山东省济南市汇才中学第一学期期末九年级数学试题(word版)

合集下载

九年级上册济南数学期末试卷综合测试(Word版 含答案)

九年级上册济南数学期末试卷综合测试(Word版 含答案)

九年级上册济南数学期末试卷综合测试(Word 版 含答案) 一、选择题1.下列方程中,是关于x 的一元二次方程的为( )A .2210x x +=B .220x x --=C .2320x xy -=D .240y -=2.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( )A .m ≥1B .m ≤1C .m ≥-1D .m ≤-1 3.已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是 ( ) A .30πcm 2 B .15πcm 2 C .152π cm 2 D .10πcm 24.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .195.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .3mC .150mD .3 6.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( )A .k >﹣1B .k <1且k ≠0C .k≥﹣1且k≠0D .k >﹣1且k≠0 7.如果两个相似三角形的周长比是1:2,那么它们的面积比是( )A .1:2B .1:4C .12D 2:1 8.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )A .1B .1.5C .2D .2.59.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A .25°B .40°C .45°D .50° 10.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的 11.2的相反数是( )A .12-B .12C .2D .2-12.如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( )A .3:2B .3:1C .1:1D .1:2二、填空题13.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.14.已知小明身高1.8m ,在某一时刻测得他站立在阳光下的影长为0.6m .若当他把手臂竖直举起时,测得影长为0.78m ,则小明举起的手臂超出头顶______m .15.抛物线2(-1)3y x =+的顶点坐标是______.16.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.17.某一时刻,一棵树高15m ,影长为18m .此时,高为50m 的旗杆的影长为_____m .18.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=﹣1,那么方程a (x +m +2)2+b =0的解_____.19.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.20.方程290x 的解为________.21.一组数据3,2,1,4,x 的极差为5,则x 为______. 22.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.23.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 24.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。

山东省济南市九年级(上)期末数学试卷

山东省济南市九年级(上)期末数学试卷

九年级(上)期末数学试卷一、选择题(本大题共12小题,共48.0分)1.如图,在Rt△ABC中,∠ACB=90°,如果AC=3,AB=5,那么sin B等于()A. 35B. 45C. 34D.432.如图所示的几何体为圆台,其俯视图正确的是()A.B.C.D.3.二次函数y=-2(x+1)2+3的图象的顶点坐标是()A. (1,3)B. (−1,3)C. (1,−3)D. (−1,−3)4.如图,已知△ADE∽△ABC,且AD:DB=2:1,则S△ADE:S△ABC=()A. 2:1B. 4:1C. 2:3D. 4:95.已知一元二次方程x2+kx-5=0有一个根为1,k的值为()A. −2B. 2C. −4D. 46.一个不透明的口袋中放着若干个红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,从口袋中随机取出一个球,取出红球的概率是14.如果袋中共有32个小球,那么袋中的红球有()A. 4个B. 6个C. 8个D. 10个7.反比例函数y=kx图象经过A(1,2),B(n,-2)两点,则n=()A. 1B. 3C. −1D. −38.如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为()A. 2B. 3C. 4D. 59.如图,AB是⊙O的直径,点C、D在⊙O上.若∠BOD=130°,则∠ACD的度数为()A. 50∘B. 30∘C. 25∘D. 20∘10.如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,则乙建筑物的高度为()米.A. 30 3B. 303−30C. 30D. 30211.如图,已知直线y=-2x+5与x轴交于点A,与y轴交于点B,将△AOB沿直线AB翻折后,设点O的对应点为点C,双曲线y=kx(x>0)经过点C,则k的值为()A. 8B. 6C. 43D. 4512.如图,在菱形ABCD中,∠B=60°,BC=6,E为BC中点,F是AB上一点,G为AD上一点,且BF=2,∠FEG=60°,EG交AC于点H,关于下列结论,正确序号的选项是()①△BEF∽△CHE,②AG=1,③EH=327,④S△BEF=3S△AGHA. ①②B. ①②③C. ①②④D. ①③④二、填空题(本大题共6小题,共24.0分)13.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是______.14.某数学兴趣小组利用太阳光测量一棵树的高度(如图),在同一时刻,测得树的影长为6米,小明的影长为1米,已知小明的身高为1.5米,则树高为______米.15.已知抛物线y=x2+bx+c经过点A(0,5)、B(4,5),那么此抛物线的对称轴是______.16.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧BC的长为______cm.17.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2-4ac>0;④a-b+c<0,其中正确的是______.(把所有正确结论的序号都填在横线上)18.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为______.三、计算题(本大题共2小题,共16.0分)19.解方程:x2+4x-5=0.20.某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:(1)研究发现,每天销售量y与单价x满足一次函数关系,求出y与x的关系式;(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?四、解答题(本大题共5小题,共38.0分)21.计算:2-1+12-4sin60°-(-2019)0.22.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.23.为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1)m=______%,这次共抽取了______名学生进行调查;并补全条形图;(2)请你估计该校约有______名学生喜爱打篮球;(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?24.如图,AB是⊙O的直径,点D在AB的延长线上,AC平分∠DAE交⊙O于点C,且AE⊥DC的延长线,垂足为点E.(1)求证:直线CD是⊙O的切线;(2)若AB=6,BD=2,求CE的长.25.如图,直线y=2x+2与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求H点的坐标及k的值;(2)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P点坐标;(3)点N(a,1)是反比例函数y=kx(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.答案和解析1.【答案】A【解析】解:∵在Rt△ABC中,∠ACB=90°,AC=3,AB=5,∴sinB==.故选:A.直接利用锐角三角函数关系得出sinB的值.此题主要考查了锐角三角函数关系,正确把握定义是解题关键.2.【答案】C【解析】解:从几何体的上面看所得到的图形是两个同心圆,故选:C.俯视图是从物体上面看,所得到的图形.本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.【答案】B【解析】解:∵y=-2(x+1)2+3,∴抛物线顶点坐标为(-1,3),故选:B.由抛物线的解析式可求得答案.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).4.【答案】D【解析】解:∵AD:DB=2:3,∴AD:AB=2:3,∵△ADE∽△ABC,∴=()2=,故选:D.根据相似三角形的面积比等于相似比的平方即可解决问题.本题考查相似三角形的性质,解题的关键是熟练掌握相似三角形的性质解决问题,记住相似三角形的面积比等于相似比的平方.5.【答案】D【解析】解:把x=1代入方程得1+k-5=0,解得k=4.故选:D.根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1-5+k=0,然后解一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.【答案】C【解析】解:设袋中的红球有x个,根据题意得:=,解得:x=8,故选:C.根据概率的求法,找准两点:1、符合条件的情况数目;2、全部情况的总数;二者的比值就是其发生的概率.此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.【答案】C【解析】解:∵反比例函数y=图象经过A(1,2),B(n,-2)两点,∴k=1×2=-2n.解得n=-1.故选:C.根据反比例函数图象上点的坐标特征得到:k=1×2=-2n.考查了反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.8.【答案】B【解析】【分析】本题主要考查了平行四边形的性质和直角三角形斜边上的中线性质,熟练掌握平行四边形的性质并由直角三角形斜边上的中线性质求出AE是解决问题的关键.由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,∵E为BC的中点,AC⊥AB,∴AE=BC=3,故选:B.9.【答案】C【解析】解:∵∠BOD=130°,∴∠AOD=50°,∴∠ACD=∠AOD=25°,故选:C.根据圆周角定理计算即可.本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】B【解析】解:如图,过A作AF⊥CD于点F,在Rt△BCD中,∠DBC=60°,BC=30m,∵tan∠DBC=,∴CD=BC•tan60°=30m,∴甲建筑物的高度为30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD-DF=(30-30)m,∴乙建筑物的高度为(30-30)m.故选:B.在Rt△BCD中可求得CD的长,即求得甲的高度,过A作AF⊥CD于点F,在Rt△ADF中可求得DF,则可求得CF的长,即可求得乙的高度.本题主要考查角直角三角形的应用-仰角俯角问题,构造直角三角形,利用特殊角求得相应线段的长是解题的关键.11.【答案】A【解析】解:作CD⊥y轴于D,CE⊥x轴于E,如图,设C(a,b),当x=0时,y=-2x+5=5,则B(0,5),当y=0时,-2x+5=0,解得x=,则A(,0),∵△AOB沿直线AB翻折后,点O的对应点为点C,∴BC=BO=5,AC=AO=,在Rt△BCD中,a2+(5-b)2=52,①在Rt△ACE中,(a-)2+b2=()2,②①-②得a=2b,把a=2b代入①得b2-2b=0,解得b=2,∴a=4,∴C(4,2),∴k=4×2=8.故选:A.作CD⊥y轴于D,CE⊥x轴于E,设C(a,b),依据直线的解析式即可得到点A 和点B的坐标,进而得出BC=BO=5,AC=AO=,再根据勾股定理即可得到a=2b,进而得出C(4,2),即可得到k的值.本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.【答案】B【解析】解:∵菱形ABCD中,∠B=60°,∠FEG=60°,∴∠B=∠ECH=60°,∠BEF=CHE=120°-∠CEH,∴△BEF∽△CHE,故①正确;∴=,又∵BC=6,E为BC中点,BF=2,∴=,即CH=4.5,又∵AC=BC=6,∴AH=1.5,∵AG∥CE,∴△AGH∽△CEH,∴=,∴AG=CE=1,故②正确;如图,过F作FP⊥BC于P,则∠BFP=30°,∴BP=BF=1,PE=3-1=2,PF=,∴Rt△EFP中,EF==,又∵==,∴EH=EF=,故③正确;∵AG=CE,BF=CE,△BEF∽△CHE,△AGH∽△CEH,∴S△CEH=9S△AGH,S△CEH=S△BEF,∴9S△AGH=S△BEF,∴S△BEF=4S△AGH,故④错误;故选:B.依据∠B=∠ECH=60°,∠BEF=CHE,即可得到△BEF∽△CHE;依据△AGH∽△CEH,即可得出AG=CE=1;过F作FP⊥BC于P,依据EF=,根据相似三角形的性质得到EH;依据S△CEH=9S△AGH,S△CEH=S△BEF,可得9S△AGH=S△BEF,进而得到S△BEF=4S△AGH.此题考查了相似三角形的判定与性质、菱形的性质、等边三角形的性质的综合运用.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.13.【答案】12【解析】解:∵共6个数,大于3的数有3个,∴P(大于3)==;故答案为.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.【答案】9【解析】解:根据相同时刻的物高与影长成比例,设树的高度为xm,则=,解得:x=9.故答案为:9.在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,对应比值相等进而得出答案.本题主要考查了同一时刻物高和影长成正比.考查利用所学知识解决实际问题的能力.15.【答案】直线x=2【解析】解:∵点A(0,5)、B(4,5)的纵坐标都是5相同,∴抛物线的对称轴为直线x==2.故答案为:直线x=2.根据点A、B的纵坐标相等判断出A、B关于对称轴对称,然后列式计算即可得解.本题考查了二次函数的性质,观察出A、B是对称点是解题的关键.16.【答案】2π【解析】解:∵直线AB是⊙O的切线,∴OB⊥AB,又∵∠A=30°,∴∠BOA=60°,∵弦BC∥AO,OB=OC,∴△OBC是等边三角形,即可得∠BOC=60°,∴劣弧的长==2πcm.故答案为:2π.根据切线的性质可得出OB⊥AB,继而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出答案.此题考查了弧长的计算公式、切线的性质,根据切线的性质及圆的性质得出△OBC是等边三角形是解答本题的关键,另外要熟练记忆弧长的计算公式.17.【答案】①②③【解析】解:开口向上的a>0,与y轴的交点得出c<0,0<<1,b<0,abc>0,①对<1,a>0,-b<2a,2a+b>0,②对抛物线与x轴由两个交点,b2-4ac>0,③对从图可以看出当x=-1时,对应的y值大于0,a-b+c>0,④错故答案:①②③由图形先得到a,b,c和b2-4ac正负性,再来观察对称轴和x=-1时y的值,综合得出答案本题考查了二次函数的系数和抛物线图象的关系,一般这类题从图中基本可以读出a,b,c和b2-4ac正负性,再根据,a+b+c,a-b+c等条件合理放缩等到题干中的一些结论18.【答案】12-43【解析】解:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,∴∠AOE=45°,ED=1,∴AE=EO=,DO=-1,∴S=2(-1)×2(-1)×=8-4,正方形DNMFS△ADF=×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S=4+8-4=12-4.正方形DNMF故答案为:12-4.,进而得出S△ADF即可根据菱形的性质得出DO的长,进而求出S正方形DNMF得出答案.此题主要考查了菱形的性质以及旋转的性质,得出正确分割图形得出DO的长是解题关键.19.【答案】解:原方程变形为(x-1)(x+5)=0∴x1=-5,x2=1.【解析】通过观察方程形式,利用二次三项式的因式分解法解方程比较简单.本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.20.【答案】解:(1)设y=kx+b,根据题意可得30k+b=50040k+b=400,解得:k=−10b=800,则y=-10x+800;(2)根据题意,得:(x-20)(-10x+800)=8000,整理,得:x2-100x+2400=0,解得:x1=40,x2=60,∵销售单价最高不能超过45元/件,∴x=40,答:销售单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元.【解析】(1)利用待定系数法求解可得;(2)根据“总利润=单件利润×销售量”可得关于x的一元二次方程,解之即可得.本题主要考查一元二次方程的应用,解题的关键是熟练掌握待定系数法求函数解析式及找到题目蕴含的相等关系.21.【答案】解:原式=12+23-4×32-1=12+23-23-1=-12.【解析】直接利用负指数幂的性质以及特殊角的三角函数值以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.22.【答案】证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=DC,∴∠ABE=∠CDF,又∵BE=DF,在△ABE与△CDF中AB=DC∠ABE=∠CDFBE=DF,∴△ABE≌△CDF(SAS)∴AE=CF.【解析】根据平行四边形的性质和全等三角形的判定和性质证明即可.此题考查平行四边形的性质,关键是根据平行四边形的性质和全等三角形的判定和性质解答.23.【答案】20 50 360【解析】解:(1)m=100%-14%-8%-24%-34%=20%;∵跳绳的人数有4人,占的百分比为8%,∴4÷8%=50;故答案为:20,50;如图所示;50×20%=10(人).(2)1500×24%=360;故答案为:360;∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种.∴抽到一男一女的概率P==.(1)首先由条形图与扇形图可求得m=100%-14%-8%-24%-34%=20%;由跳绳的人数有4人,占的百分比为8%,可得总人数4÷8%=50;(2)由1500×24%=360,即可求得该校约有360名学生喜爱打篮球;(3)首先根据题意画出表格,然后由表格即可求得所有等可能的结果与抽到一男一女学生的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率以及扇形统计图、条形统计图的知识.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】证明:(1)连接OC∵OA=OC,∴∠OAC=∠OCA,∵∠EAC=∠OAC,∴∠EAC=∠ACO,∴AE∥OC,∵∠AEC=90°∴∠OCD=∠AEC,∴∠OCD=90°,∴CD是⊙O的切线,(2)∵AB=6,BD=2∴OC=OA=OB=3,OD=5又∵∠OCD=90°,∴CD=OD2−OC2=4∵AE∥OC,∴CDDE=ODAD∴4DE=58∴DE=325∴CE=DE-CD=125【解析】(1)连接OC,由角平分线的性质和等腰三角形的性质可得∠DAC=∠EAC,可得AE∥OC,由平行线的性质可得∠OCD=90°,可得结论;(2)本题考查了切线的判定和性质,等腰三角形的性质,平行线分线段成比例等知识,熟练运用切线的判定和性质是本题的关键.25.【答案】解:(1)由y=2x+2可知A(0,2),即OA=2,∵tan∠AHO=2,∴OH=1,∴H(1,0),∵MH⊥x轴,∴点M的横坐标为1,∵点M在直线y=2x+2上,∴点M的纵坐标为4,即M(1,4),∵点M在y=kx上,∴k=1×4=4;(2)①当AM=AP时,∵A(0,2),M(1,4),∴AM=5,则AP=AM=5,∴此时点P的坐标为(0,2-5)或(0,2+5);②若AM=PM时,设P(0,y),则PM=(1−0)2+(4−y)2,∴(1−0)2+(4−y)2=5,解得y=2(舍)或y=6,此时点P的坐标为(0,6),综上所述,点P的坐标为(0,6)或(0,2+5),或(0,2-5);(3)∵点N(a,1)在反比例函数y=4x(x>0)图象上,∴a=4,∴点N(4,1),延长MN交x轴于点C,设直线MN的解析式为y=mx+n,则有m+n=44m+n=1,解得m=−1n=5,∴直线MN的解析式为y=-x+5.∵点C是直线y=-x+5与x轴的交点,∴点C的坐标为(5,0),OC=5,∵S△MNQ=3,∴S△MNQ=S△MQC-S△NQC=12×QC×4-12×QC×1=32QC=3,∴QC=2,∵C(5,0),Q(m,0),∴|m-5|=2,∴m=7或3,故答案为:7或3.【解析】(1)先求出OA=2,结合tan∠AHO=2可得OH的长,即可得知点M的横坐标,代入直线解析式可得点M坐标,代入反比例解析式可得k的值;(2)分AM=AP和AM=PM两种情况分别求解可得;(3)先求出点N(4,1),延长MN交x轴于点C,待定系数法求出直线MN解析式为y=-x+5.据此求得OC=5,再由S△MNQ=S△MQC-S△NQC=3知QC=2,再进一步求解可得.本题是反比例函数综合问题,解题的关键是掌握待定系数法求一次函数和反比例函数解析式、等腰三角形的判定与性质、两点之间的距离公式及三角形的面积计算.。

