利用动态规划求解资源分配问题的单表迭代法
用动态规划算法解此问题

内容提要:
理解动态规划算法概念 掌握动态规划算法要素 掌握设计动态规划算法的步骤 通过范例学习动态规划算法设计策略
2020/3/23
1
University of Science and Technology of China
15.1 历史及研究问题
动态规划(dynamic programming)是运筹学的一个 分支,20世纪50年代初美国数学家R.E.Bellman等人在 研究多阶段决策过程(Multistep decision process)的优 化问题时,提出了著名的最优性原理,把多阶段过程 转化为一系列单阶段问题,逐个求解,创立了解决这 类过程优化问题的新方法——动态规划。
15.1 历史及研究问题
动态规划主要用于求解以时间划分阶段的动态过程的 优化问题,但是一些与时间无关的静态规划(如线性 规划、非线性规划),可以人为地引进时间因素,把 它视为多阶段决策过程,也可以用动态规划方法方便 地求解。
动态规划是考察问题的一种途径,或是求解某类问题 的一种方法。
动态规划问世以来,在经济管理、生产调度、工程技 术和最优控制等方面得到了广泛的应用。例如最短路 线、库存管理、资源分配、设备更新、排序、装载等 问题,用动态规划方法比其它方法求解更为方便。
2020/3/23
7
University of Science and Technology of China
15.3 总体思想
如果能够保存已解决的子问题的答案,而在需要时再找出
已求得的答案,就可以避免大量重复计算,从而得到多项式
时间算法。动态规划法用一个表来记录所有已解决的子问题
的答案。具体的动态规划算法尽管多种多样,但它们具有相
典型单班次问题的线性规划求解

典型单班次问题的线性规划求解
纪贤标
【期刊名称】《广西轻工业》
【年(卷),期】2007(023)011
【摘要】单班次问题是研究更一般、更复杂班次问题的基础,基于对作业计划的灵活分类并设立决策变量,从而为典型的单班次问题建立数学模型,实现利用线性规划方法求解.利用线性规划方法求解单班次问题有着思路简洁、灵活易变、结果分析直观等特点.
【总页数】3页(P64-66)
【作者】纪贤标
【作者单位】集美大学工商管理学院,福建,厦门,361021
【正文语种】中文
【中图分类】F272.92
【相关文献】
1.用Excel软件中规划求解命令求解线性规划问题 [J], 张景川
2.基于多目标模糊线性规划求解方法的飞机排班问题研究 [J], 吴东华;夏洪山
3.一类单输入单输出的典型非线性系统神经网络滑模控制 [J], 刘洁;张华;王述一;刘子龙
4.利用动态规划求解资源分配问题的单表迭代法 [J], 宋占岭;冀秀春
5.Excel2003中解决线性规划求解问题 [J], 姜雪茸;
因版权原因,仅展示原文概要,查看原文内容请购买。
动态规划的应用举例大全

在0/1背包问题的基础上,通过动态规 划的方式解决多个约束条件下的物品 选择问题。
排程问题
作业车间调度问题
通过动态规划的方式,求解给定一组作业和机器,如何分配作业到机器上,使得 完成时间最早且总等待时间最小。
流水线调度问题
通过动态规划的方式,解决流水线上的工件调度问题,以最小化完成时间和总延 误时间。
应用场景
在基因组测序、进化生物学和生物分类学等领域中,DNA序列比对是关键步骤。通过比对,可以发现物种之间的相 似性和差异,有助于理解生物多样性和进化过程。
优势与限制
动态规划算法在DNA序列比对中具有高效性和准确性,能够处理大规模数据集。然而,对于非常长的序 列,算法可能需要较长时间来运行。
蛋白质结构预测
应用场景
深度学习中的优化算法广泛应用于语音识别、图像处理、 自然语言处理等领域,动态规划可以帮助提高训练效率和 模型的准确性。
自适应控制和系统优化
问题描述
动态规划方法
自适应控制和系统优化是针对动 态系统的优化和控制问题。在这 些问题中,动态规划可以用于求 解最优控制策略和系统参数调整。
通过定义状态转移方程和代价函 数,将自适应控制和系统优化问 题转化为动态规划问题。状态表 示系统的当前状态和参数,代价 函数描述了在不同状态下采取不 同行动的代价。
考虑风险因素和概率
动态规划可以考虑到风险因素和概率,以制定最优的风险评估和管 理策略。
考虑风险承受能力和资本充足率
动态规划可以考虑到风险承受能力和资本充足率,以制定最优的风 险评估和管理策略。
04 动态规划在生物信息学中 的应用
DNA序列比对
算法描述
DNA序列比对是生物信息学中常见的问题,通过动态规划算法可以高效地解决。算法将DNA序列视为字符串,并寻 找两个或多个序列之间的最佳匹配。
