研 发的生物传感器产 品及 跨 国企业集 团在中 国推 出的产品共存并相互竞争 一些 掌握生物传感器技术的跨 国大企业集 生 物 传 感 器 定 义 为 “ 用 固 定 化 的 生 物 分 子 f m b id 使 i oiz m le 团, 看好被称 为/ 界工 厂 0的中国市场, 世 采取技术输 出的途径, 吸收 b mlu s i o cl 1 o e e 结合换能器 . 来侦测 生体 内或生体外 的环境化 学物质 用 我国的技术 力量和销售路径 . 在我 国市场进行生物传感器 的开发 、 产 或与之起特异性交互作用后产生响应 的一种装置 ” 生物传感器 由两 品制造 和销售 。 一部份海 外留学 归国的生物传感器专 门人才也将 自己 个 主要 关键部份所构 成 . 一为来 自于生物体分子 、 组织部份 或个体细 的成果在 中国转化并设厂办企业 家用保健类生物传感器技术 已率先 胞 的分子辨认组件 . 此一组件为生物传感器信号 接收或产生部份 另 较好地实现 了产业化突破. 取得 了显著经济效益 固定化酶生物传感 为属于硬件仪器组件部份 , 主要为物理信 号转换组件 。 因此 , 如何 已 器作 为一类 多品种 的精 密科学仪 器。 支撑 了一 部份生 物技术过程 检 生化 方法 分离 、纯 化甚 或设计 合 成特 定 的生物 活 性分  ̄ ( o g a " i oi l bl c 测. 对传统生物产业技术改造具有重要意义 我国生物传感器产业 表 ate a rl . cv t a ) i m e s 结合精 确而且 响应 快速 的物理换 能器(asue ) i t ndcr组 现 的空前繁荣景象代表了当前世界生物传感器产业的主要潮流 r s 合成生物传感器反应系统 . 实为研究生物传感器 的主要 目的。所 以生 物传感器结构包括: 一种或数种相关生物活性材料及 能把生 物活性表 4 生物传感器在 当前 的主要应用领域 达信号转换为 电信号 的物理 或化学换能器 . 者组合在一起 , 现代 二 用 41 发 酵 工 业 . 微电子和 自动化仪表技术进 行生物信 号的再加工 。 构成各种 可以使用 因为发酵过程中常存在对 酶的干扰物质。 且发酵液往 往不是 清 并 的生物传感器 分析装 置 、 和系统 l 仪器 l 1 。 澈透明的, 不适用 于光谱等方法测定 而应用微 生物传感器则极有可 能消除干扰. 并且不受发酵液混浊程度的限制 同时, 由于发酵工业 是 2 生物传 感器 的历史发展 大规模的生产. 微生物传感器其成本低设备简单 的特 点使其具有极大 16 92年 c r l k等提 出 了把酶 与电极 结合 来测 定酶 底物 的设 想 , a 的优势。所以具有成本低 、 设备简单 、 不受发酵液混浊程度 的限制 、 能 16 U d e Hcs 97年 pi 和 i 将葡萄糖 氧化 酶包含在聚丙烯酰胺胶体 中加 k k 消除发酵过 程 中干扰物质 的干扰的微生物传感 器发 酵工业 中得到 了 以固化. 再将 此胶 体膜 固定在隔膜氧 电极的尖端上 , 制出世界上第 研 广泛的应用 目前 已有相关报道在发 酵工业生产 中将生物传 感器应用 支葡 萄糖氧化酶 电极. 用于定量检测 血清 中葡萄糖 含量。 标志着生 于原材料 及代谢 产物 的测定, 生物细胞总数 的测定 以及代谢试验 的 微 物传感器 的诞生 随后改用其它 的酶或微生物等 固化膜 , 便可 制得检 鉴定中。 测其对应物 的其它传感器 固定感受膜的方法有直接化学 结合 法; 高 42 食 品工业 _ 分子载体法; 高分子膜结合法。现已发展 了第二代生物传感器 ( 微生 生物传感器可 以用来检测食品 中营养成分和有害成分 的含量 、 食 物 、免疫 、酶免疫和细胞器传感器 ) 研制 和开发第三代生物传感器, , 品的新 鲜程度等 如已经开发出来 的酶 电极型生物传感器可用来分析 将生物技术和 电子技术结合起来的场效应生物传感器。 生物传感器是 白酒 、 苹果汁 、 果酱和蜂蜜 中的葡萄糖含量 , 从而衡量水果 的成 熟度。 