山东省济南市九年级(上)期末数学试卷(含答案)

山东省济南市九年级(上)期末数学试卷(含答案)

山东省济南市九年级(上)期末数学试卷一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.(4分)如图所示的工件,其俯视图是()2.(4分)若反比例函数y=的图象经过点A(2,m),则m的值()A.2B.C.﹣D.﹣23.(4分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A=()A.B.C.D.4.(4分)一个不透明的布袋中,放有3个白球,5个红球,它们除颜色外完全相同,从中随机摸取1个,摸到红球的概率是()A.B.C.D.5.(4分)抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)6.(4分)在△ABC中,D、E为边AB、AC的中点,已知△ADE的面积为4,那么△ABC的面积是()A.8B.12C.16D.207.(4分)用配方法解方程x2+10x+9=0,配方正确的是()A.(x+5)2=16B.(x+5)2=34C.(x﹣5)2=16D.(x+5)2=258.(4分)把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣19.(4分)关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0D.k>且k≠010.(4分)在反比例函数y=﹣图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y211.(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH 的长是()A.B.C.D.12.(4分)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,直线x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题4分:满分分24分)13.(4分)如果4x=5y,那么x:y=.14.(4分)Rt△ABC中,∠C=90°,BC=2.5,sin A=,则AB=.15.(4分)如图,点P是反比例函数(x<0)图象的一点,P A垂直于y轴,垂足为点A,PB垂直于x轴,垂足为点B.若矩形PBOA的面积为6,则k的值为.16.(4分)如图,AB和DE是直立在地面上的两根立柱,AB=7米,某一时刻AB在阳光下的投影BC=4米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为米.17.(4分)如图,二次函数y=ax2+bx+c的图象与x轴交于(3,0),对称轴是直线x=1,当函数值y>0时,自变量x的取值范围是.18.(4分)如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于x轴,直线AC交x轴于点E,BC⊥AC,连接BE,反比例函数y=(x>0)的图象经过点D,已知S△BCE=2,则k的值是.三、解答题(本大题共9个小题,共78分.)19.(6分)解方程:x2﹣3x+2=0.20.(6分)计算:﹣cos30°+﹣(﹣1)0﹣2﹣1.21.(6分)已知二次函数的图象如图所示,求该抛物线的解析式.22.(8分)如图,在△ABC中,∠B=90°,AB=4,BC=2,以AC为边作△ACE,∠ACE=90°,AC=CE,延长BC至点D,使CD=5,连接DE.求证:△ABC∽△CED.23.(8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果.(Ⅱ)求摸出的两个球号码之和等于5的概率.24.(10分)济南大明湖畔的“超然楼”被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,则该楼的高度CD多少米?(结果保留根号)25.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求一次函数与反比例函数的表达式;(2)求△AOB的面积;(3)根据所给条件,请直接写出不等式kx+b<的解集.26.(12分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,△BPE和△CQE的形状有什么关系,请证明;(2)如图②,当点Q在线段CA的延长线上时,△BPE和△CQE有什么关系,说明理由;(3)当BP=1,CQ=时,求P、Q两点间的距离.27.(12分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.2.【解答】解:∵反比例函数y=的图象经过点A(2,m),∴1=2m∴m=故选:B.3.【解答】解:在直角△ABC中,∵∠ABC=90°,∴tan A==.故选:D.4.【解答】解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,从中随机摸出一个,则摸到红球的概率是=.故选:A.5.【解答】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.6.【解答】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,,∴△ADE∽△ABC,∴,∵△ADE的面积为4,∴,∴S△ABC=16.故选:C.7.【解答】解:x2+10x+9=0,x2+10x=﹣9,x2+10x+52=﹣9+52,(x+5)2=16.故选:A.8.【解答】解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.9.【解答】解:根据题意得k≠0且△=(﹣1)2﹣4k>0,解得k<且k≠0.故选:C.10.【解答】解:∵A(x1,y1)在反比例函数y=﹣图象上,x1<0,∴y1>0,对于反比例函数y=﹣,在第二象限,y随x的增大而增大,∵0<x2<x3,∴y2<y3<0,∴y2<y3<y1故选:C.11.【解答】解:∵CD=BC=1,∴GD=3﹣1=2,∵△ADK∽△FGK,∴,即,∴DK=DG,∴DK=2×=,GK=2×=,∴KF=,∵△CHK∽△FGK,∴,∴,∴CH=.方法二:连接AC、CF,利用面积法:CH=;故选:A.12.【解答】解:①∵直线x=﹣1是对称轴,∴﹣=﹣1,即b﹣2a=0,①正确;②x=﹣2时,y>0,∴4a﹣2b+c>0,②错误;∵x=﹣4时,y=0,∴16a﹣4b+c=0,又b=2a,∴a﹣b+c=﹣9a,③正确;④根据抛物线的对称性,得到x=﹣3与x=1时的函数值相等,∴y1>y2,④正确,故选:C.二、填空题(共6小题,每小题4分:满分分24分)13.【解答】解:∵4x=5y,∴=,∴x:y=5:4.故答案为:5:4.14.【解答】解:如图所示:∵Rt△ABC中,∠C=90°,BC=2.5,sin A=,∴==,∴AB=6.5.故答案为:6.5.15.【解答】解:∵矩形PBOA的面积为6,∴|k|=6,∵反比例函数(x<0)的图象过第二象限,∴k<0,∴k=﹣6;故答案为:﹣6.16.【解答】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长EF为6m,∵△ABC∽△DEF,AB=5m,BC=3m,EF=6m∴=,∴=,∴DE=(m)故答案为.17.【解答】解:∵二次函数y=ax2+bx+c的图象与x轴交于(3,0),对称轴是直线x=1,∴图象与x轴的另一个交点为:(﹣1,0),故当函数值y>0时,自变量x的取值范围是:﹣1<x<3.故答案为:﹣1<x<3.18.【解答】解:过点D作DF⊥x轴于点F,如图所示.∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD.又∵BC⊥AC,∴DA⊥AC.∵CD平行于x轴,∴∠ACD=∠CEO.∵CO⊥OE,DA⊥AC,∴∠ECO=∠D.设点D的坐标为(m,)(m>0),则CD=m,OC=DF=.在Rt△CAD中,CD=m,∠CAD=90°,AD=m•cos∠D.在Rt△COE中,OC=,∠COE=90°,CE==.S△BCE=CE•BC=•m•cos∠D=k=2,解得:k=4.故答案为:4.三、解答题(本大题共9个小题,共78分.)19.【解答】解:∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,∴x1=1,x2=2.20.【解答】解:原式=﹣+2﹣1﹣=+2﹣.21.【解答】解:∵抛物线与x轴的一个交点坐标为(﹣1,0),抛物线与x轴的另一个交点坐标为(3,0)设抛物线解析式为y=a(x+1)(x﹣3),把(0,3)代入得a×1×(﹣3)=3,解得a=﹣1,∴抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3.22.【解答】证明:∵∠B=90°,AB=4,BC=2,∴AC==2,∵CE=AC,∴CE=2,∵CD=5,∵==,=,∴=,∵∠B=90°,∠ACE=90°,∴∠BAC+∠BCA=90°,∠BCA+∠DCE=90°.∴∠BAC=∠DCE.∴△ABC∽△CED.23.【解答】解:(Ⅰ)方法一:,摸出两球出现的所有可能结果共有6种;方法二:根据题意,可以列出下表:从上表中可以看出,摸出两球出现的所有可能结果共有6种.(Ⅱ)设两个球号码之和等于5为事件A,摸出的两个球号码之和等于5的结果有2种,它们是:(2,3)(3,2),∴P(A)=.24.【解答】解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC﹣∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m,∴CD=BD•sin60°=60×=30(m)25.【解答】解:(1)把点A(﹣2,1)代入反比例函数y=得:1=,解得:m=﹣2,即反比例函数的解析式为:y=﹣,把点B(1,n)代入反比例函数y=﹣得:n=﹣2,即点A的坐标为:(﹣2,1),点B的坐标为:(1,﹣2),把点A(﹣2,1)和点B(1,﹣2)代入一次函数y=kx+b得:,解得:,即一次函数的表达式为:y=﹣x﹣1,(2)把y=0代入一次函数y=﹣x﹣1得:﹣x﹣1=0,解得:x=﹣1,即点C的坐标为:(﹣1,0),OC的长为1,点A到OC的距离为1,点B到OC的距离为2,S△AOB=S△OAC+S△OBC=+=,(3)如图可知:kx+b<的解集为:﹣2<x<0,x>1.26.【解答】解:(1)△BPE≌△CQE.理由∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,,∴△BPE≌△CQE(SAS);(2)△BPE∽△CEQ.理由:∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∵∠B=∠C,∴△BPE∽△CEQ;(3)如图②,连结PQ,∵△BPE∽△CEQ,∴=,∵BP=1,CQ=,BE=CE,∴=,∴BE=CE=,∴BC=3,在Rt△ABC中,AB=AC,∴AB=AC=3,∴AQ=CQ﹣AC=,P A=AB﹣BP=2,在Rt△APQ中,PQ==.27.【解答】解:(1)把A(﹣1,0),C(0,2)代入y=﹣x2+mx+n得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)存在.抛物线的对称轴为直线x=﹣=,则D(,0),∴CD===,如图1,当CP=CD时,则P1(,4);当DP=DC时,则P2(,),P3(,﹣),综上所述,满足条件的P点坐标为(,4)或(,)或(,﹣);(3)当y=0时,﹣x2+x+2=0,解得x1=﹣1,x2=4,则B(4,0),设直线BC的解析式为y=kx+b,把B(4,0),C(0,2)代入得,解得,∴直线BC的解析式为y=﹣x+2,设E(x,﹣x+2)(0≤x≤4),则F(x,﹣x2+x+2),∴FE=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,∵S△BCF=S△BEF+S△CEF=•4•EF=2(﹣x2+2x)=﹣x2+4x,而S△BCD=×2×(4﹣)=,∴S四边形CDBF=S△BCF+S△BCD=﹣x2+4x+(0≤x≤4),=﹣(x﹣2)2+当x=2时,S四边形CDBF有最大值,最大值为,此时E点坐标为(2,1).。