动态规划状态转移方程

1.资源问题1-----机器分配问题F[I,j]:=max(f[i-1,k]+w[i,j-k])2.资源问题2------01背包问题F[I,j]:=max(f[i-1,j-v[i]]+w[i],f[i-1,j]);3.线性动态规划1-----朴素最长非降子序列F[i]:=max{f[j]+1}4.剖分问题1-----石子合并F[i,j]:=min(f[i,k]+f[k+1,j]+sum[i,j]);5.剖分问题2-----多边形剖分F[I,j]:=min(f[i,k]+f[k,j]+a[k]*a[j]*a[i]);6.剖分问题3------乘积最大f[i,j]:=max(f[k,j-1]*mult[k,i]);7.资源问题3-----系统可靠性(完全背包)F[i,j]:=max{f[i-1,j-c[i]*k]*P[I,x]}8.贪心的动态规划1-----快餐问题F[i,j,k]:=max{f[i-1,j',k']+(T[i]-(j-j')*p1-(k-k')*p2) div p3}9.贪心的动态规划2-----过河f[i]=min{{f(i-k)} (not stone[i]){f(i-k)}+1} (stone[i]); +贪心压缩状态10.剖分问题4-----多边形-讨论的动态规划F[i,j]:=max{正正 f[I,k]*f[k+1,j];负负 g[I,k]*f[k+1,j];正负 g[I,k]*f[k+1,j];负正 f[I,k]*g[k+1,j];} g为min11.树型动态规划1-----加分二叉树 (从两侧到根结点模型)F[I,j]:=max{f[I,k-1]*f[k+1,j]+c[k]}12.树型动态规划2-----选课 (多叉树转二叉树,自顶向下模型)F[I,j]表示以i为根节点选j门功课得到的最大学分f[i,j]:=max{f[t[i].l,k]+f[t[i].r,j-k-1]+c[i]}13.计数问题1-----砝码称重f[f[0]+1]=f[j]+k*w[j];(1<=i<=n; 1<=j<=f[0]; 1<=k<=a[i];)14.递推天地1------核电站问题f[-1]:=1; f[0]:=1;f[i]:=2*f[i-1]-f[i-1-m]15.递推天地2------数的划分f[i,j]:=f[i-j,j]+f[i-1,j-1];16.最大子矩阵1-----一最大01子矩阵f[i,j]:=min(f[i-1,j],v[i,j-1],v[i-1,j-1])+1;ans:=maxvalue(f);17.判定性问题1-----能否被4整除g[1,0]:=true; g[1,1]:=false; g[1,2]:=false; g[1,3]:=false; g[i,j]:=g[i-1,k] and ((k+a[i,p]) mod 4 = j)18.判定性问题2-----能否被k整除f[I,j±n[i] mod k]:=f[i-1,j]; -k<=j<=k; 1<=i<=n20.线型动态规划2-----方块消除游戏f[i,i-1,0]:=0f[i,j,k]:=max{f[i,j-1,0]+sqr(len(j)+k),f[i,p,k+len[j]]+f[p+1,j-1,0]}ans:=f[1,m,0]21.线型动态规划3-----最长公共子串,LCS问题f[i,j]={0(i=0)&(j=0);f[i-1,j-1]+1(i>0,j>0,x[i]=y[j]);max{f[i,j-1]+f[i-1,j]}} (i>0,j>0,x[i]<>y[j]);22.最大子矩阵2-----最大带权01子矩阵O(n^2*m)枚举行的起始,压缩进数列,求最大字段和,遇0则清零23. 资源问题4-----装箱问题(判定性01背包)f[j]:=(f[j] or f[j-v[i]]);24.数字三角形1-----朴素の数字三角形f[i,j]:=max(f[i+1,j]+a[I,j],f[i+1,j+1]+a[i,j]);25.数字三角形2-----晴天小猪历险记之Hill同一阶段上暴力动态规划if[i,j]:=min(f[i,j-1],f[I,j+1],f[i-1,j],f[i-1,j-1])+a[i,j]26.双向动态规划1数字三角形3-----小胖办证f[i,j]:=max(f[i-1,j]+a[i,j],f[i,j-1]+a[i,j],f[i,j+1]+a[i,j])27. 数字三角形4-----过河卒//边界初始化f[i,j]:=f[i-1,j]+f[i,j-1];28.数字三角形5-----朴素的打砖块f[i,j,k]:=max(f[i-1,j-k,p]+sum[i,k],f[i,j,k]);29.