自动控制系统知识点
自动控制原理知识点总结

自动控制原理知识点总结1. 控制系统基本概念:自动控制系统是通过对被控对象进行测量、比较和纠正等操作,使其输出保持在期望值附近的技术体系。
控制系统由传感器、控制器和执行器组成。
2. 反馈控制原理:反馈是指对被控对象输出进行测量,并将测量结果与期望值进行比较,通过纠正控制信号来消除误差。
反馈控制系统具有稳定性好、抗干扰能力强的特点。
3. 控制回路的结构:控制回路通常包括输入端、输出端、传感器、控制器和执行器等组成。
传感器用于将被测量的物理量转换为电信号;控制器根据测量结果和期望值进行计算,并输出控制信号;执行器根据控制信号,对被控对象进行操作。
4. 控制器的分类:控制器按照控制操作的方式可以分为比例控制器、积分控制器和微分控制器。
比例控制器根据误差的大小与一定的系数成比例地输出控制信号;积分控制器根据误差的累积值输出控制信号;微分控制器根据误差变化率的大小输出控制信号。
5. 稳定性分析:稳定性是指控制系统在无限时间内,输出能够在期望值附近波动。
常用的稳定性分析方法有判据法、频域法和根轨迹法等。
6. 控制系统的频域分析:频域分析是一种通过研究系统对不同频率的输入信号的响应特性,来分析控制系统的方法。
常用的频域分析方法有频率响应曲线、伯德图和封闭环传递函数等。
7. 根轨迹法:根轨迹法是一种用于分析和设计控制系统稳定性和性能的图形方法。
根轨迹是指系统极点随参数变化而形成的轨迹,通过分析根轨迹的形状,可以得到系统的稳定性和性能信息。
8. 灵敏度分析:灵敏度是指输出响应对于某个参数的变化的敏感程度。
灵敏度分析可以用于确定系统设计中的参数范围,以保证系统的稳定性和性能。
9. 鲁棒性分析:鲁棒性是指控制系统对于模型参数变化和外部干扰的抵抗能力。
鲁棒性分析可以用于设计具有稳定性好和抗干扰能力强的控制系统。
10. 自适应控制:自适应控制是指控制系统能够根据被控对象的变化自动调整控制策略和参数。
自适应控制通常使用系统辨识技术来识别被控对象的模型,并根据模型参数进行自动调整。
自动控制原理知识点汇总

自动控制原理知识点汇总自动控制原理是现代工程中的重要学科,它研究如何利用自动化技术实现对各种工业过程和系统进行控制和调节。
本文将对自动控制原理的相关知识点进行汇总,并进行详细说明。
1. 自动控制系统的基本组成自动控制系统主要由控制对象、感知器、执行器和控制器四个部分组成。
控制对象是需要被控制和调节的物理系统或工艺过程,感知器用于感知控制对象的运行状态,执行器负责根据控制器的指令执行相应的动作,而控制器则是整个系统的核心,根据感知器采集到的信号进行处理,并通过执行器对控制对象进行控制。
2. 控制系统的闭环与开环控制控制系统可以分为闭环控制和开环控制两类。
闭环控制是通过对控制对象的输出进行实时测量,并与预设的目标值进行比较,从而实现对系统状态的反馈控制。
开环控制则是不考虑控制对象的实际输出,仅根据预设的输入信号进行控制,无法实时调节系统状态。
3. 控制系统的稳定性控制系统的稳定性是指系统在受到外界扰动或控制指令变化时,能够恢复到稳定状态的能力。
稳定性分为绝对稳定和相对稳定两种。
绝对稳定是指系统在任何初始条件下都能恢复到稳定状态,相对稳定则是指系统在一定初始条件下能恢复到稳定状态。
稳定性分析常用的方法有根轨迹法、Nyquist稳定判据和Bode稳定判据等。
4. 控制系统的系统响应控制系统的系统响应描述了系统对输入信号的响应速度和质量。
常用的系统响应指标有超调量、调整时间、稳态误差和频率响应等。
超调量是指系统响应超过目标值的最大偏差,调整时间是系统从开始响应到稳定所需的时间,稳态误差是系统在稳定状态下与目标值之间的偏差,频率响应是系统对不同频率信号的响应特性。
5. PID控制器PID控制器是自动控制系统中最常用的控制器之一,它由比例项(P 项)、积分项(I项)和微分项(D项)组成。