2023-2024学年山东省济南市市中区九年级上学期数学期末试题及答案

2023-2024学年山东省济南市市中区九年级上学期数学期末试题及答案

2023-2024学年山东省济南市市中区九年级上学期数学期末试题及答案一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 从正面观察如图所示的几何体,看到的形状图是( )A. B.C. D.【答案】A【解析】【分析】本题考查几何体的三视图.根据观察方向即可求解.【详解】解:从正面看,下方长方体看到的是长方形,上方圆柱看到的也是长方形且两个长方形在左侧位置对齐故选:A2. 已知23mn=,则mm n+的值为()A. 35B.25C.75D.23【答案】B 【解析】【分析】由23mn=,设()20,m k k=≠则3,n k=再代入分式mm n+求值即可.【详解】解:23mn=,设()20,m k k=≠3, n k ∴=∴22.235 m km n k k== ++故选:.B 【点睛】本题考查的是分式的值,掌握设辅助参数的方法求解分式的值是解题的关键.3. 已知反比例函数k y x =的图象经过点()2,6A -,则下列各点中也在该函数图象上的是( )A. ()2,6 B. ()1,12- C. ()3,4-- D. ()4,3【答案】B【解析】【分析】首先利用待定系数法求出k 的值,再分别计算出四个选项中的点的横纵坐标的积,等于k 的值的就在反比例函数图象上,反之则不在.【详解】解:∵反比例函数k y x=的图象经过点()2,6A -,∴2612k =-⨯=-,A 、261212⨯=≠-,故此点不在此函数图象上;B 、()11212⨯-=-,故此点在此函数图象上;C 、()3412-⨯-=,故此点不在此函数图象上;D 、4312⨯=,故此点不在此函数图象上.故选:B .【点睛】此题主要考查了反比例函数图象上点的坐标特征,关键是掌握图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.4. 抛物线22(9)3y x =+-的顶点坐标是( )A. (9,3)- B. (9,3)-- C. (9,3) D. (9,3)-【答案】B【解析】【分析】根据二次函数的顶点式2()y a x h k =-+可得顶点坐标为(,)h k 即可得到结果.【详解】∵二次函数解析式为22(9)3y x =+- ,∴顶点坐标为(9,3)--;故选:B .【点睛】本题主要考查了二次函数顶点式顶点坐标的求解,准确理解是解题的关键.5.在一个不透明的口袋中装有4个红球,5个白球和若干个黑球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到白球的频率稳定在25%附近,则口袋中黑球可能有( )个.A. 10B. 11C. 12D. 13【答案】B【解析】【分析】设黑球可能有x 个,根据摸到白球的频率稳定在25%附近得到口袋中摸到白球的概率为25%,根据概率公式即可求出黑球的个数.【详解】解:设黑球可能有x 个∵摸到白球的频率稳定在25%附近∴口袋中摸到白球的概率为25%∴525%45x=++∴11x =经检验:x=11是原方程的解,也符合题意.∴黑球可能有11个故选:B .【点睛】本题考查了利用频率估计概率、根据概率公式计算概率等知识点,由频率估计概率是解答本题的关键.6. 如图,在84⨯的矩形网格中,每个小正方形的边长都是1,则tan ACB ∠的值为( )的A. 1B. 13C. 12【答案】B【解析】【分析】在Rt ACD △中利用正切函数的定义即可求解.本题考查了正切函数的定义,掌握三角函数就是直角三角形中边的比是关键【详解】解:如图,在Rt ACD △中,2AD =,6CD =,则21tan 63AD ACB CD ∠===.故选:B .7. 如图,C ,D 是O 上直径AB 两侧的两点,设15ABC ∠=︒,则BDC ∠=( )A. 85︒B. 75︒C. 70︒D. 65︒【答案】B【解析】【分析】本题考查了直径所对的圆周角为90︒,直角三角形两锐角互余,以及同弧所对的圆周角相等,由AB 是直径可得90ACB ∠=︒,由ABC ∠=︒15可知75CAB ∠=︒,再根据同弧所对的圆周角相等,可得BDC ∠的度数,即可得出答案.【详解】解:AB 是O 的直径,90ACB ∴∠=︒,15ABC ∠=︒ ,75CAB ∴∠=︒,BCBC = ,75BDC CAB ∴∠=∠=︒,故选:B .8. 如图,在直角坐标系中,点()22P ,是一个光源.木杆AB 两端的坐标分别为()01,,()31,.则木杆AB 在x 轴上的投影长为( )A. 3B. 5C. 6D. 7【答案】C【解析】【分析】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.利用中心投影,延长PA 、PB 分别交x 轴于A '、B ',作PE x ⊥轴于E ,交AB 于D ,如图,证明PAB PA B ''∽ ,然后利用相似比可求出A B ''的长.【详解】解:延长PA 、PB 分别交x 轴于A '、B ',作PE x ⊥轴于E ,交AB 于D ,如图,∵()22P ,,木杆AB 两端的坐标分别为()01,,()31,,∴1PD =,2PE =,3AB =,∵AB A B ''∥,∴PAB PA B ''∽ ,∴AB PD A B PE ''=,即312A B ='',∴6A B ''=,故选:C .9.一次函数y ax b =+与反比例函数ab y x=(a ,b 为常数且均不等于0)在同一坐标系内的图象可能是( ) A. B.C. D.【答案】D【解析】【分析】先根据一次函数图象确定a 、b 的符号,进而求出ab 的符号,由此可以确定反比例函数图象所在的象限,看是否一致即可.【详解】解:A 、∵一次函数图象经过第一、二、三象限,∴00a b >>,,∴0ab >,∴反比例函数ab y x=的图象见过第一、三象限,这与图形不符合,故A 不符合题意;B 、∵一次函数图象经过第一、二、四象限,∴00a b <>,,∴0ab <,∴反比例函数ab y x=的图象见过第二、四象限,这与图形不符合,故B 不符合题意;C 、∵一次函数图象经过第一、三、四象限,∴00a b ><,,∴0ab <,∴反比例函数ab y x=的图象见过第二、四象限,这与图形不符合,故C 不符合题意;D 、∵一次函数图象经过第一、二、四象限,∴00a b <>,,∴0ab <,∴反比例函数ab y x =的图象见过第二、四象限,这与图形符合,故D 符合题意;故选D .【点睛】本题主要考查了一次函数与反比例函数图象和性质,熟练掌握相关性质与函数图象的关系是解决本题的关键.10.已知二次函数223y ax ax =-+(其中x 是自变量),当03x ≤≤时对应的函数值y 均为正数,则a 的取值范围为( )A. 10a -<< B. 3a >C. <1a -或3a > D. 10a -<<或0<<3a 【答案】D【解析】【分析】本题考查了二次函数图象与系数的关系,二次函数的性质,抛物线与x 轴的交点,熟练掌握二次函数的性质是解题的关键.首先根据题意求出对称轴212a x a -=-=,然后分两种情况:0a >和0a <,分别根据二次函数的性质求解即可.【详解】解:∵二次函数223y ax ax =-+,∴对称轴212a x a-=-=,当0a >时,∵当03x <<时对应的函数值y 均为正数,∴此时抛物线与x 轴没有交点,∴()22430a a ∆=--⨯<,∴解得0<<3a ;当0a <时,∵当03x ≤≤时对应的函数值y 均为正数,∴当3x =时,963>0y a a =-+,∴解得>1a -,∴10a -<<,∴综上所述,当03x ≤≤时对应的函数值y 均为正数,则a 的取值范围为10a -<<或0<<3a .故选:D .二、填空题(共6小题,每小题4分,满分24分.填空题请直接填写答案.)11. 若α为锐角,cos α=α=________︒.【答案】30【解析】【分析】本题主要考查了特殊角的三角函数值,牢记常见特殊角的三角函数值是解题的关键.根据“cos30=°”即可解答.【详解】解:∵cos cos30α=︒=,∴30α=︒.故答案为:30.12. 如图,ABC 与DEF 位似,点O 为位似中心,13OA OD =,ABC 的面积为2,则DEF 的面积为 _______.【答案】18【解析】【分析】本题考查了位似变换:位似的两图形两个图形必须是相似形;对应点的连线都经过同一点;对应边平行(或共线).利用位似的性质得到ABC DEF △△∽,AB DE ∥,所以13AB OA DE OD ==,然后根据相似三角形的性质求解.【详解】解:∵ABC 与DEF 位似,点O 为位似中心,∴ABC DEF △△∽,AB DE ∥,∴13AB OA DE OD ==∵ABC DEF △△∽,∴219ABC DEF S AB S DE ⎛⎫== ⎪⎝⎭ ,∴99218DEF ABC S S ==⨯= .故答案为:18.13.如图,点A 是反比例函数k y x=(0k ≠,0x >)的图象上一点,过点A 作AB x 轴于点B ,点P 是y 轴上任意一点,连接PA ,PB .若ABP 的面积等于3,则k 的值为 _____.【答案】6【解析】【分析】本题主要考查反比例函数k y x=中k 的几何意义.连接AO ,由于同底等高的两个三角形面积相等,则3ABO ABP S S == ,然后根据反比例函数k y x=中k 的几何意义有12ABO S k = ,再结合函数图象所在的象限,确定k 的值.【详解】连接AO,∵AB x 轴∴132ABO ABP S AB OB S =⋅== ∴132k =,∴6k =±,∵反比例函数k y x=图象的一支位于第一象限,∴0k >,∴6k =,故答案为:614.如图抛物线y =ax 2+bx+c 的对称轴是x =﹣1,与x 轴的一个交点为(﹣5,0),则不等式ax 2+bx+c >0的解集为_____.【答案】﹣5<x <3【解析】【分析】先根据抛物线的对称性得到A 点坐标(3,0),由y =ax 2+bx+c >0得函数值为正数,即抛物线在x 轴上方,然后找出对应的自变量的取值范围即可得到不等式ax 2+bx+c >0的解集.【详解】解:根据图示知,抛物线y =ax 2+bx+c 图象的对称轴是x =﹣1,与x 轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y =ax 2+bx+c 图象与x 轴的两个交点关于直线x=﹣1对称,的即抛物线y =ax 2+bx+c 图象与x 轴的另一个交点与(﹣5,0)关于直线x =﹣1对称,∴另一个交点的坐标为(3,0),∵不等式ax 2+bx+c >0,即y =ax 2+bx+c >0,∴抛物线y =ax 2+bx+c 的图形在x 轴上方,∴不等式ax 2+bx+c >0的解集是﹣5<x <3.故答案为﹣5<x <3.【点睛】此题主要考查了二次函数与不等式,解答此题的关键是求出图象与x 轴的交点,然后由图象找出当y >0时,自变量x 的范围,本题锻炼了学生数形结合的思想方法.15.如图,将半径为2cm 的圆形纸片翻折,使得 AB , BC,折痕为AB BC ,,则阴影部分的面积为___________________2cm .【答案】4π3##4π3【解析】【分析】本题主要考查了翻折变换(折叠问题)、扇形面积的计算等.作OD AB ⊥于点D ,连接AO BO CO ,,,求出30OAD ∠=︒,得到2120AOB AOD ∠=∠=︒,进而求得120AOC ∠=︒,再利用阴影部分的面积AOC S =扇形得出阴影部分的面积是O 面积的13,即可得出结果.【详解】解:作OD AB ⊥于点D ,连接AO BO CO ,,.由折叠知12OD AO =,∴30OAD ∠=︒,∴2120AOB AOD ∠=∠=︒,同理120BOC ∠=︒,∴120AOC ∠=︒,∴阴影部分的面积()22114π2πcm 333O AOC S S ==⨯=⨯⨯=圆扇形,故答案为:4π3.16. 如图,5AB =,10BC =,以AC 为斜边在AC 的右侧作ACD ,其中90ADC ∠=︒,43AD CD =,当BD 长度最大时,点D 到BC 的距离是___________________.【答案】335【解析】【分析】本题主要考查了相似三角形的判定与性质,构造出与ADC △相似的三角形得出BD 取最大时的情况是本题解题的关键;以AB 为斜边构造与ADC △相似的直角三角形,然后利用三角形三边关系得出BD 最大时的情况,再根据相似三角形的判定和性质进行求解即可.【详解】解:作直角三角形AEB ,使90AEB ∠=︒,4AE =,3BE =,连接DE ,∵90ADC ∠=︒,43AD CD =,∴设4AD a =,3CD a =,则5AC a ==,∵90ADC AEB ∠=∠=︒,43AD AE CD BE ==,∴ADC AEB ∽,∴BAE CAD ∠=∠,∴BAE EAC CAD EAC ∠+∠=∠+∠,即BAC EAD ∠=∠,∵54AB AC AE AD ==,∴ABC AED V :V ,∴45DE AE BC AB ==,∵5AB =,10BC =,∴8DE =,当D E B 、、在同一直线上时,即AE BD ⊥时,BD 长度最大,∵ADC AEB ∽,∴ACD ABE ∠=∠,∴A B C D 、、、四点共圆,∴90ABC ADC ∠=∠=︒,作DF BC ⊥于F ,∴DF AB ,∴ABE BDF ∠=∠,∴ABE BDF △∽△,∴AB BE BD DF =,即5338DF=+,∴335DF =,故答案为:335三、解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17. 计算:101(1)2sin 302π-⎛⎫++-︒+ ⎪⎝⎭.【答案】5【解析】【分析】本题考查了实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值.先化简各式,然后再进行计算即可解答.【详解】解:101(1)2sin 302π-⎛⎫++-︒ ⎪⎝⎭121232=+-⨯+2113=+-+5=.18. 已知如图,D ,E 分别是ABC 的边AB ,AC 上的点,AED B ∠=∠,3AD =,8AB =,4AE =.求AC 的长度.【答案】6AC =【解析】【分析】本题考查了相似三角形的判定,根据题意得到AED B ∠=∠,A A ∠=∠,可得ADE ACB ∽,即可解题.【详解】 AED B ∠=∠,A A ∠=∠,∴ADE ACB ∽.::AD AC AE AB ∴=,∵3AD =,8AB =,4AE =,∴3:4:8AC =,∴6AC =19.如图,小明想要用撬棍撬动一块大石头,已知阻力为1200N ,阻力臂长为0.5m .设动力为y(N),动力臂长为(m)x .(杠杆平衡时,动力×动力臂=阻力×阻力臂,图中撬棍本身所受的重力忽略不计)(1)求y 关于x 的函数解析式.(2)当动力臂长为1.5m 时,撬动石头至少需要多大力?【答案】(1)600y x=; (2)当动力臂长为1.5m 时,撬动石头至少需要400N 的力.【解析】【分析】(1)根据动力×动力臂=阻力×阻力臂,即可得出y 关于x 的函数表达式;(2)将x=1.5代入(1)中所求解析式,即可得出y 的值.【小问1详解】解:由题意,得12000.5xy =⨯,则600y x=,∴y关于x 的函数解析式为600y x =.【小问2详解】的解:∵600y x=,∴当 1.5x =时,6004001.5y ==,故当动力臂长为1.5m 时,撬动石头至少需要400N 的力.【点睛】此题主要考查了反比例函数的应用,正确得出y 与x 之间的关系是解题关键.20.