数字三角形6-----优化的打砖块f[I,j,k]:=max{g[i-1,j-k,k-1]+sum[I,k]}30.线性动态规划3-----打鼹鼠’f[i]:=f[j]+1;(abs(x[i]-x[j])+abs(y[i]-y[j])<=t[i]-t[j])31.树形动态规划3-----贪吃的九头龙⎭⎬⎫⎩⎨⎧======⎭⎬⎫⎩⎨⎧+-++--+=0))2()0(&)0(())1(&)1((1],[]][,[*]0,[],',[]0,',[]][,[*]1,[],1',[]1,',[min ],,[m and j i or j i j i d i p i w k d k j j r f j l f i p i w k d k j j r f j l f k j i f32.状态压缩动态规划1-----炮兵阵地Max(f[Q*(r+1)+k],g[j]+num[k])If (map[i] and plan[k]=0) and((plan[P] or plan[q]) and plan[k]=0)33.递推天地3-----情书抄写员f[i]:=f[i-1]+k*f[i-2]34.递推天地4-----错位排列f[i]:=(i-1)(f[i-2]+f[i-1]);f[n]:=n*f[n-1]+(-1)^(n-2);35.递推天地5-----直线分平面最大区域数f[n]:=f[n-1]+n:=n*(n+1) div 2 + 1;36.递推天地6-----折线分平面最大区域数f[n]:=(n-1)(2*n-1)+2*n;37.递推天地7-----封闭曲线分平面最大区域数f[n]:=f[n-1]+2*(n-1):=sqr(n)-n+2;38递推天地8-----凸多边形分三角形方法数f[n]:=C(2*n-2,n-1) div n;对于k 边形f[k]:=C(2*k-4,k-2) div (k-1); //(k>=3)39递推天地9-----Catalan 数列一般形式1,1,2,5,14,42,132f[n]:=C(2k,k) div (k+1);40递推天地10-----彩灯布置排列组合中的环形染色问题f[n]:=f[n-1]*(m-2)+f[n-2]*(m-1); (f[1]:=m; f[2]:=m(m-1);41线性动态规划4-----找数线性扫描sum:=f[i]+g[j];(if sum=Aim then getout; if sum<Aim then inc(i) else inc(j);)42线性动态规划5-----隐形的翅膀min:=min{abs(w[i]/w[j]-gold)};if w[i]/w[j]<gold then inc(i) else inc(j);43剖分问题5-----最大奖励f[i]:=max(f[i],f[j]+(sum[j]-sum[i])*i-t44最短路1-----Floydf[i,j]:=max(f[i,j],f[i,k]+f[k,j]);ans[q[i,j,k]]:=ans[q[i,j,k]]+s[i,q[i,j,k]]*s[q[i,j,k],j]/s[i,j];45 剖分问题6-----小H 的小屋F[l,m,n]:=f[l-x,m-1,n-k]+S(x,k);46 计数问题2-----陨石的秘密(排列组合中的计数问题)Ans[l1,l2,l3,D]:=f[l1+1,l2,l3,D+1]-f[l1+1,l2,l3,D];F[l1,l2,l3,D]:=Sigma(f[o,p,q,d-1]*f[l1-o,l2-p,l3-q,d]);47 线性动态规划------合唱队形两次F[i]:=max{f[j]+1}+枚举中央结点48 资源问题------明明的预算方案:加花的动态规划f[i,j]:=max(f[i,j],f[l,j-v[i]-v[fb[i]]-v[fa[i]]]+v[i]*p[i]+v[fb[i]]*p[fb[i]]+v[fa[i]]*p[fa[i]]);49 资源问题-----化工场装箱员[,[1,],[1,]][,,]:min [,[1,],[1,]]1[10,[1,10],[1,10]f n i getA n n i j getB n n i f n i j f n j i getA n n j getB n n j f n i j i getA n n i j j getB n n i j ++++++⎧⎫⎪⎪=+++++++⎨⎬⎪⎪+--+++--+++--⎩⎭-----聚会的快乐f[i,2]:=max(f[i,0],f[i,1]);f[i,1]:=sigma(f[t[i]^.son,0]);f[i,0]:=sigma(f[t[i]^.son,3]);51树形动态规划-----皇宫看守f[i,2]:=max(f[i,0],f[i,1]);f[i,1]:=sigma(f[t[i]^.son,0]);f[i,0]:=sigma(f[t[i]^.son,3]);52递推天地-----盒子与球f[i,1]:=1;f[i,j]:=j*(f[i-1,j-1]+f[i-1,j]);53双重动态规划-----有限的基因序列f[i]:=min{f[j]+1}g[c,i,j]:=(g[a,i,j] and g[b,i,j]) or (g[c,i,j])54最大子矩阵问题-----居住空间f[i,j,k]:=min(min(min(f[i-1,j,k],f[i,j-1,k]),min(f[i,j,k-1],f[i-1,j-1,k])),min(min(f[i-1,j,k-1],f[i,j-1,k-1]),f[i-1,j-1,k-1]))+1;55线性动态规划------日程安排f[i]:=max{f[j]}+P[I]; (e[j]<s[i])56递推天地------组合数C[I,j]:=C[i-1,j]+C[I-1,j-1]C[I,0]:=157树形动态规划-----有向树k中值问题F[I,r,k]:=max{max{f[l[i],I,j]+f[r[i],I,k-j-1]},f[f[l[i],r,j]+f[r[i],r,k-j]+w[I,r]]}58树形动态规划-----CTSC 2001选课F[I,j]:=w[i](if i∈P)+f[l[i],k]+f[r[i],m-k](0≤k≤m)(if l[i]<>0)-----多重历史f[i,j]:=sigma{f[i-k,j-1]}(if checked)60背包问题(+-1背包问题+回溯)-----CEOI1998 Substractf[i,j]:=f[i-1,j-a[i]] or f[i-1,j+a[i]]61线性动态规划(字符串)-----NOI 2000 古城之谜f[i,1,1]:=min{f[i+length(s),2,1],f[i+length(s),1,1]+1}f[i,1,2]:=min{f[i+length(s),1,2]+words[s],f[i+length(s),1,2]+words[s]}62线性动态规划-----最少单词个数f[i,j]:=max{f[I,j],f[u-1,j-1]+l}63线型动态规划-----APIO2007 数据备份状态压缩+剪掉每个阶段j前j*2个状态和j*2+200后的状态贪心动态规划f[i]:=min(g[i-2]+s[i],f[i-1]);64树形动态规划-----APIO2007 风铃f[i]:=f[l]+f[r]+{1 (if c[l]<c[r])}g[i]:=1(d[l]<>d[r]) 0(d[l]=d[r])g[l]=g[r]=1 then Halt;65地图动态规划-----NOI 2005 adv19910F[t,i,j]:=max{f[t-1,i-dx[d[[t]],j-dy[d[k]]]+1],f[t-1,i,j];66地图动态规划-----优化的NOI 2005 adv19910F[k,i,j]:=max{f[k-1,i,p]+1} j-b[k]<=p<=j;67目标动态规划-----CEOI98 subtraF[I,j]:=f[I-1,j+a[i]] or f[i-1,j-a[i]]68目标动态规划----- Vijos 1037搭建双塔问题F[value,delta]:=g[value+a[i],delta+a[i]] or g[value,delta-a[i]]69树形动态规划-----有线电视网f[i,p]:=max(f[i,p],f[i,p-q]+f[j,q]-map[i,j])leaves[i]>=p>=l, 1<=q<=p;70地图动态规划-----vijos某题F[I,j]:=min(f[i-1,j-1],f[I,j-1],f[i-1,j]);71最大子矩阵问题-----最大字段和问题f[i]:=max(f[i-1]+b[i],b[i]); f[1]:=b[1]72最大子矩阵问题-----最大子立方体问题枚举一组边i的起始,压缩进矩阵 B[I,j]+=a[x,I,j]枚举另外一组边的其实,做最大子矩阵73括号序列-----线型动态规划f[I,j]:=min(f[I,j],f[i+1,j-1](s[i]s[j]=”()”or(”[]”)),f[I+1,j+1]+1 (s[j]=”(”or”[” ] , f[I,j-1]+1(s[j]=”)”or”]” )74棋盘切割-----线型动态规划f[k,x1,y1,x2,y2]=min{min{f[k-1,x1,y1,a,y2]+s[a+1,y1,x2,y2],f[k-1,a+1,y1,x2,y2]+s[x1,y1,a,y2]min{}}75概率动态规划-----聪聪和可可(NOI2005)x:=p[p[i,j],j]f[I,j]:=(f[x,b[j,k]]+f[x,j])/(l[j]+1)+1f[I,i]=0f[x,j]=176概率动态规划-----血缘关系F[A, B]=(f[A0, B]+P[A1, B])/2f[I,i]=1f[I,j]=0(I,j无相同基因)77线性动态规划-----决斗F[I,j]=(f[I,j] and f[k,j]) and (e[I,k] or e[j,k]),i<k<j78线性动态规划-----舞蹈家F[x,y,k]=min(f[a[k],y,k+1]+w[x,a[k]],f[x,a[k],k+1]+w[y,a[k]])79线性动态规划-----积木游戏F[I,a,b,k]=max(f[I,a+1,b,k],f[i+1,a+1,a+1,k’],f[I,a+1,a+1,k’])80树形动态规划(双次记录)-----NOI2003 逃学的小孩朴素的话枚举节点i和离其最远的两个节点 j,k O(n^2)每个节点记录最大的两个值,并记录这最大值分别是从哪个相邻节点传过来的。
动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。
本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。
二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。
其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。
具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。
这种分解可以通过递归的方式进行。
2. 定义状态:确定每个子问题的独立变量,即问题的状态。
状态具有明确的定义和可计算的表达式。
3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。
这个方程可以是简单的递推关系式、递归方程或其他形式的方程。
4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。
三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。
假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。
目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。
这个问题可以通过动态规划算法来求解。
具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。
(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。
(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。
(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。
2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。
动态规划算法在路径规划中的应用

动态规划算法在路径规划中的应用路径规划在日常生活中随处可见,比如搜索最短路线、规划旅游路线、寻找交通路线等等。
其中,动态规划算法被广泛应用于路径规划领域,可解决诸如最短路径、最小花费路径等问题。
这篇文章将介绍动态规划算法在路径规划中的应用。
一、动态规划算法的基本原理动态规划算法是一种求解多阶段决策问题的优化方法。
它将问题分成多个子问题,并分别求解这些子问题的最优解。
最后通过不断合并子问题的最优解得到原问题的最优解。
其基本思想可以用以下三个步骤来概括:1.确定状态:将原问题分解成若干个子问题,每个子问题对应一个状态。
2.确定状态转移方程:确定每个状态之间的转移关系。
3.确定边界条件:确定初始状态和结束状态。
动态规划算法通常包括两种方法:自顶向下的记忆化搜索和自底向上的迭代法。
其中,自顶向下的记忆化搜索依赖于递归调用子问题的解,而自底向上的迭代法则通过维护状态表来解决问题。