比例项用于根据误差大小调节控制量,积分项用于对误差进行积分,以解决稳态误差问题,微分项用于预测误差的未来变化趋势,以减小超调和提高系统响应速度。
自动控制理论知识点总结

自动控制理论知识点总结1.控制系统的基本结构:一个典型的控制系统由被控对象、传感器、执行器、控制器和连接它们的信号线组成。
传感器将被控对象的状态转化为电信号,控制器根据目标和实际状态的差异来产生控制信号,执行器根据控制信号来调整被控对象的状态。
2.控制系统的稳定性:稳定性是控制系统最重要的性能之一、控制系统稳定即表示系统输出能够在有界的范围内保持在稳定值附近,不会出现无限增长或无限衰减的情况。
稳定性的分析基于控制系统的传递函数,通过判断系统的特征根位置来确定系统稳定性。
3.控制系统的性能指标:控制系统除了要求稳定外,还需要满足一定的性能指标。
常见的性能指标包括超调量、调节时间、稳态误差、抗干扰能力等。
这些指标通常与控制系统的设计需求有关,不同应用领域的控制系统对性能指标的要求也有所不同。
4.PID控制器:PID控制器是自动控制中最常见的一种控制器。
PID控制器根据比例、积分和微分三个部分对误差进行调节,从而实现系统状态的稳定控制。
PID控制器结构简单、调节方便,并且在很多领域都有广泛应用。
5.系统辨识:系统辨识是指通过对已有数据进行分析和处理,确定出系统的数学模型。
系统辨识可以基于频域分析、时域分析等方法进行。
通过系统辨识,可以为控制系统的设计、分析和优化提供重要的基础。
6.线性系统与非线性系统:控制系统可以分为线性系统和非线性系统。
线性系统的特点是可以通过叠加原理进行分析,传递函数和状态空间模型可以直接应用于控制系统。
而非线性系统则需要利用非线性控制的方法进行分析和设计。
7.鲁棒控制:鲁棒控制是一种能够保证控制系统在不确定性和干扰的情况下依然能保持稳定性和性能的控制方法。
鲁棒控制通常使用基于频域设计的方法,能够有效地抑制外界不确定性和不良影响。
8.自适应控制:自适应控制是指能够根据系统动态特性和外界环境变化,自动调整控制器参数和结构的控制方法。
自适应控制可以有效地应对系统参数不确定性和变化的情况,有助于提高系统的稳定性和性能。
自动控制原理知识点总结

自动控制原理知识点总结自动控制原理是一门研究自动控制系统的基本理论和方法的学科,它对于理解和设计各种控制系统具有重要意义。
下面将对自动控制原理的一些关键知识点进行总结。
一、控制系统的基本概念控制系统是由控制对象、控制器和反馈环节组成的。
控制对象是需要被控制的物理过程或设备,例如电机的转速、温度的变化等。
控制器则是根据输入的控制信号和反馈信号来产生控制作用,以实现对控制对象的期望控制。
反馈环节则将控制对象的输出信号反馈给控制器,形成闭环控制,从而提高系统的控制精度和稳定性。
在控制系统中,常用的术语包括输入量、输出量、偏差量等。
输入量是指施加到系统上的外部激励,输出量是系统的响应,而偏差量则是输入量与反馈量的差值。
二、控制系统的数学模型建立控制系统的数学模型是分析和设计控制系统的基础。
常见的数学模型有微分方程、传递函数和状态空间表达式。
微分方程描述了系统输入与输出之间的动态关系,通过对系统的物理规律进行分析和推导,可以得到微分方程形式的数学模型。
传递函数则是在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。
它将复杂的微分方程转化为简单的代数形式,便于系统的分析和设计。
状态空间表达式则是用一组状态变量来描述系统的内部动态特性,能够更全面地反映系统的性能。
三、控制系统的性能指标为了评估控制系统的性能,需要定义一些性能指标。
常见的性能指标包括稳定性、准确性和快速性。
稳定性是控制系统能够正常工作的前提,如果系统不稳定,输出将无限制地增长或振荡,无法实现控制目标。
准确性通常用稳态误差来衡量,它表示系统在稳态时输出与期望输出之间的偏差。
快速性则反映了系统从初始状态到达稳态的速度,常用上升时间、调节时间等指标来描述。