随着高铁、地铁的大量兴建以及铁路的改扩建,我国人民的出行方式越来越多,出行越来越便捷.为保障旅客快捷、安全的出人车站,每个车站都修建了如图所示的出入闸口.某车站有四个出人闸口,分别记为A 、B 、C 、D .(1)一名乘客通过该站闸口时,求他选择A 闸口通过的概率;(2)当两名乘客通过该站闸口时,请用树状图或列表法求两名乘客选择相同闸口通过的概率.【答案】(1)14 (2)14,作图见解析【解析】【分析】(1)直接运用概率公式计算即可;(2)先画出树状图确定所有等可能结果数和两名乘客选择相同闸口的结果数,然后运用概率公式求解即可.【小问1详解】解:一名乘客通过该站闸口时,他选择A 闸口通过的概率为14.【小问2详解】解:根据题意画出画树状图如下:由树状图可知共有16种等可能的结果,其中两名乘客选择相同闸口通过的有4种结果,∴两名乘客选择相同闸口通过的概率41164==.【点睛】本题主要考查了运用树状图求概率、概率公式等知识点,正确画出树状图、正确确定所有等可能结果数和两名乘客选择相同闸口的结果数是解答本题的关键.21.如图大楼AB 的高度为37m ,小可为了测量大楼顶部旗杆AC 的高度,他从大楼底部B 处出发,沿水平地面前行32m 到达D 处,再沿着斜坡DE 走20m 到达E 处,测得旗杆顶端C 的仰角为30︒.已知斜坡ED 与水平面的夹角37EDG ∠=︒,图中点A ,B ,C ,D ,E ,G 在同一平面内(结果精确到0.1m )(1)求斜坡ED 的铅直高度EG 和水平宽度GD .(2)求旗杆AC 的高度.(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈1.73≈)【答案】(1)斜坡ED 的铅直高度EG 约为12m ,水平宽度GD 约为16m(2)2.7m【解析】【分析】本题考查了解直角三角形的应用﹣仰角俯角问题.(1)在Rt DEG V 中,利用锐角三角函数的定义进行计算即可解答;(2)过点E 作EH BC ,垂足为H ,根据题意可得:32m DB =,则48m EH GB ==,然后在Rt CEH △中,利用锐角三角函数定义求出CH 的长,最后利用线段的和差关系的进行计算即可解答.【小问1详解】解:在Rt DEG V 中,=37EDG ∠︒,∴()=sin37200.60=12m EG DE ⋅︒≈⨯,()=cos37200.80=16m DG DE ⋅︒≈⨯,∴斜坡ED 的铅直高度EG 约为12m ,水平宽度GD 约为16m ;【小问2详解】解:过点E 作EH BC ⊥,垂足为H ,由题意得:32m DB =,∴()===1632=48m EH GB GD DB ++,在Rt CEH △中,30CEH ∠=︒,∴)tan 3048m CH EH =⋅︒==,∴()1237 2.7m AC CH BH AB =+-=+-≈,∴旗杆AC 的高度约为2.7m .22.如图,在Rt ABC △中,90C ∠=︒,以OB 为半径的O 与AB 相交于点E ,与AC 相切于点D(1)求证:BD 平分ABC ∠;(2)已知3cos 5ABC ∠=,6AB =,求O 的半径r .【答案】(1)详见解析(2)94r =【解析】【分析】(1)连接OD ,根据切线的性质得到OD AC ⊥,进而得到∥OD BC ,根据平行线的性质、等腰三角形的性质证明结论;(2)根据余弦的定义求出BC ,根据AOD ABC ∽△△列出比例式,把已知数据代入计算即可.【小问1详解】证明:连接OD ,如图所示:∵AC 切O 于点D ,∴OD AC ⊥,∵90C ∠=︒,∴∥OD BC ,∴ODB CBD ∠=∠,∵OB OD =,∴ODB OBD ∠=∠,∴OBD CBD ∠=∠,即BD 平分ABC ;【小问2详解】解:在Rt ABC △中,90C ∠=︒,∵3cos 5ABC ∠=,6AB =,∴365BC BC AB ==,解得:185BC =,∵∥OD BC ,∴AOD ABC ∽△△,∴OD AO BC AB =,即61865r r -=,解得:94r =.【点睛】本题考查的是切线的性质、圆周角定理、相似三角形的判定和性质,平行线的判定和性质,等腰三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.23.把边长为44cm 的正方形硬纸板(如图1),在四个顶点处分别剪掉一个小正方形,折成一个长方体形的无盖盒子(如图2),长方体形的无盖盒子的侧面积为2cm S .(1)①求S 与x 的函数关系式;②直接写出x 的取值范围;(2)求当x 取何值时,S 达到最大,并求出最大值.【答案】(1)()4442S x x =-①,022x <<②;(2)当剪掉的正方形的边长x 为11cm 时,长方形盒子的侧面积S 最大为2968cm .【解析】【分析】(1)①依据题意得,长方体形的无盖盒子的底面边长为()442cm x -,进而列式可以得解;②依据题意,列不等式44200x x ->⎧⎨>⎩,进而计算可以得解;(2)依据题意,结合(1)得()()2244428176811968S x x x x x =-=-+=--+,从而根据二次函数的性质进行判断可以得解;本题主要考查了二次函数的应用,解题时要熟练掌握并能找到关键描述语从而根据等量关系准确地列出函数关系式是解题的关键.【小问1详解】①由题意得,长方体形的无盖盒子的底面边长为()442cm x -,∴盒子的侧面积()4442S x x =-;②由题意,44200x x ->⎧⎨>⎩,∴022x <<;【小问2详解】由题意得,()4442S x x =-,即28176S x x =-+,即()2811968S x =--+,∴当11x =时,968S =最大,即当剪掉的正方形的边长x 为11cm 时,长方形盒子的侧面积S 最大为2968cm .24. 在平面直角坐标系中,定义:横坐标与纵坐标均为整数的点为整点.如图,已知双曲线()0k y x x=>经过点()2,2A ,在第一象限内存在一点(),B m n ,满足4mn >.(1)求k 的值;(2)如图1,过点B 分别作平行于x 轴,y 轴的直线()0k y x x=>于点C 、D ,记线段BC 、BD 、双曲线所围成的区域为W (含边界),①当4m n ==时,区域W 的整点个数为 ;②直线()540y ax a a =-+>过一个定点,若点B 为此定点,直线上方(不包含直线)的区域记为1W ,直线下方(不包含直线)的区域记为2W ,当1W 与2W 的整点个数之差不超过2时,请求出a 的取值范围.【答案】(1)4;(2)①11,②112a <≤.【解析】【分析】(1)根据点A 在k y x=的图象上,可求出k 的值;(2)①标出区域W ,再统计区域内的整数点即可;②过定点即表示与a 的取值无关,则有a 的系数()5x -等于0,便可解决问题,利用图象,求出区域内的所有整数点,再分类讨论即可;本题考查反比例函数的性质,正确理解题目中所给出的新定义,结合图形合理的分析是解题的关键.【小问1详解】∵双曲线k y x=经过点()2,2A ,∴224k =⨯=,即k 的值为4;【小问2详解】①当4m n ==时,由图1可知,BC 上的整点有4个,BD 上的整点有4个,双曲线上CD 段的整点有3个,区域W 内部的整点有3个,又点B ,C ,D 都被算了2次,所以区域W 的整点个数为:4433311+++-=,故答案为:11;②由题知,()5454y ax a x a =-+=-+,则不论a 为何值,5x =时,即直线过定点()5,4,∴()5,4B ,如图所示,当()5,4B 时,区域W 内的整点共有15个,又被分成的区域1W 和2W 的整点个数之差不超过2,则当直线经过点()4,3时,1W 的整点个数是7,2W 的整点个数是5,满足要求,此时4543a a -+=,得1a =,当直线过点()3,3时,1W 的整点个数是5,2W 的整点个数是8,不满足要求,故当点()3,3在直线上方时,即可,此时3543a a -+=,得12a =,故a 的取值范围是:112a <≤.25.(1)问题发现:如图1,在OAB 和OCD 中,=OA OB ,40AOB COD ∠∠︒==,连接AC ,填空:AC BD= ;AMB ∠= ;(2)类比探究:如图2,在OAB 和OCD 中,0AOB COD ∠∠︒==9,连接AC 交BD 的延长线于点M ,请判断AC BD ,并说明理由;(3)拓展延伸:如图3,在(2)的条件下,将OCD 绕点O 旋转至点C 与点M 重合,1,OD =OB=AC = .【答案】(1)1;40︒;(2;(3)【解析】【分析】(1)如图1中,设BD 交AD 于J .证明()SAS OAC OBD ≌,推出AC BD =,CAO DBO ∠=∠可得结论.(2)设AO 交BM 于J .证明COA DOB ∽ ,推出AC OC BD OD==JAM JBO ∠=∠可得结论.(3)正确画图形,当点C 与点M 重合时,有两种情况:如图3和4,同理可得AOC BOD :∽ ,则90AMB ∠︒=,AC BD =,可得AC 的长.【详解】解:(1)如图1中,设BD 交AD 于J .∵40OA OB OC OD AOB COD ==∠=∠=︒,,,∴DOB COA ∠=∠,∴()SAS OAC OBD ≌,∴AC BD CAO DBO =∠=∠,,∵AJM BJO ∠=∠,∴40AMJ BOJ ∠=∠=︒,∴1AC BD=,40AMB ∠=︒,故答案为:1,40︒.(2)如图2中,结论:AC BD =理由:设AO 交BM 于J .在Rt COD 中,∵9030DOC DCO ∠=︒∠=︒,,∴tan 60OC OD︒==同理可得:AO BO,∴CO OA OD OB=,∵90COD AOB ∠=∠=︒,∴COA DOB ∠=∠,∴COA DOB ∽ ,∴AC OC BD OD==(3)拓展延伸①点C 与点M 重合时,如图(3),同(2)得:AOC BOD ∽ ,∴CAO DBO ∠=∠,AC BD =,在AMB 中,180()AMB MAB ABM ∠=︒-∠+∠180()OAB ABM DBO =︒-∠+∠+∠90=︒;∵90AOB COD ∠=∠=︒,CO AO DO BO==∴60ODC OBA ∠=∠=︒,∴30OCD OAB ∠=∠=︒,设BD x =,则AC =,Rt COD 中,301OCD OD ∠=︒=,,∴2CD =,∴2BC x =-,Rt AOB △中,30OAB OB ∠=︒=,,∴2A B O B ==,在Rt AMB △中,由勾股定理得:222AC BC AB +=,∴)()(2222x +-=,整理得:260x x --=,∴(3)(2)0x x -+=,∴1232x x ==-,(舍去),∴3BD =,∴AC =②点C 与点M 重合时,如图(4),同理得:90AMB ∠=︒,AC BD =,设BD x =,则AC =,在Rt AMB △中,2BC BD CD x =+=+,由勾股定理得:222AC BC AB +=,∴)()(2222x ++=,整理得260x x +-=,∴(3)(2)0x x +-=,∴13x =-(舍去),22x =,∴2BD =,∴AC =综上所述,AC 的长为故答案为:【点睛】本题是三角形的综合题,勾股定理、解一元二次方程、主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:AOC BOD ∽ ,根据相似三角形的性质,并运用类比的思想解决问题.26.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,对称轴为直线2x =,点A 的坐标为()1,0A .(1)该抛物线的表达式为 ;(2)点P 为抛物线上一点(不与点A 重合),连接PC .当PCB ACB ∠=∠时,求点P 的坐标;(3)在(2)的条件下,在对称轴上是否存在一点Q ,将线段PQ 绕点Q 顺时针旋转90︒,使点P '恰好落在抛物线上?若存在,求出Q 点坐标;若不存在,请说明理由.【答案】(1)243y xx =-+ (2)1116,39P ⎛⎫ ⎪⎝⎭ (3)10(2,)9Q 或31(2,)9Q 【解析】【分析】(1)由对称轴为直线2x =,点A 的坐标为(1,0),得出(3,0)B ,通过交点式得出函数关系式;(2)设抛物线对称轴交x 轴于点F ,交BC 于点D ,连接AD 并延长交CP 于E ,则可得AD BD =,AD BC ,且得点D 的坐标,证明CDA CDE ≌,得D 为CE 中点,由中点公式求出E 的坐标,由待定系数法求出直线CE 的关系式,与抛物线联立即可求出交点P 的坐标;(3)分P 在Q 上方和下方两种情况,当P 在Q 上方时,构造出PDQ QEP '△≌△,得1(2,)9P m m '+-代入抛物线即可,当Q 在P 上方时,得出31(2,)9Q .【小问1详解】解: 对称轴为直线2x =,点A 的坐标为(1,0),(3,0)∴B ,2(1)(3)43y x x x x ∴=--=-+;【小问2详解】解:设抛物线对称轴交x 轴于点F ,交BC 于点D ,连接AD 并延长交CP 于E ,如图,∵对称轴为直线2x =,∴(2,0)F ,(3,0)B ,(1,0)A ,∴3121AB AF BF =-===,;在243y x x =-+中,令0x =,得3y =,∴(0,3)C ,(3,0)B ,3OB OC ∴==,∵OC OB ^,45OBC ∴∠=︒,∵DF OB ⊥,∴45BDF OBC ∠=∠=︒,∴1DF BF ==,∴由勾股定理得:AD ==∴BD AD ==,∴45DAB OBC ∠=∠=︒,∴90ADB ∠=︒,∴AD BC ,(2,1)D ,PCB ACB ∠=∠ ,90CD CD CDE CDA =∠=∠=︒,,∴(ASA)CDA CDE ≌,∴AD ED =,由中点坐标公式得:(3,2)E ,设直线CE 的关系式为:y kx n =+,把C 、E 两点坐标分别代入得:332n k n =⎧⎨+=⎩,解得:133k n ⎧=-⎪⎨⎪=⎩,∴直线CE 关系式为:133y x =-+,联立二次函数与一次函数解析式并消去y 得:213433x x x -+=-+,解得:10x =(舍),2113x =,当113x =时,111163339y =-⨯+=,∴1116,39P ⎛⎫ ⎪⎝⎭;【小问3详解】解:存在;点P 旋转后的对应点为P ',作PD ⊥对称轴于D ,P E '⊥对称轴于E ,当P 在Q 上方时,则115233PD =-=,设DQ m =,的将线段PQ 绕点Q 顺时针旋转90︒得线段QP ',∴90PQP '∠=︒,则90PQD P QE '∠+∠=︒,又90PQD DPQ ∠+∠=︒,∴P QE DPQ '∠=∠,又PQ P Q '=,90PDQ QEP '∠=∠=︒,()AAS PDQ QEP ∴' ≌,P E DQ m '∴==,53QE PD ==,1651619399QE DQ m m +-=+-=-,12,9P m m ⎛⎫∴+- ⎪⎝⎭',P ' 恰好落在抛物线上,21(2)4(2)39m m m ∴+-++=-,解得123m =,253m =-(舍),∴点Q 的纵坐标为16210939-=;10(2,)9Q ∴,当Q 在P 上方时,作PD ⊥对称轴于D ,可知:PQP ' 为等腰直角三角形,∴53PD P D QD '===,∴点Q 的纵坐标为16531939+=,31 (2,9 Q,综上:10(2,)9Q或31(2,)9Q.【点睛】本题是二次函数综合题,考查了待定系数法求函数关系式,旋转的性质,等腰直角三角形的性质以及运算能力等知识,用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2022-2023学年山东省济南市九级九年级数学第一学期期末学业水平测试试题含解析