二、动态规划算法在路径规划中的应用路径规划是动态规划算法的一个重要应用场景。
动态规划算法可以用来求解最短路径、最小花费路径、最大价值路径等问题。
这里以求解最短路径为例,介绍动态规划算法在路径规划中的应用。
1.问题定义假设我们需要从城市A走到城市B,中途经过若干个城市。
每个城市之间的距离已知,现在需要求出从城市A到城市B的最短路径。
这个问题可以用动态规划算法来求解。
2.状态定义在这个问题中,我们可以用一个二元组(u, v)表示从城市u到城市v的一条路径。
因此,在求解最短路径问题时,我们需要进行状态定义。
通常情况下,状态定义成一个包含一个或多个变量的元组,这些变量描述了在路径中的某个位置、某种状态和其他有关的信息。
在这个问题中,状态定义为S(i,j),它表示从城市A到城市j的一条路径,该路径经过了城市集合{1, 2, …, i}。
3.状态转移方程状态转移方程描述了相邻状态之间的关系,即从一个状态到另一个状态的计算方法。
在求解最短路径问题时,状态转移方程可以定义为:d(i, j) = min{d(i-1, j), d(i, k) + w(k, j)}其中,d(i,j)表示从城市A到城市j经过城市集合{1, 2, …, i}的最短路径长度。
十动态规划的应用资源分配问题 ppt课件

fksk
0m xksk[agkxxk
fk1(sk1)]
f4(s4)0
数量为 sk 的设备分 配给第 k 个工厂至 第 3 个工厂所得到
甲乙丙
0000 1354
的最大总收益
2 7 10 6
3 9 11 11
4 12 11 12
5 13 十动态规划的应用资源分配问题
11
12
k =3,s3=0,1,2,3,4,5,0 x3 s3
5 13 11 12
结果可写 成表格的 形式:
x3 s3 0
1
g3(x3) 23
4
5 f3(s3) x*3
00
00
1
4
41
2
6
62
3
11
11 3
4
12
12 4
5
12 12 十动态规划的应用资源分配问题 12 4,5
k =2,s3 = s2 - x2,s2=0,1,2,3,4,5,0 x2 s2,有
g2(3) f3(0)
110
x2*(3) =2 14
x3 s3 0
1g3(x3) 2345 f3(s3) x*3
0
甲 0
乙 0
丙 0
00
00 1 3
5
4
1
4
4 1 2 7 10 6
2
6
6 2 3 9 11 11
3 4 5
11
12 12
十12动态规111划122的应用4资34,5源分配问45题
12 13
16 21
5 13 1,2
2 十动态规划的应用资源分配问题
11
12
结果可写成表格的形式
动态规划方案解决资源分配问题的策略

动态规划方案解决资源分配问题的策略在幼儿教育事业中,资源分配问题是一项至关重要的任务。
如何合理、高效地分配教育资源,以满足幼儿的需求和发展,成为幼儿工作者们关注的焦点。
针对这一问题,我们引入动态规划这一优化算法,提出一套解决方案,以期为我国幼儿教育事业的发展提供有力支持。
一、背景及问题阐述随着我国经济社会的快速发展,幼儿教育事业逐渐受到广泛关注。
然而,在资源分配方面,幼儿教育仍面临诸多问题。
一方面,资源分配不均,城乡、地区之间差距较大,部分幼儿无法享受到优质的教育资源;另一方面,资源利用效率低下,导致教育成本上升,加剧了教育资源供需矛盾。
为解决这一问题,我们需要对教育资源进行合理分配,提高资源利用效率。
动态规划作为一种优化算法,具有实现全局最优、求解效率高等特点,适用于解决资源分配问题。
本文将以幼儿教育资源分配为背景,探讨动态规划在解决资源分配问题方面的应用。
二、动态规划基本原理动态规划(DynamicProgramming,DP)是一种求解最优化问题的方法,它将复杂问题分解为多个子问题,并通过求解子问题来实现全局最优。
动态规划的核心思想是“记住已经解决过的子问题的最优解”,从而避免重复计算。
1.确定状态:将问题分解为若干个子问题,并用状态变量表示这些子问题。
2.建立状态转移方程:找出子问题之间的关系,建立状态转移方程,表示当前状态如何通过前一个状态得到。
3.确定边界条件:设定初始状态和边界条件,为递推过程提供基础。
4.计算最优解:根据状态转移方程,从初始状态开始递推,得到问题的最优解。
5.构造最优解:根据最优解的递推过程,构造出问题的最优解。
三、动态规划解决资源分配问题的策略1.状态定义我们将资源分配问题分为两个状态:当前状态和子状态。
当前状态表示在某一时间点或某一阶段,已分配的资源总量;子状态表示在分配过程中,某一特定资源类型的分配情况。
2.状态转移方程状态转移方程是动态规划的核心,它描述了当前状态如何由子状态得到。