四、控制系统的稳定性分析判断控制系统的稳定性是自动控制原理中的重要内容。
常用的稳定性判据有劳斯判据和赫尔维茨判据。
劳斯判据通过计算系统特征方程的系数来判断系统的稳定性,具有计算简单、直观的优点。
(完整版)自动控制原理知识点总结

@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
掌握典型闭环控制系统的结构。
开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。
)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。
即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。
将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。
(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。
三种基本形式,尤其是式2-61。
主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。
(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。
自动控制原理知识点总结

自动控制原理知识点总结自动控制原理是一门研究自动控制系统的分析与设计的学科,它对于理解和实现各种工程系统的自动化控制具有重要意义。
以下是对自动控制原理中一些关键知识点的总结。
一、控制系统的基本概念控制系统由控制对象、控制器和反馈通路组成。
控制的目的是使系统的输出按照期望的方式变化。
开环控制系统没有反馈环节,输出不受控制,精度较低;闭环控制系统通过反馈将输出与期望的输入进行比较,从而实现更精确的控制。
二、控制系统的数学模型数学模型是描述系统动态特性的工具,常见的有微分方程、传递函数和状态空间表达式。
微分方程是最直接的描述方式,但求解较为复杂。
传递函数适用于线性定常系统,将输入与输出的关系以代数形式表示,便于分析系统的稳定性和性能。
状态空间表达式则能更全面地反映系统内部状态的变化。
三、时域分析在时域中,系统的性能可以通过单位阶跃响应来评估。
重要的性能指标包括上升时间、峰值时间、调节时间和超调量。
一阶系统的响应具有简单的形式,其时间常数决定了系统的响应速度。
二阶系统的性能与阻尼比和无阻尼自然频率有关,不同的阻尼比会导致不同的响应曲线。
四、根轨迹法根轨迹是指系统开环增益变化时,闭环极点在复平面上的轨迹。
通过绘制根轨迹,可以直观地分析系统的稳定性和动态性能。
根轨迹的绘制遵循一定的规则,如根轨迹的起点和终点、实轴上的根轨迹段等。
根据根轨迹,可以确定使系统稳定的开环增益范围。
五、频域分析频域分析使用频率特性来描述系统的性能。
波特图是常用的工具,包括幅频特性和相频特性。
通过波特图,可以评估系统的稳定性、带宽和相位裕度等。
奈奎斯特稳定判据是频域中判断系统稳定性的重要方法。
六、控制系统的校正为了改善系统的性能,需要进行校正。
校正装置可以是串联校正、反馈校正或前馈校正。
常见的校正方法有超前校正、滞后校正和滞后超前校正。
校正装置的设计需要根据系统的性能要求和原系统的特性来确定。
七、采样控制系统在数字控制系统中,涉及到采样和保持、Z 变换等概念。
自动控制原理知识点汇总

自动控制原理知识点汇总自动控制原理是研究和设计自动控制系统的基础学科。
它研究的是用来实现自动化控制的基本概念、理论、方法和技术,以及这些概念、理论、方法和技术在工程实践中的应用。
下面是自动控制原理的一些重要知识点的汇总。
一、控制系统的基本概念1.控制系统的定义:控制系统是用来使被控对象按照一定要求或期望输出的规律进行运动或改变的系统。
2.控制系统的要素:输入、输出、被控对象、控制器、传感器、执行器等。