2022-2023学年山东省济南市九级九年级数学第一学期期末学业水平测试试题含解析

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在平面直角坐标系中,点P (m ,1)与点Q (﹣2,n )关于原点对称,则m n 的值是( )A .﹣2B .﹣1C .0D .22.下列二次根式是最简二次根式的是( )A .18B .13C .10D .0.33.服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是( ) A .平均数 B .中位数 C .方差 D .众数4.如图,平面直角坐标系中,()()()8,0,8,4,0,4A B C --,反比例函数k y x=的图象分别与线段,AB BC 交于点,D E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k =( )A .20-B .16-C .12-D .8-5.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .6.已知关于x 的方程(m +4)x 2+2x ﹣3m =0是一元二次方程,则m 的取值范围是( )A .m <﹣4B .m ≠0C .m ≠﹣4D .m >﹣47.已知如图ABC 中,点O 为BAC ∠,ACB ∠的角平分线的交点,点D 为AC 延长线上的一点,且AD AB =,CD CO =,若138∠=︒AOD ,则ABC ∠的度数是( ).A .12︒B .24︒C .48︒D .96︒8.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC =,则DE EF=( )A .12B .13C .23D .19.若正方形的外接圆半径为2,则其内切圆半径为( )A .2B 2C 2D .110.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是A .点A 在圆外B .点A 在圆上C .点A 在圆内D .不能确定 11.一元二次方程x 2+x ﹣1=0的两根分别为x 1,x 2,则1211x x +=( ) A .12 B .1 C 5 D 512.若反比例函数2k yx (k 为常数)的图象在第二、四象限,则k 的取值范围是( ) A .2k <-B .2k >-且0k ≠C .2k >D .2k <且0k ≠二、填空题(每题4分,共24分)13.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.14.若二次函数25(0)y ax bx a =-+≠的图像经过点(2,2),则242017b a -+的值是_______.15. “上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .16.如图,在矩形ABCD中,AB=4,AD=3,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是______(结果保留π).17.如图,A、B、C是⊙O上三点,∠ACB=30°,则∠AOB的度数是_____.18.某班级准备举办“迎鼠年,闹新春”的民俗知识竞答活动,计划A、B两组对抗赛方式进行,实际报名后,A组有男生3人,女生2人,B组有男生1人,女生4人,若从两组中各随机抽取1人,则抽取到的两人刚好是1男1女的概率是__________.三、解答题(共78分)19.(8分)已知△ABC,AB=AC,BD是∠ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF.(1)证明:DE//AB;(2)若CD=3,求四边形BEDF的周长.20.(8分)一个盒子中装有两个红球,一个白球和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请你用列表法和画树状图法求两次摸到的球的颜色能配成紫色的概率(说明:红色和蓝色能配成紫色)21.(8分)为了推动课堂教学改革,打造高效课堂,配合我市“两型课堂”的课题研究,莲城中学对八年级部分学生就一期来“分组合作学习”方式的支持程度进行调查,统计情况如图.试根据图中提供的信息,回答下列问题:(1)求本次被调查的八年级学生的人数,并补全条形统计图;(2)若该校八年级学生共有180人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生).22.(10分)某校综合实践小组要对一幢建筑物MN 的高度进行测量.如图,该小组在一斜坡坡脚A 处测得该建筑物顶端M 的仰角为45︒,沿斜坡向上走20m 到达B 处,(即20AB m =)测得该建筑物顶端M 的仰角为30.已知斜坡的坡度3:4i =,请你计算建筑物MN 的高度(即MN 的长,结果保留根号).23.(10分)如图,在△ABC 中,∠C =90°,AC=8cm ,BC=6cm . 点P 从点A 出发,沿AB 边以2 cm /s 的速度向点B 匀速移动;点Q 从点B 出发,沿BC 边以1 cm /s 的速度向点C 匀速移动, 当一个运动点到达终点时,另一个运动点也随之停止运动,设运动的时间为t (s).(1)当PQ ∥AC 时,求t 的值;(2)当t 为何值时,△PBQ 的面积等于245cm 2.24.(10分)如图,已知抛物线经过坐标原点O 和x 轴上另一点E ,顶点M 的坐标为()2,4.矩形ABCD 的顶点A 与点O 重合,AD 、AB 分别在x 轴、y 轴上,且AD =2,AB =1.(1)求该抛物线所对应的函数关系式;(2)将矩形ABCD 以每秒1个单位长度的速度从图1所示的位置沿x 轴的正方向匀速平行移动,同时一动点P 也以相同的速度从点A 出发向B 匀速移动,设它们运动的时间为t 秒(03)t ≤≤,直线AB 与该抛物线的交点为N (如图2所示). ①当52t =,判断点P 是否在直线MB 上,并说明理由; ②设P 、N 、C 、D 以为顶点的多边形面积为S ,试问S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.25.(12分)先化简,再求值:2111x y x y xy y⎛⎫+÷ ⎪+-+⎝⎭,其中x 52,y 5 2. 26.已知,直线23y x =-+与抛物线2y ax =相交于A 、B 两点,且A 的坐标是(3,)m -(1)求a ,m 的值;(2)抛物线的表达式及其对称轴和顶点坐标.参考答案一、选择题(每题4分,共48分)1、A【分析】已知在平面直角坐标系中,点P (m ,1)与点Q(﹣2,n )关于原点对称,则P 和Q 两点横坐标互为相反数,纵坐标互为相反数即可求得m ,n ,进而求得m n 的值.【详解】∵点P (m ,1)与点Q(﹣2,n )关于原点对称∴m=2,n=-1∴m n =-2故选:A【点睛】本题考查了直角坐标系中,关于原点对称的两个点的坐标特点,它们的横坐标互为相反数,纵坐标互为相反数. 2、C【解析】根据最简二次根式的定义逐项分析即可.【详解】A. ,故不是最简二次根式;B. ,故不是最简二次根式;C. ,是最简二次根式;D. ,故不是最简二次根式; 故选C.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,象这样的二次根式叫做最简二次根式.3、D【分析】根据题意,应该关注哪种尺码销量最多.【详解】由于众数是数据中出现次数最多的数,故应该关注这组数据中的众数.故选D【点睛】本题考查了数据的选择,根据题意分析,即可完成。

(完整word版)山东省九年级数学上学期期末考试试题新人教版(附答案)

(完整word版)山东省九年级数学上学期期末考试试题新人教版(附答案)