用生物活性材料( 、 白质 、 N 抗体 、 、 酶 蛋 D A、 抗原 生物膜等) 与物理化学 采用亚硫酸盐 氧化 酶为敏感材料 制成的 电流型二氧化硫酶 电极可用 换能器有机结合 的一 门交叉学科, 是发展 生物技 术必不可少的一种先 于测定食 品中的亚硫酸含量 此外 也有用生物传感器测定色素和乳 进的检测方法与监控方法, 也是物质分子水平 的快速 、 量分析方法 。 微 化剂 的应用 在 2 世纪知识经济发展 中. 1 生物传感器技术必将是介 于信 息和生物 43 医学领域 . 技术之 间 的新 增长点 , 医学 临床 诊断 、 业控制 、 品和药 物分 在 工 食 生物传感器在医学领域也发挥着越来越 大的作用: I 床上用免疫 析f 包括生物药物研究开发)环境保护以及生物技术 、 , 生物芯片等研究 传感器等生物传感器来检测体 液中的各种化学成分 为医生的诊断提 中有着广泛的应用前景 供依据 : 在军事 医学 中. 对生物毒 素的及 时快速检测是 防御 生物武器 2 根据生物传感器 中信号检测器 上的敏感 物质分 . 1 的有效措施 生物传感器 已应用于监测多种细菌 、 病毒及其毒素 。 生物 生物传感器 与其 它传感器 的最大区别在 于生物传感 器的信号 检 传感器还可 以用来测量 乙酸 、 酸 、 乳 乳糖 、 酸 、 尿 尿素 、 抗生素 、 谷氨酸 侧 器中含有敏 感的生命 物质 。这些敏感 物质有酶 、 生物 、 微 动植 物组 等各种氨基酸, 以及各种致癌和致变物质 。 织、 细胞 器、 抗原 和抗体 等。根据敏感物质 的不 同, 生物传感器 可分 酶 4 环境监测 . 4 传感器 、 微生物传感器 、 组织传感器 、 细胞器传感器 、 免疫传感器等 。 生 环保 问题 已经引起了全球性 的广泛关注, 在发达国家如英 国、 法 物学工作者 习惯 于采用这种分类方法 国、 国、 德 西班牙和瑞典 , 在农药残留检 测 、 酸雨监测 、 富营养化监 水体 2 根据生物传感器 的信号转换器分类 . 2 测等过程都采用 了生物冷光型 的生物传感器 用于环境监测的专业仪 生物传感器 中的信号转换器 与传统 的转 换器并没有本质 的区别 器市场越来越 大, 前 已经有相当数量 的生物传感器 ( 目 下转第 38页) 9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传递与转移。根据电子的转移机理不 同, 电流 型酶电极生物传感器可分为三代 :
1 1 第一代 电流型 酶 电极 生物 传感 器 .
反应 ; 2 能吸附或滞 留在电极表面 ; ) 3 具 有 可逆 的 电极 反应 动 力学 行 为 ; )
4 具 有 较低 的氧 化 还 原 电位 , 不受 p ) 并 H 5 稳 定 存在 的氧 化还 原反 应 ; ) 6 对 氧无反 应活 性 或者惰 性 ; ) 7 无毒 或毒 性很 低 。 )
评述 , 并介绍了明胶在固定化酶生物传感器中 切结合, 将化学反应转化 为电信号进行表达 , 从而 实 现对 微 量物 质 的检测 。 应 用 的现状 。
酶 电极 是 由 固定 化酶 生 物 敏 感 膜 与 电化
1 引言
学电极组合 而成 的生 物传感器 主要元 件¨ , j
第3 2卷第 2期
21 0 2年 6月
otc e c e
明
胶
科
学
与
技
术
Vo. 2. . 1 3 No 2
T eSi c n ehooyo e t h ce eadT cnlg f li n G an
Jn 2 1 . u . 0 2
芒 综述评论 圣
/》
电 流 型 固定 化 酶 生物 传 感 器 的研 究 进展
目前 , 的固定 化 技 术 发 展 十 分 迅 速 , 酶 在 如图 l 所示 。酶电极结合 了酶促反应高效、 专
保持酶催化反应快速、 高效 、 污染等优 势 的 无
等优势又结合 了电化学灵敏 、 精准等特点 , 同时 大大 提 高 了使 用 效 率 , 有 效 地 节 省 能 能够 实 现微 量 目标 样 品 的精 确 检 测 。 目前 根 并 耗, 为酶在 实际 中 的应 用开 辟 了新 的领域 。 因 据电化学响应信号类型的不同, 电极主要分 酶