3.控制系统的分类:开环控制和闭环控制。
4.控制系统的性能评价指标:稳定性、快速性、准确性、抗干扰性、鲁棒性等。
二、数学建模1.控制对象的数学建模方法:微分方程模型、离散时间模型、差分方程模型等。
2.控制信号的形式化表示:开环信号和闭环信号。
三、传递函数和频率响应1.传递函数:描述了控制系统输入和输出之间的关系。
2.传递函数的性质:稳定性、正定性、因果性等。
3.频率响应:描述了控制系统对不同频率输入信号的响应。
四、稳定性分析和设计1.稳定性的定义:当外部扰动或干扰没有足够大时,系统的输出仍能在一定误差范围内稳定在期望值附近。
2.稳定性分析的方法:根轨迹法、频域方法等。
3.稳定性设计的方法:规定根轨迹范围、引入正反馈等。
五、PID控制器1.PID控制器的定义:是一种用于连续控制的比例-积分-微分控制器,通过调节比例、积分和微分系数来实现对系统的控制。
2.PID控制器的工作原理和特点:比例控制、积分控制、微分控制、参数调节等。
六、根轨迹设计方法1.根轨迹的定义:描述了系统极点随控制输入变化时轨迹的变化规律。
2.根轨迹的特点:实轴特征点、虚轴特征点、极点数量等。
3.根轨迹的设计方法:增益裕量法、相位裕量法等。
七、频域分析与设计1.频率响应的定义:描述了系统对不同频率输入信号的响应。
2.频率响应的评价指标:增益裕量、相位裕量、带宽等。
3.频域设计方法:根据频率响应曲线来调整系统参数。
八、状态空间分析与设计1.状态空间模型:描述了系统状态和输入之间的关系。
自动控制系统知识点总结

1. 拖动系统可以分为直流电力拖动系统和交流电力拖动系统2. 直流电动机有三种调速方式:调节电枢供电电压U 、减弱励磁磁通Φ、改变电枢回路电阻、(变频调速)3. 直流调压调速主要方案有G-M 调速系统,V-M 调速系统,直流 PWM 调速系统4. 令Us Ud /=γ为PWM 电压系数,T Ton /=ρ为占空比,在不可逆的PWM变换器中ργ=;在双极式控制的可逆的PWM 系统中12-=ργ。
5. V-M 调速系统中抑制电流脉动的措施有增加整流电路相数或采用多重化技术、设置平波电抗器6. V-M 系统在电流连续时的机械特性特征为机械特性比较硬,呈线性;电流断续时的机械特性特征为机械特性比较软,呈非线性7. V-M 调速系统存在的问题 1整流器晶闸管的单向导电性导致的电动机的不可逆行性。
2整流器晶闸管对过电压过电流的敏感性导致的电动机的运行不可靠性。
3 整流器晶闸管基于对其门极的移相触发控的可控性导致的低功率因数性8. 直流PWM 调速系统的优越性:1)主电路简单;2)开关频率高;3)低速性能好,稳速精度高,调速范围宽;4)若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强;5)装置的效率高;6)直流电源采用不控整流时,电网功率因数比相控整流器高。
9. PWM 变换器的作用:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电动机的转速。
10.调速系统的三个要求:调试、稳速、加减速11.稳态性能指标:调速范围、静差率特性越硬s越小12.开闭静特性关系:1闭环系统的静特性比开环系统的机械特性硬的多②闭环系统的静差率比开环系统的小的多③如果要求的静差率一定,则闭环系统可以大大提高调速范围13.比例控制直流调速系统能够减少稳态速降的实质在于它的自动控制作用,在于它能随负载的变化而相应的改变电枢电压,以补偿电枢回路电阻压降的变化14.反馈控制的三个基本规律为:1只用比例放大器的反馈控制系统,其被调量仍是有静差的、2反馈控制系统的作用:抵抗扰动,服从给定、3系统的精度依赖于给定和反馈控制的精度15.在调速单元给定部分设定积分电路的目的是实现无静差调速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶闸管触发电路和整流电路的放大系数和传递函数:晶闸管触发电路和整流电路的特性是非线性的。