A. B. C. D. (第6题图) (第7题图) 山东省九年级数学上学期期末考试试题第Ⅰ卷(选择题 共42分)一、选择题(每小题3分,共42分)请将唯一正确答案的代号填涂在答题卡...上 1.方程92=x 的根是A.3=xB.3-=xC.321-==x xD.3,321-==x x2.二次函数2)1(2--=x y 图象的顶点坐标是A .(1,-2)B .(-1,-2)C .(-1,2)D .(1,2)3.若△ABC ∽△A′B′C′,相似比为1:2,则△ABC 与△A′B′C′的面积的比为 A .1:2 B .1:4 C .2:1 D .4:14.已知一元二次方程2x 2﹣5x+3=0,则该方程根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定根的情况 5. 计算:︒⋅︒+︒60tan 30cos 30sinA .1B .3C .2D .43 6. 将两个长方体如图放置,则所构成的几何体的左视图可能是7.如图,四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°,则∠BCD 的度数为 A .50° B .80° C .100° D .130°8. 如图,铁路道口的栏杆短臂长1m ,长臂长16m .当短臂端点下降0.5m 时,长臂端点升高(杆的宽度忽略不计)A .12mB .8mC .6mD .4m 9.如图,△ABC 的三个顶点都在方格纸 的格点上,其中点A 的坐标是(﹣1,0). 现将△ABC 绕点A 顺时针旋转90°,则旋转 后点C 的坐标是(2,1) B. (1,2) C. (-2,-1) D. (-2,1)10. 边长为2的正六边形的边心距是 A .1B .2C .3D .3211. 如图,已知△ABC ,则下列四个三角形中,与△ABC 相似的是12.如图,在菱形ABCD 中,DE ⊥AB ,cosA =53,BE =2,则BDE ∠tan 的值 A .21B.2 C .55 D.55213.已知函数xky =的图象如图所示,以下结论:①0<k ;②在每个分支上y 随x 的增大而增大;③若点),1(a A -、点),2(b B 在图象上,则b a <;④若点),(n m P 在此函数图象上,则点),(1n m P --也在此图象上.其中正确的个数是A .4个B .3个C .2个D .1个14.如图,边长为1的正方形ABCD 中,点E 在CB 延长线上,连接ED 交AB 于点F ,AF =x )(8.02.0≤≤x ,EC =y .则在下面函数图象中,大致能反应y 与x 之间函数关系的是第Ⅱ卷(非选择题 共78分)二、填空题(每小题3分,共15分)请将最佳答案直接填在题中横线上 15.平面直角坐标系内一点)3,5(-P ,关于原点对称的点的坐标为____________. 16. 在Rt △ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值等于_______.17. 某校开展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选2名进行督查,恰好选中2名男学生的概率是________.18.从地面竖直向上抛出一个小球,小球的高度h (米)与运动时间t (秒)之间的关系式(第11题图)为2530t t h -=,那么小球抛出 秒后达到最高点.19. 如图1,正方形纸片ABCD 的边长为2,翻折∠B 、∠D ,使得两个直角的顶点重合于对角线BD 上一点P ,EF 、GH 分别是折痕(如图2).设AE =x (0<x <2),给出下列判断:①当x =1时,点P 是正方形ABCD 的中心;②当x=12时,EF +GH >AC ;③当0<x <2时,六边形AEFCHG 面积的最大值是114;④当0<x <2时,六边形AEFCHG 周长的值不变.其中正确的是________(填序号).三、解答题(本题共7个小题,共计63分) (本题满分7分)已知2-=x 是关于x 的方程0222=-+a ax x 的一个根,求a 的值.21.(本题满分8分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果; (2)求这两辆汽车都向左转的概率.22.(本题满分8分)如图是一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得的数据如下:①小明的身高DC =1.5m ②小明的影长CE =1.7m③小明的脚到旗杆底部的距离BC =9m ④旗杆的影长BF =7.6m⑤从D 点看A 点的仰角为30°你可以根据需要选出其中某几个数据,求出旗杆的高度.(计算结果保留到0.1,参考数据2≈1.414,3≈1.732)解:要想求旗杆的高度,你准备选择上面所给数据__________________(填序号);并写出求解过程.23. (本题满分9分)在平面直角坐标系中,已知反比例函数y =xk的图象经过点A ,点O 是坐标原点,OA =2且OA 与x 轴的夹角是60.(1)试确定此反比例函数的解析式;(2)将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由.24.(本题满分9分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y (件)与销售单价x (元)满足一次函数关系:y =﹣10x +1200. (1)求利润S (元)与销售单价x (元)之间的关系式;(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?25.(本题满分10分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作⊙O 的切线DF ,交AC 于点F .(1)求证:DF ⊥AC ;(2)若⊙O 的半径为8,∠CDF =22.5°,求阴影部分的面积.26.(本题满分12分)如图,直线3+-=x y 与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线c bx x y ++=2与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式;(2)连接AC ,在x 轴上是否存在点Q ,使以P 、B 、Q 为顶点的三角形与△ABC 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.上学期寒假期末考试九年级数学参考答案注意:解答题只给出一种解法,考生若有其他正确解法应参照本标准给分. 选择题(每小题3分,共42分)1~5 DABAC 6~10 CDCBD 11~14 BABC 二、填空题(每小题3分,共15分) 15.)3,5-( 16.45 17. 3118.3 19.①④. 三、解答题(本大题共7小题,共63分)20.(本小题满分7分)解:当2-=x 时,0282=--a a ,...........................................2分 即:0822=-+a a ,.................................................................3分∴2)8(14222=-⨯⨯-±-=a ∴a 1=2,a 2=4-.........................................................................7分 21.(本小题满分8分) 解:(1)(5分)两辆汽车所有9种可能的行驶方向如下: 甲汽车乙汽车 左转右转直行左转 (左转,左转) (右转,左转) (直行,左转) 右转 (左转,右转) (右转,右转) (直行,右转) 直行(左转,直行)(右转,直行)(直行,直行)(2)(3分)由上表知:两辆汽车都向左转的概率是:91. 22.(本小题满分8分) 解:解法一,选用①②④,...............................................................................3分∵AB ⊥FC ,CD ⊥FC , ∴∠ABF =∠DCE =90°,.................................................................................4分 又∵AF ∥DE ,∴∠AFB =∠DEC ,................................................................5分 ∴△ABF ∽△DCE ,........................................................................................6分 ∴CEFBDC AB =,...............................................................................................7分又∵DC =1.5m ,FB =7.6m ,EC =1.7m ,∴AB =6.7m . 即旗杆高度是6.7m .......................................................................................8分 解法二,选①③⑤.............................................................................................3分 过点D 作DG ⊥AB 于点G . ∵AB ⊥FC ,DC ⊥FC , ∴四边形BCDG 是矩形,................................................................................4分 ∴CD =BG =1.5m ,DG =BC =9m ,.....................................................................5分在直角△AGD 中,∠ADG =30°, ∴tan 30°=DGAG,................................................................................................6分 ∴AG =33,.....................................................................................................7分 又∵AB =AG +GB ,∴AB =5.133+≈6.7m.即旗杆高度是6.7m ..........................................................................................8分 23.(本小题满分9分) 解:(1)(4分)过A 点作AM ⊥x 轴,垂足为M ,由OA=2,︒=∠60AOM , 所以A 点的坐标为(1,3),....................1分 把A (1,3)代入y =xk, 得k =1×3=3,.....................................3分∴反比例函数的解析式为y =x3;.......................................4分 (2)(5分)点B 在此反比例函数的图象上...............................5分 理由如下:过点B 作x 轴的垂线交x 轴于点D , ∵线段OA 绕O 点顺时针旋转30°得到线段OB ,∴∠AOB =30°,OB =OA =2,∴∠BOD =30°,.......................6分 在Rt △BOD 中,BD =21OB =1,OD =3BD =3,............7分 ∴B 点坐标为(3,1),.....................................................8分∵当x =3时,y=x 3=1,∴点B (3,1)在反比例函数y =x3的图象上. …………………………………………9分24.(本小题满分9分) 解:(1)S=y (x ﹣40)=(x ﹣40)(﹣10x+1200)=﹣10x 2+1600x ﹣48000; ----------5分(2)S=﹣10x 2+1600x ﹣48000=﹣10(x ﹣80)2+16000,当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元.-----9分 25.(本小题满分10分)(1)证明:连接OD ,∵OB=OD , ∴∠ABC=∠ODB , ∵AB=AC ,∴∠ABC=∠ACB , ----------------2分 ∴∠ODB=∠ACB ,∴OD ∥AC , -----------------4分 ∵DF 是⊙O 的切线,∴DF ⊥OD , ∴DF ⊥AC . -----------------5分 (2)解:连接OE ,∵DF ⊥AC ,∠CDF=22.5°, ∴∠ABC=∠ACB=67.5°,∴∠BAC=45°, ------------------7分 ∵OA=OE , ∴∠AOE=90°, ∵⊙O 的半径为4,∴S 扇形AOE =16π,S △AOE=16 , -------------------9分∴S 阴影=16π﹣16. --------------------10分 26.(本小题满分12分) 解:解:(1)(5分)由已知,得B (3,0),C (0,3),..............2分 ∴⎩⎨⎧++==cb c3903,..................3分 解得⎩⎨⎧=-=34c b ,..............................4分 ∴抛物线解析式为y=x 2-4x+3;....................................................5分(2)存在..................................................6分 由(1),得A (1,0),连接BP ,................................7分 ∵∠CBA=∠ABP=45°,∴当BABCBP BQ =时,△ABC ∽△PBQ , ∴BQ=3,∴Q1(0,0),.........................................................9分∴当BC BABP BQ =时,△ABC ∽△QBP , ∴BQ=32,∴Q2(37,0);..................................................11分∴Q 点的坐标是(0,0)或(37,0)...............................12分。

九年级上册济南数学期末试卷综合测试(Word版 含答案)