为铁氰化物 、 有机
二茂铁圾 其衍 生物、 机 染料、 有 酞箐 氧的伏 安特 性 丽实现 直 接测 定 国标样 品浓 度 。 导电盐 、 f 但 是 , 个方 法有 一 定 的缺 点 :口 的 变化 规 等 。电子媒 介体 的发 现 和 弓人对 于 酶 电极 生 这 一 拦氧
律 复杂 , 受 环 境影 响健 其 波 动范 围较 大 且 从 物 传感 器是 一 个 重 大 的飞 跃 即 突 破 。 因 为 它 在很大程度上改善电子的传输性能 , 而提高 从 西测定 的 电流值有很 大 பைடு நூலகம்误 差 。
12 第二代 电流 型酶 电极 生物 持 感 器
了酶 电极生 物传感 器 的灵 敏度 。
为克服 氧溶解 度 的影 响 其 他 氧化剂 即 用
另外 , 电子媒介体普遍具有较低的工作电
电子 转移试 剂 的 概念 得 到 了发 展 和应 厢 。 电 位 , 以使 电极 保 持 在 低 电位 下进 行 测 定 , 可 避
e—ma l 8 1 9 7 2 q . o i : 2 5 3 9 @ q t m
・
5 ・ 4
明
胶
科
学
与
技
术
21 0 2年 6月
明显 。并 且响应 电 流 与底 物 浓 度 在 一 定 范 围 基 础 电极识 别形 成响 应 电流 , 终 由显 示 系统 最
如 图 输 出。电流型酶电极生物传感器灵敏度高 , 反 其性能 的好坏主要体现于电子 2所示 。在恒电位条件下 , 底物进入生物敏感 应过程易识别 , 膜 发生酶 促反应 , 与氧 化 还原 反应 的 电子被 转移的速度和程度。 参
排除干扰 。可见 电了 子转移剂有合适的氧化 电位并且浓度是可 以 免激活其池电活性物质 , 控 制 的 , 反应 过 程 中 可逆 , 般 采 用 过 渡 金 媒介体 的加入使其较第一代 电流型传感器有 在 一
第3 2卷第 2期
电流 型酶 电极 生物传 感器
流信号 , 通过电流信号来反映物质浓度的分析
电流 酶 电极 是 指在 酶 电极 上 由于 酶 催 装 置 。 随着底 物 浓度 的增 大 , 电极上 的氧化 还 化俸 用 发 生 的氧 化还 原 反应 所 产 生相 应 的 电 原 反应 越 激 烈 , 因此表 达 出的 电流 响应 也就 越
史光明 ’ 杨 寅 王 昱琳
北京化工 大学 材料科学与工程学院 ,北京 102 009
摘要 :酶 的固 定化 技 术: 物传 感 器 中 应 用 生
固定 化酶 近 年 来 的研 究 热 点 在 于 它可 以
取得 了飞速 的发展 , 本文 对其研 究进 展 进行 了 作为生物传感器的分子识别元 件与换能器密
内成线性相关性。其 电子传递 原理
图 2 酶 电 极 电子 传 递 原 理 示 意 图
对 于大 部分 的氧 化还 原酶 来说 , 活性 中 属 阳离子 和他们 的络合 物 , 其 此类 材料 通 常称 为 心通常存在于内部 , 且不唯一。有些会被外部 电子媒 介 体 。电 子 媒 介 体 应 具 备 如 下 特 的糖蛋 白覆 盖 而影 响 电子 转 移 。 由此 可见 , 保 证 电极 优异 性 能 的关 键 在 于 如 何 解决 电子 的 点 j : 1 可 与酶 活性 中心 的 氧化 还 原 辅 基 快 速 )
第 一代 电流 型酶 电极 生物 传 感 器 以 氧作 影 响 ;
为媒介体来实现底 物浓度 的直 接测定 。如原
始葡 萄糖酶 电极所 示 :
葡萄糖 + 0 曼墅 堕 葡萄糖酸 + Ht : ! 兰 : )
:
第一代 电流 型 酶 电捉 可基 于 电化 学 还 原
常用的电子媒介体
一
此 , 医疗 保健 、 品发 酵 、 在 食 能源 开发等 行 业 都 为 电流 型酶 电极 、 电子 介 体增敏 酶 电极 和 电位
得 到 高度 的 认 可, 为研究 的热点 之一 。 成 型酶 电极 , 中 , 其 电流型 酶 电极 研究 比较 成 熟 。
图 1 酶 电极组成示 意图