在一定的工作范围内近似地看成线性环节,晶闸管触发和整流装置的放大系数Ks可由工作范围内的特性斜率决定的。
在动态过程中可把晶闸管触发和整流装置看作是一个纯滞后环节,滞后作用是由晶闸管整流装置的失控时间引起的。
晶闸管一旦导通后控制电压的变化在该器件关断以前不起作用等到下一个自然换相点以后,当控制电压Uc所对应的下一相触发脉冲来到时才能使输出整流电压Udo发生变化,造成整流电压滞后于控制电压。
失控时间是个随机值。
最大失控时间Tsmax是两个相邻自然换相点之间的时间,滞后环节的输入为阶跃信号1(t),输出要隔一定时间后才出现响应1(t-Ts)。
输入输出关系为:传递函数为在电流连续的条件下,可以把整流装置近似看作一阶惯性环节。
脉宽调制变换器的作用是用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电动机转速。
PWM控制与变换器的动态模型与晶闸管触发与整流装置基本一样。
当控制电压改变时,PWM变换器输出平均电压按线性规律变化,但其响应有延时,最大时延为一个开关周期,故PWM装置也可以看做是一个滞后环节,可看做是一阶惯性环节。
闭环调速系统的静特性测速反馈环节比例调节器电压比较环节电力电子变换器直流电动机开环系统机械特性和比例控制闭环系统静特性的关系:开环机械特性为比例控制闭环系统的静特性为1闭环系统静特性可以比开环系统机械特性硬得多在同样的负载扰动下,开环系统的转速降落闭环系统的转速降落它们的关系是2闭环系统的静差率要比开环系统小得多闭环系统的静差率为开环系统的静差率为当时,3如果所要求的静差率一定,则闭环系统可以大大提高调速范围如果电动机的最高转速都是nN,最低速静差率都是s,可得开环时闭环时得到比例控制的直流调速系统可以获得比开环调速系统硬得多的稳态特性,从而保证在一定静差率要求下,能提高调试范围,为此,需设置电压放大器和转速检测装置。
电流截止负反馈电流反馈信号取自串入电动机电枢回路中的小阻值电阻Rs,IdRc正比于电流。
独立的直流电源作为比较电压Ucom,其大小可用电位器调节,在IdRc与Ucom之间串接一个二极管VD,当IdRc> Ucom时,二极管导通,电流负反馈信号Ui即可加到放大器上去;当IdRc≤Ucom时,二极管截止, Ui消失。
利用稳压管VST的击穿电压Ubr作为比较电压Ucom 。
截止电流Idcr=Ucom/Rs。
当输入信号IdRc-Ucom>0时,输出Ui=IdRc-Ucom,当IdRc-Ucom≤ 0时,输出Ui=0。
双闭环直流调速系统:转速调节器ASR的输出限幅电压决定了电流给定的最大值,电流调节器ACR的输出限幅电压限制了电力电子变换器的最大输出电压,当调节器饱和时,输出达到限幅值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和;当调节器不饱和时,PI调节器工作在线性调节状态,其作用是使输入偏差电压在稳态时为零。
1转速调节器不饱和:两个调节器都不饱和,稳态时,它们的输入偏差电压都是零。
AB段是两个调节器都不饱和时的静特性,Id<Idm, n=n0。
2转速调节器饱和:ASR输出达到限幅值时,转速外环呈开环状态,转速的变化对转速环不再产生影响。
双闭环系统变成一个电流无静差的单电流闭环调节系统。
稳态时 BC段是ASR调节器饱和时的静特性,Id=Idm, n<n0。
在负载电流小于Idm时表现为转速无静差,转速负反馈起主要调节作用。
当负载电流达到Idm时,转速调节器为饱和输出U*im,电流调节器起主要调节作用,系统表现为电流无静差。
采用两个PI调节器形成了内、外两个闭环的效果。
当ASR处于饱和状态时,Id=Idm,若负载电流减小,Id<Idm,使转速上升,n>n0,Δn<0,ASR反向积分,使ASR调节器退出饱和。