九年级上册济南数学期末试卷综合测试(Word 版 含答案)一、选择题1.圆锥的底面半径为2,母线长为6,它的侧面积为( )A .6πB .12πC .18πD .24π2.如图,△ABC 的顶点在网格的格点上,则tanA 的值为( )A .12B .105C .33D .10103.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒ 4.在Rt △ABC 中,AB =6,BC =8,则这个三角形的内切圆的半径是( )A .5B .2C .5或2D .2或7-1 5.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25° 6.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--7.如图,在Rt ABC ∆中,90C CD AB ∠=︒⊥,,垂足为点D ,一直角三角板的直角顶点与点D 重合,这块三角板饶点D 旋转,两条直角边始终与AC BC 、边分别相交于G H 、,则在运动过程中,ADG ∆与CDH ∆的关系是( )A .一定相似B .一定全等C .不一定相似D .无法判断8.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( )A .45B .35C .43D .349.已知关于x 的一元二次方程 (x - a )(x - b ) -12= 0 (a < b ) 的两个根为 x 1、x 2,(x 1< x 2)则实数 a 、b 、x 1、x 2的大小关系为( )A .a < x 1< b <x 2B .a < x 1< x 2 < bC .x 1< a < x 2 < bD .x 1< a < b < x 2 10.若两个相似三角形的相似比是1:2,则它们的面积比等于( )A .1:2B .1:2C .1:3D .1:4 11.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y =﹣(x +1)2+m 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 3>y 2>y 1B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 2>y 1>y 312.下列说法正确的是( )A .所有等边三角形都相似B .有一个角相等的两个等腰三角形相似C .所有直角三角形都相似D .所有矩形都相似二、填空题13.150°的圆心角所对的弧长是5πcm ,则此弧所在圆的半径是______cm .14.如图,△ABC 周长为20cm ,BC=6cm,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为________cm.15.已知二次函数222y x x -=-,当-1≤x≤4时,函数的最小值是__________.16.若53x y x +=,则y x=______. 17.数据2,3,5,5,4的众数是____.18.二次函数y=x 2−4x+5的图象的顶点坐标为 .19.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.20.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.21.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm .22.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.23.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.24.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________ 三、解答题25.解方程(1)x 2-6x -7=0;(2) (2x -1)2=9.26.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x =交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标;(2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.27.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是 ,众数是 ;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.28.某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 与x 之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.29.如图,小明在一块平地上测山高,先在B 处测得山顶A 的仰角为30°,然后向山脚直行60米到达C 处,再测得山顶A 的仰角为45°,求山高AD 的长度.(测角仪高度忽略不计)30.如图,已知抛物线2y x bx c =++经过(10)A -,、(30)B ,两点,与y 轴相交于点C . (1)求抛物线的解析式;(2)点P 是对称轴上的一个动点,当PAC 的周长最小时,直接写出点P 的坐标和周长最小值;(3)点Q 为抛物线上一点,若8QAB S =,求出此时点Q 的坐标.31.化简并求值: 22+24411m m m m m ++÷+-,其中m 满足m 2-m -2=0. 32.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:πrl=π×2×6=12π,故选:B.【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.2.A解析:A【解析】【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案.【详解】解:如图作CD⊥AB于D,22,tanA=21222CDAD==,故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.C解析:C【解析】【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.4.D解析:D【解析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC, OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2210AC AB BC=+= ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB BC AB OF BC OE AC OD ,∴1111686810 2222r r r ,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC, OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2227AC BC AB ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB AC AB OF BC OD AC OE ,∴11116276827 2222r r r ,∴r=71- .故选:D.本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.5.D解析:D【解析】【分析】根据圆周角定理计算即可.【详解】 解:由圆周角定理得,1252A BOC ∠=∠=︒, 故选:D .【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 7.A解析:A【解析】【分析】根据已知条件可得出A DCB ∠∠=,ADG CDH ∠∠=,再结合三角形的内角和定理可得出AGD CHD ∠∠=,从而可判定两三角形一定相似.【详解】解:由已知条件可得,ADC EDF CDB C 90∠∠∠∠====︒,∵A ACD ACD DCH 90∠∠∠∠+=+=︒,∴A DCH ∠∠=,∵ADG EDC EDC CDH 90∠∠∠∠+=+=︒,∴ADG CDH ∠∠=,继而可得出AGD CHD ∠∠=,∴ADG ~CDH .故选:A .本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键.8.A解析:A【解析】【分析】先根据勾股定理计算出斜边AB的长,然后根据正弦的定义求解.【详解】如图,∵∠C=90°,AC=8,BC=6,∴AB222268BC AC+=+10,∴sin B=84105 ACAB==.故选:A.【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.9.D解析:D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y=(x−a)(x−b),当y=0时,x=a或x=b,当y=12时,由题意可知:(x−a)(x−b)−12=0(a<b)的两个根为x1、x2,由于抛物线开口向上,由抛物线的图象可知:x1<a<b<x2故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.10.D解析:D【解析】【分析】根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵两个相似三角形的相似比是1:2,∴这两个三角形们的面积比为1:4,故选:D.【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解决此题的关键.11.B解析:B【解析】【分析】本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.【详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A点关于x=﹣1的对称点A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右边y随x的增大而减小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故选:B.【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.12.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.二、填空题13.6;【解析】解:设圆的半径为x ,由题意得:=5π,解得:x=6,故答案为6.点睛:此题主要考查了弧长计算,关键是掌握弧长公式l= (弧长为l ,圆心角度数为n ,圆的半径为R ).解析:6;【解析】解:设圆的半径为x ,由题意得:150180x π =5π,解得:x =6,故答案为6. 点睛:此题主要考查了弧长计算,关键是掌握弧长公式l =180n R π (弧长为l ,圆心角度数为n ,圆的半径为R ). 14.8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O 是△ABC 的内切圆,MN 是圆O 的切线解析:8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG ,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O 是△ABC 的内切圆,MN 是圆O 的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC 周长为20cm, BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN 的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.15.-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x≤4时,函数的最小值.【详解】解:∵二次函数,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随解析:-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x ≤4时,函数的最小值.【详解】解:∵二次函数222y x x -=-,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小,∵−1≤x≤4,∴当x =1时,y 取得最小值,此时y =-3,故答案为:-3.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答. 16.【解析】【分析】将已知比例式变形化成等积式,整理出x 与y 的倍数关系,再化成比例式即可得.【详解】解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:. 【点睛】本题考查比例的解析:2 3【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵53x yx+=,∴3x+3y=5x,∴2x=3y,∴23 yx =.故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.17.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.18.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 19.x1=-12,x2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程的解是,(a ,m ,b 均为常数,a≠0),∴方程变形为,即解析:x 1=-12,x 2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,a≠0),∴方程2(3)0a x m b +++=变形为2[(3)]0a x m b +++=,即此方程中x +3=-9或x +3=11,解得x 1=-12,x 2=8,故方程2(3)0a x m b +++=的解为x 1=-12,x 2=8.故答案为x 1=-12,x 2=8.【点睛】此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算. 20.1【解析】【分析】根据勾股定理求出△ABC 的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM ,连接AC ,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC 的各个边的长度,根据勾股定理的逆定理求出∠ACB =90°,再解直角三角形求出即可.【详解】如图:长方形AEFM ,连接AC ,∵由勾股定理得:AB 2=32+12=10,BC 2=22+12=5,AC 2=22+12=5∴AC 2+BC 2=AB 2,AC =BC ,即∠ACB =90°,∴∠ABC =45°∴tan ∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB =90°是解此题的关键.21.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为1203180π⨯=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.22.(,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=解析:(32,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E 坐标(32,2). 故答案为:(32,2). 【点睛】 本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.23.【解析】【分析】利用勾股定理求出AC ,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC =, ∴3AB =∴AB =故答案为:6105. 【点睛】 本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.24.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线n 过点B (4,0)与新图象有三个交点, 当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,当直线处于直线m 的位置:联立y=-2x+b 与y=x 2-4x 并整理:x 2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B 时,将点B 的坐标代入直线表达式得:0=-8+b ,解得:b=8,故-1<b <8;故答案为:-1<b <8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x 轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A 、B 两个临界点,进而求解.三、解答题25.(1)x1=7,x2=-1;(2)x1=2,x2=-1【解析】【分析】(1)根据配方法法即可求出答案.(2)根据直接开方法即可求出答案;【详解】解:(1)x2-6x+9-9-7=0(x-3) 2=16x-3=±4x1=7,x2=-1(2)2x-1=±32x=1±3x1=2,x2=-1【点睛】本题考查了解一元二次方程,观察所给方程的形式,分别使用配方法和直接开方法求解. 26.(1)y=﹣(x﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0)【解析】【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)设直线AC的解析式为y=kx+b,与x轴交于D,得到y=2x−1,求得BD于是得到结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得MN ONAB BC=或MN ONBC AB=,可求得N点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得22-2y x x y x⎧=+⎨=⎩﹣,解得2xy=⎧⎨=⎩或13xy=-⎧⎨=-⎩,∴B(2,0),C(﹣1,﹣3);(2)设直线AC的解析式为y=kx+b,与x轴交于D,把A (1,1),C (﹣1,﹣3)的坐标代入得13k b k b =+⎧⎨-=-+⎩, 解得:21k b =⎧⎨=-⎩, ∴y=2x ﹣1,当y=0,即2x ﹣1=0,解得:x=12,∴D (12,0), ∴BD=2﹣12=32, ∴△ABC 的面积=S △ABD +S △BCD =12×32×1+12×32×3=3; (3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ),∴ON=|x|,MN=|﹣x 2+2x|,由(2)知,,,∵MN ⊥x 轴于点N ,∴∠ABC=∠MNO=90°,∴当△ABC 和△MNO 相似时,有MN ON AB BC =或MN ON BC AB=, ①当MN ON AB BC =时,∴=|x||﹣x+2|=13|x|, ∵当x=0时M 、O 、N 不能构成三角形,∴x≠0,∴|﹣x+2|=13,∴﹣x+2=±13,解得x=53或x=73,此时N 点坐标为(53,0)或(73,0); ②当或MN ON BC AB =时,∴=,即|x||﹣x+2|=3|x|, ∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N 点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N 、M 的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中. 27.(1)16,17;(2)14;(3)2800.【解析】【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;(3)用样本平均数估算总体的平均数.【详解】(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案为16,17;(2)10791215173202610⨯+++++⨯++=()14, 答:这10位居民一周内使用共享单车的平均次数是14次;(3)200×14=2800答:该小区居民一周内使用共享单车的总次数为2800次.【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.28.(1)10700y x =-+;(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x ≤56【解析】【分析】(1)直接利用待定系数法求出一次函数解析式即可;(2)利用w=销量乘以每件利润进而得出关系式求出答案;(3)利用w=3640,进而解方程,再利用二次函数增减性得出答案.【详解】解:(1)y 与x 之间的函数关系式为:y kx b =+把(35,350),(55,150)代入得:由题意得:3503515055k b k b=+⎧⎨=+⎩ 解得:10700k b =-⎧⎨=⎩∴y 与x 之间的函数关系式为:10700y x =-+.(2)设销售利润为W 元则W=(x ﹣30)•y =(x ﹣30)(﹣10x +700),W =﹣10x 2+1000x ﹣21000W =﹣10(x ﹣50)2+4000∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元.(3)令W =3640∴﹣10(x ﹣50)2+4000=3640∴x 1=44,x 2=56如图所示,由图象得:当44≤x ≤56时,每天利润不低于3640元.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.29.30(31)米【解析】【分析】设AD =xm ,在Rt △ACD 中,根据正切的概念用x 表示出CD ,在Rt △ABD 中,根据正切的概念列出方程求出x 的值即可.【详解】由题意得,∠ABD =30°,∠ACD =45°,BC =60m ,设AD =xm ,在Rt △ACD 中,∵tan ∠ACD =AD CD , ∴CD =AD =x ,∴BD =BC +CD =x +60,在Rt △ABD 中,∵tan ∠ABD =AD BD, ∴360)x x =+, ∴30(31)x =米,答:山高AD 为30(31)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.30.(1)223y x x =--;(2)(1,2)P -1032;(3)1(122,4)Q - ,2(122,4)Q + ,3(1,4)Q -【解析】【分析】(1)把(10)A -,、(30)B ,代入抛物线2y x bx c =++即可求出b,c 即可求解; (2)根据A,B 关于对称轴对称,连接BC 交对称轴于P 点,即为所求,再求出坐标及PAC 的周长;(3)根据△QAB 的底边为4,故三角形的高为4,令y =4,求出对应的x 即可求解.【详解】(1)把(10)A -,、(30)B ,代入抛物线2y x bx c =++得01093b c b c =-+⎧⎨=++⎩ 解得23b c =-⎧⎨=-⎩∴抛物线的解析式为:223y x x =--;(2)如图,连接BC 交对称轴于P 点,即为所求,∵223y x x =--∴C(0,-3),对称轴x=1设直线BC 为y=kx+b, 把(30)B ,, C(0,-3)代入y=kx+b 求得k=1,b=-3, ∴直线BC 为y=x-3令x=1,得y=-2,∴P (1,-2),∴PAC 的周长=AC+AP+CP=AC+BC=[]22(10)0(3)--+--+[]22(30)0(3)-+--=1032+;(3)∵△QAB 的底边为AB=4, 182QAB SAB H =⨯= ∴三角形的高为4, 令y =4,即2234x x --=±解得x 1=122-2=122+3=1故点Q 的坐标为1(1Q - , 2(1Q + ,3(1,4)Q -.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法与一次函数的求解.31.12m m -+,原式=14 【解析】【分析】 根据分式的运算进行化简,再求出一元二次方程m 2-m -2=0的解,并代入使分式有意义的值求解.【详解】22+24411m m m m m ++÷+-=2+2(1)(1)1(2)m m m m m +-⋅++=12m m -+, 由m 2-m -2=0解得,m 1=2,m 2=-1,因为m =-1分式无意义,所以m =2时,代入原式=2122-+=14. 【点睛】此题主要考查分式的运算及一元二次方程的求解,解题的关键熟知分式额分母不为零.32.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.。

山东省济南市九年级(上)期末数学试卷(含解析)