双闭环直流调速系统的起动过程有以下三个特点:1、饱和非线性控制2、转速超调 3、准时间最优控制转速调节器的作用ASR:它是调速系统的主导调节器,它使转速很快地跟随给定电压变化, 如果采用PI调节器,则可实现无静差。
对负载变化起抗扰作用。
其输出限幅值决定电动机允许的最大电流。
电流调节器的作用ACR:在转速外环的调节过程中,使电流紧紧跟随其给定电压(即外环调节器的输出量)变化。
对电网电压的波动起及时抗扰的作用。
在转速动态过程中,保证获得电机允许的最大电流。
当电动机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。
一旦故障消失,系统立即自动恢复正常带转速负反馈的闭环直流调速系统原理框图转速负反馈闭环直流调速系统稳态结构框图转速反馈控制直流调速系统的动态结构框图带电流截止负反馈的闭环直流调速系统稳态结构框图双闭环直流调速系统的稳态结构图双闭环直流调速系统的静特性双闭环直流调速系统的动态结构图双闭环直流调速系统起动过程的转速和电流波形第五章保持mNφ不变的原因:当异步电动机在基频(额定频率)以下运行时,如果磁通太弱,没有充分利用电机的铁心,是一种浪费;如果磁通过大,又会使铁心饱和,从而导致过大的励磁电流,严重时还会因绕组过热而损坏电机。
最好是保持每极磁通量为额定值不变。
恒压频比的控制方式:当电动势值较高时,忽略定子电阻和漏感压降,gsEU≈测得常值=1fUs,这就是恒压频比的控制方式。
低频补偿(低频转矩提升):低频时,定子电阻和漏感压降所占的份量比较显著,不能再忽略。
人为地把定子电压抬高一些,以补偿定子阻抗压降。
负载大小不同,需要补偿的定子电压也不一样。
恒定子磁通控制保持定子磁通恒定:常值=1fUs,定子电动势不好直接控制,能够直接控制的只有定子电压,按s s s E I R U +=1.。
补偿定子电阻压降,就能够得到恒定子磁通。
当转差率s 相同时,采用恒定子磁通控制方式的电磁转矩大于恒压频比控制方式。
临界转差率 : 临界转矩 :频率变化时,恒定子磁通控制的临界转矩恒定不变 。
比较可知恒定子磁通控制的临界转差率大于恒压频比控制方式。
恒定子磁通控制的临界转矩也大于恒压频比控制方式。
恒气隙磁通控制 保持气隙磁通恒定:=1ωgE 常值定子电压:g ls s s E I L j R U ++=11)(ω除了补偿定子电阻压降外,还应补偿定子漏抗压降。
转子电流: 电磁转矩 : 临界转差率 : 临界转矩 :与恒定子磁通控制方式相比较,恒气隙磁通控制方式的临界转差率和临界转矩更大,机械特性更硬。
恒转子磁通控制 保持转子磁通恒定: 定子电压:除了补偿定子电阻压降外,还应补偿定子和转子漏抗压降。
转子电流 电磁转矩机械特性完全是一条直线,可以获得和直流电动机一样的线性机械特性,这正是高性能交流变频调速所要求的稳态性能。
a )恒压频比控制b )恒定子磁通控制c )恒气隙磁通控制d )恒转子磁通控制异步电动机在不同控制方式下的机械特性不同控制方式的比较恒压频比控制最容易实现,它的变频机械特性基本上是平行下移,硬度也较好,能够满足一般的调速要求,低速时需适当提高定子电压,以近似补偿定子阻抗压降。
恒定子磁通、恒气隙磁通和恒转子磁通的控制方式均需要定子电压补偿,控制要复杂一些。
恒定子磁通和恒气隙磁通的控制方式虽然改善了低速性能。
但机械特性还是非线性的,仍受到临界转矩的限制。
恒转子磁通控制方式可以获得和直流他励电动机一样的线性机械特性,性能最佳。
期望电压空间矢量的合成六边形旋转磁场带有较大的谐波分量,这将导致转矩与转速的脉动。
要获得更多边形或接近圆形的旋转磁场,就必须有更多的空间位置不同的电压空间矢量以供选择。
按空间矢量的平行四边形合成法则,用相邻的两个有效工作矢量合成期望的输出矢量,这就是电压空间矢量PWM(SVPWM)的基本思想。
按6个有效工作矢量将电压矢量空间分为对称的六个扇区,当期望输出电压矢量落在某个扇区内时,就用与期望输出电压矢量相邻的2个有效工作矢量等效地合成期望输出矢量。
当定子相电压为三相平衡正弦电压时,三相合成矢量幅值基波相电压最大幅值基波线电压最大幅值SPWM的基波线电压最大幅值为两者之比SVPWM方式的逆变器输出线电压基波最大值为直流侧电压,比SPWM逆变器输出电压最多提高了约15%。
泵升电压:采用不可控整流的交-直-交变频器,能量不能从直流侧回馈至电网,交流电动机工作在发电制动状态时,能量从电动机侧回馈至直流侧,导致直流电压上升,称为泵升电压。
电动机储存的动能较大、制动时间较短或电动机长时间工作在发电制动状态时,泵升电压很高,严重时将损坏变频器。
泵升电压的限制1、在直流侧并入一个制动电阻,当泵升电压达到一定值时,开通与制动电阻相串联的功率器件,通过制动电阻释放电能,以降低泵升电压。
2、在直流侧并入一组晶闸管有源逆变器或采用PWM可控整流,当泵升电压升高时,将能量回馈至电网,以限制泵升电压。
带制动电阻的交-直-交变频器主回路直流侧并晶闸管有源逆变器的交-直-交变频器主回路PWM可控整流的交-直-交变频器主回路三相-两相变换(3/2变换)三相绕组A、B、C和两相绕组之间的变换,称作三相坐标系和两相正交坐标系间的变换,简称3/2变换。
ABC和两个坐标系中的磁动势矢量,将两个坐标系原点重合,并使A轴和轴重合。
按照磁动势相等的等效原则,三相合成磁动势与两相合成磁动势相等,故两套绕组磁动势在αβ轴上的投影应相等。
按照变换前后总功率不变,匝数比三相坐标系变换到两相正交坐标系的变换矩阵两相正交坐标系变换到三相坐标系(简称2/3变换)的变换矩阵电压变换阵和磁链变换阵与电流变换阵相同 从静止两相正交坐标系αβ到旋转正交坐标系dq 的变换,称作静止两相-旋转正交变换, 简称2s/2r 变换,其中s 表示静止,r 表示旋转,变换的原则同样是产生的磁动势相等静止两相正交坐标系到旋转正交坐标系的变换阵静止两相正交坐标系和旋转正交坐标系中的磁动势矢量按转子磁链定向矢量控制的基本思想:通过坐标变换,在按转子磁链定向同步旋转正交坐标系中,得到等效的直流电动机模型。
仿照直流电动机的控制方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量反变换得到三相坐标系的对应量,以实施控制。
直接转矩控制系统的基本思想是根据定子磁链幅值偏差的正负符号和电磁转矩偏差的正负符号,再依据当前定子磁链矢量所在的位置,直接选取合适的电压空间矢量,减小定子磁链幅值的233332333cos cos3311()22sin sin333()2A B C A B C B C B C N i N i N i N i N i i i N i N i N i N i i αβππππ=--=--=-=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡C B Ai i i N N i i 232302121123βα3223=N N 3/21112223330C ⎡⎤--⎢⎥⎢⎥=⎢⎥-⎥⎣⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=2321232101323/2C ⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡βαi i i i B A 2161032⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡βαβαϕϕϕϕi i C i i i i r s q d 2/2cos sin sin cos 2/2cos sin sin cos s rC ϕϕϕϕ⎡⎤=⎢⎥-⎣⎦⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡B A i i i i 221023βα偏差和电磁转矩的偏差,实现电磁转矩与定子磁链的控制。