山东省济南市九年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.(4分)下列方程中,是一元二次方程的是()A.2x﹣3=0B.x2﹣2y=0C.=﹣3D.x2=02.(4分)如图,是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.3.(4分)如果2a=5b,那么下列比例式中正确的是()A.=B.=C.=D.=4.(4分)若反比例函数的图象经过(﹣1,3),则这个函数的图象一定过()A.(﹣3,1)B.(﹣,3)C.(﹣3,﹣1)D.(,3)5.(4分)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,则sin A的值为()A.B.C.D.6.(4分)将抛物线y=3x2先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为()A.y=3(x+1)2+2B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣27.(4分)已知反比例函数y=的图象上有三点A(4,y1),B(2.y2),c(,y3)则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y3>y1>y28.(4分)如图,现有两个相同的转盘,其中一个分为红、黄两个相等的区域,另一个分为红、黄、蓝三个相等的区域,随即转动两个转盘,转盘停止后指针指向相同颜色的概率为()A.B.C.D.9.(4分)一元二次方程4x2﹣3x+=0根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根10.(4分)反比例函数y=与y=﹣kx+1(k≠0)在同一坐标系的图象可能为()A.B.C.D.11.(4分)如图,在△ABC中,点D、B分别是AB、AC的中点,则下列结论:①BC=3DE;②=;③=;④=;其中正确的有()A.4个B.3个C.2个D.1个12.(4分)在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点.已知二次函数y =ax2+4x+c(a≠0)的图象上有且只有一个完美点(,),且当0≤x≤m时,函数y=ax2+4x+c﹣(a ≠0)的最小值为﹣3,最大值为1,则m的取值范围是()A.﹣1≤m≤0B.2≤m<C.2≤m≤4D.<m≤二、填空题(本大题共6个小题,每小题4分,共24分把答案填在答题卡的横线上)13.(4分)若,则锐角α的度数是.14.(4分)在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一一球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为.15.(4分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP =3米,PD=15米,那么该古城墙的高度CD是米.16.(4分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c >0的解集为.17.(4分)如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C 始终在双曲线y=(k<0)上运动,则k的值是.18.(4分)在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD'P,PD'的延长线交边AB于点M,过点B作BN∥MP交DC于点N,连接AC,分别交PM,PB于点E,F.现有以下结论:①连接DD',则AP垂直平分DD';②四边形PMBN是菱形;③AD2=DP•PC;④若AD=2DP,则;其中正确的结论是(填写所有正确结论的序号)三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解方程:x2﹣6x﹣7=0.20.(6分)计算:+2﹣1﹣2cos60°+(π﹣3)021.(6分)如图,在△ABC中,∠ACB=90°,D为AC的中点,DE⊥AB于点E,AC=8,AB=10.求AE 的长.22.(8分)如图,聪聪想在自己家的窗口A处测量对面建筑物CD的高度,他首先量出窗口A到地面的距离(AB)为16m,又测得从A处看建筑物底部C的俯角α为30°,看建筑物顶部D的仰角β为53°,且AB,CD都与地面垂直,点A,B,C,D在同一平面内.(1)求AB与CD之间的距离(结果保留根号).(2)求建筑物CD的高度(结果精确到1m).(参考数据:sin53°≈0.8,cos53°≈0.6,tan53≈1.3,≈1.7)23.(8分)为实现“先富带动后富,从而达到共同富裕”,某县为做好“精准扶贫”,2017年投入资金1000万元用于教育扶贫,以后投入资金逐年增加,2019年投入资金达到1440万元.(1)从2017年到2019年,该县投入用于教育扶贫资金的年平均增长率是多少?(2)假设保持这个年平均增长率不变,请预测一下2020年该县将投入多少资金用于教育扶贫?24.(10分)小红和小丁玩纸牌优戏,如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌面上.(1)小红从4张牌中抽取一张,这张牌的数字为偶数的概率是;(2)小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树秋图或列表法求出的小红获胜的概率.25.(10分)如图,一次函数y=﹣x+5的图象与坐标轴交于A,B两点,与反比例函数y=的图象交于M,N两点,过点M作MC⊥y轴于点C,且CM=1,过点N作ND⊥x轴于点D,且DN=1.已知点P是x轴(除原点O外)上一点.(1)直接写出M、N的坐标及k的值;(2)将线段CP绕点P按顺时针或逆时针旋转90°得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出所有的点Q的坐标;如果不能,请说明理由;(3)当点P滑动时,是否存在反比例函数图象(第一象限的一支)上的点S,使得以P、S、M、N四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点S的坐标;若不存在,请说明理由.26.(12分)(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为;②直线CF与DG所夹锐角的度数为.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).27.(12分)如图1,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、C(3,0),点B为抛物线顶点,直线BD为抛物线的对称轴,点D在x轴上,连接AB、BC,∠ABC=90°,AB与y轴交于点E,连接CE.(1)求项点B的坐标并求出这条抛物线的解析式;(2)点P为第一象限抛物线上一个动点,设△PEC的面积为S,点P的横坐标为m,求S关于m的函数关系武,并求出S的最大值;(3)如图2,连接OB,抛物线上是否存在点Q,使直线QC与直线BC所夹锐角等于∠OBD,若存在请直接写出点Q的坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.【解答】解:A、是一元一次方程,故A不合题意;B、是二元二次方程,故B不合题意;C、是分式方程,故C不合题意;D、是一元二次方程,故D符合题意.故选:D.2.【解答】解:根据图形可得主视图为:故选:D.3.【解答】解:∵2a=5b,∴=或=或=.故选:C.4.【解答】解:∵反比例函数的图象经过(﹣1,3),∴k=﹣1×3=﹣3.∵﹣3×1=﹣3,﹣×3=﹣1,﹣3×(﹣1)=3,×3=1,∴反比例函数的图象经过点(﹣3,1).故选:A.5.【解答】解:∵在Rt△ABC中,∠C=90°,BC=3,AC=4,∴AB==5,∴sin A==.故选:A.6.【解答】解:抛物线y=3x2先向左平移一个单位得到解析式:y=3(x+1)2,再向上平移2个单位得到抛物线的解析式为:y=3(x+1)2+2.故选:A.7.【解答】解:把A(4,y1),B(2.y2),c(,y3)分别代入y=得y1==,y2==1,y3==4,所以y1<y2<y3.故选:C.8.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中转盘停止后指针指向相同颜色的有2种结果,所以转盘停止后指针指向相同颜色的概率为=,故选:A.9.【解答】解:4x2﹣3x+=0,这里a=4,b=﹣3,c=,b2﹣4ac=(﹣3)2﹣4×=5>0,所以方程有两个不相等的实数根,故选:D.10.【解答】解:A、由反比例函数的图象可知,k>0,一次函数图象呈上升趋势且交与y轴的正半轴,﹣k>0,即k<0,故本选项错误;B、由反比例函数的图象可知,k>0,一次函数图象呈下降趋势且交与y轴的正半轴,﹣k<0,即k>0,故本选项正确;C、由反比例函数的图象可知,k<0,一次函数图象呈上升趋势且交与y轴的负半轴(不合题意),故本选项错误;D、由反比例函数的图象可知,k<0,一次函数图象呈下降趋势且交与y轴的正半轴,﹣k<0,即k>0,故本选项错误.故选:B.11.【解答】解:∵△ABC中,点DE分别是AB,AC的中点,∴BC=2DE,DE∥BC,∴△ADE∽△ABC,∴=,即=;∴==,=()2=,故正确的有②.故选:D.12.【解答】解:令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32﹣4ac=0,即4ac=9,又方程的根为=,解得a=﹣1,c=﹣,故函数y=ax2+4x+c﹣=﹣x2+4x﹣3,如图,该函数图象顶点为(2,1),与y轴交点为(0,﹣3),由对称性,该函数图象也经过点(4,﹣3).由于函数图象在对称轴x=2左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当0≤x≤m 时,函数y=﹣x2+4x﹣3的最小值为﹣3,最大值为1,∴2≤m≤4,故选:C.二、填空题(本大题共6个小题,每小题4分,共24分把答案填在答题卡的横线上)13.【解答】解:∵,∴α=45°.故答案为:45°.14.【解答】解:根据题意得=0.25,解得:a=24,经检验:a=24是分式方程的解,故答案为:24.15.【解答】解:如图,由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=15米,∴=,解得:CD=10米,故答案为:10.16.【解答】解:根据图示知,抛物线y=ax2+bx+c图象的对称轴是x=﹣1,与x轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y=ax2+bx+c图象与x轴的两个交点关于直线x=﹣1对称,即抛物线y=ax2+bx+c图象与x轴的另一个交点与(﹣5,0)关于直线x=﹣1对称,∴另一个交点的坐标为(3,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴抛物线y=ax2+bx+c的图形在x轴上方,∴不等式ax2+bx+c>0的解集是﹣5<x<3.故答案为:﹣5<x<3.17.【解答】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y=的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE,在△COD和△OAE中,,∴△COD≌△OAE,∴OD=AE,CD=OE,∴点C的坐标为(,﹣a),×(﹣a)=﹣1,∴k=﹣1.故答案为:﹣1.18.【解答】解:∵将△ADP沿AP翻折得到△AD'P,∴AP垂直平分DD',故①正确;解法一:过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG•GB,即AD2=DP•PC;解法二:易证:△ADP∽△PCB,∴=,由于AD=CB,∴AD2=DP•PC;故③正确;∵DP∥AB,∴∠DP A=∠P AM,由题意可知:∠DP A=∠APM,∴∠P AM=∠APM,∵∠APB﹣∠P AM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;故②正确;由于=,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG•GB,∴4=1•GB,∴GB=PC=4,AB=AG+GB=5,∵CP∥AB,∴△PCF∽△BAF,∴==,∴,又易证:△PCE∽△MAE,AM=AB=∴===∴,∴EF=AF﹣AE=AC﹣=AC,∴==,故④错误,即:正确的有①②③,故答案为:①②③.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.【解答】解:原方程可化为:(x﹣7)(x+1)=0,x﹣7=0或x+1=0;解得:x1=7,x2=﹣1.20.【解答】解:原式=3+﹣2×+1…………………………..(4分)=……………………………………..(6分)21.【解答】解:∵AC=8,D为AC的中点,∴AD=4,∵DE⊥AB,∴∠AED=90°,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴,∴,∴AE=.22.【解答】解:(1)作AM⊥CD于M,则四边形ABCM为矩形,∴CM=AB=16,AM=BC,在Rt△ACM中,tan∠CAM=,则AM===16(m),答:AB与CD之间的距离16m;(2)在Rt△AMD中,tan∠DAM=,则DM=AM•tan∠DAM≈16×1.7×1.3=35.36,∴DC=DM+CM=35.36+16≈51(m),答:建筑物CD的高度约为51m.23.【解答】解:(1)设该地投入教育扶贫资金的年平均增长率为x,根据题意,得:1000(1+x)2=1440,解得:x=0.2或x=﹣2.2(舍),答:从2017年到2019年,该地投入教育扶贫资金的年平均增长率为20%;(2)2020年投入的教育扶贫资金为1440×(1+20%)=1728万元.24.【解答】解:(1)4张牌中有3张是偶数这张牌的数字为偶数的概率是.故答案为.(2)解:画树状图为:共有12种等可能的结果数,其中小红获胜的结果数为6,所以小红获胜的概率==.25.【解答】解:(1)由题意M(1,4),n(4,1),∵点M在y=上,∴k=4;(2)当点P滑动时,点Q能在反比例函数的图象上;如图1,CP=PQ,∠CPQ=90°,过Q作QH⊥x轴于H,易得:△COP≌△PHQ,∴CO=PH,OP=QH,由(2)知:反比例函数的解析式:y=;当x=1时,y=4,∴M(1,4),∴OC=PH=4设P(x,0),∴Q(x+4,x),当点Q落在反比例函数的图象上时,x(x+4)=4,x2+4x+4=8,x=﹣2±2,当x=﹣2+2时,x+4=2+2,如图1,Q(2+2,﹣2+2);当x=﹣2﹣2时,x+4=2﹣2,如图2,Q(2﹣2,﹣2﹣2);如图3,CP=PQ,∠CPQ=90°,设P(x,0)过P作GH∥y轴,过C作CG⊥GH,过Q作QH⊥GH,易得:△CPG≌△PQH,∴PG=QH=4,CG=PH=x,∴Q(x﹣4,﹣x),同理得:﹣x(x﹣4)=4,解得:x1=x2=2,∴Q(﹣2,﹣2),综上所述,点Q的坐标为(2+2,﹣2+2)或(2﹣2,﹣2﹣2)或(﹣2,﹣2).(3)当MN为平行四边形的对角线时,根据MN的中点的纵坐标为,可得点S的纵坐标为5,即S(,5);当MN为平行四边形的边时,易知点S的纵坐标为3,即S(,3);综上所述,满足条件的点S的坐标为(,5)或(,3).26.【解答】解:(1)【问题发现】如图①中,①线段CF与DG的数量关系为CF=DG;②直线CF与DG所夹锐角的度数为45°.理由:如图①中,连接AF.易证A,F,C三点共线.∵AF=AG.AC=AD,∴CF=AC﹣AF=(AD﹣AG)=DG.故答案为CF=DG,45°.(2)【拓展探究】结论不变.理由:连接AC,AF,延长CF交DG的延长线于点K,AG交FK于点O.∵∠CAD=∠F AG=45°,∴∠CAF=∠DAG,∵AC=AD,AF=AG,∴==,∴△CAF∽△DAG,∴==,∠AFC=∠AGD,∴CF=DG,∠AFO=∠OGK,∵∠AOF=∠GOK,∴∠K=∠F AO=45°.(3)【解决问题】如图3中,连接EC.∵AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∠B=∠ACB=45°,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABC=45°,∴∠BCE=90°,∴点E的运动轨迹是在射线CE上,当OE⊥CE时,OE的长最短,易知OE的最小值为,故答案为,27.【解答】解:(1)∵A(﹣1,0)、C(3,0),∴AC=4,抛物线对称轴为x==1,∵BD是抛物线的对称轴,∴D(1,0),∵由抛物线的对称性可知BD垂直平分AC,∴BA=BC,又∵∠ABC=90°,∴BD=AC=2,∴顶点B坐标为(1,2),设抛物线的解析式为y=a(x﹣1)2+2,将A(﹣1,0)代入,得0=4a+2,解得,a=﹣,∴抛物线的解析式为:y=﹣(x﹣1)2+2=﹣x2+x+;(2)设直线AB的解析式为y=kx+b,将A(﹣1,0),B(1,2)代入,得,,解得,k=1,b=1,∴y AB=x+1,当x=0时,y=1,∴E(0,1),∵点P的横坐标为m,∴点P的纵坐标为﹣m2+m+,如图1,连接EP,OP,CP,则S△EPC=S△OEP+S△OCP﹣S△OCE=×1×m+×3(﹣m2+m+)﹣×1×3=﹣m2+2m+,=﹣(m﹣)2+,∵﹣<0,根据二次函数和图象及性质知,当m=时,S有最大值;(3)由(2)知E(0,1),又∵A(﹣1,0),∴OA=OE=1,∴△OAE是等腰直角三角形,∴AE=OA=,又∵AB=BC=AB=2,∴BE=AB﹣AE=,∴==,又∵=,∴=,又∵∠ODB=∠EBC=90°,∴△ODB∽△EBC,∴∠OBD=∠ECB,延长CE,交抛物线于点Q,则此时直线QC与直线BC所夹锐角等于∠OBD,设直线CE的解析式为y=mx+1,将点C(3,0)代入,得,3m+1=0,∴m=﹣,∴y CE=﹣x+1,联立,解得,或,∴点Q的坐标为(﹣,).。

【初三数学】济南市九年级数学上期末考试检测试题及答案

九年级上册数学期末考试题(含答案)一、选择题(每题2分,共24分)下列各题的四个选项中,只有一个答案是正确的,请将正确答案的代号填涂在机读卡上.1.(2分)有一实物如图,那么它的主视图是()A.B.C.D.2.(2分)关于x的方程x2﹣2x﹣2=0的根的情况是()A.有两个不等实根B.有两个相等实根C.没有实数根D.无法判断根的情况3.(2分)若函数y=(2m﹣1)x是反比例函数,则m的值是()A.﹣1或1B.小于的任意实数C.﹣1D.14.(2分)下列四边形中,对角线一定相等的是()A.菱形B.矩形C.平行四边形D.梯形5.(2分)下列式子从左到右变形一定正确的是()A.=B.=C.=D.=6.(2分)关于x的一元二次方程2x(x+1)=(x+1)的根是()A.x=0B.x=﹣1C.x1=0,x2=﹣1D.7.(2分)下列说法中的错误的是()A.一组邻边相等的矩形是正方形B.一组邻边相等的平行四边形是菱形C.一组对边相等且有一个角是直角的四边形是矩形D.一组对边平行且相等的四边形是平行四边形8.(2分)某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.200只B.400只C.800只D.1000只9.(2分)如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.10.(2分)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.11.(2分)若m,n满足m2+5m﹣3=0,n2+5n﹣3=0,且m≠n.则的值为()A.B.﹣C.﹣D.12.(2分)两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形P AOB的面积不会发生变化;③P A与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是()A.①②③B.②③④C.①②④D.①③④二、填空题(每小题3分,共15分)将答案填在答题卡相应的横线上.13.(3分)菱形的两条对角线长分别是6和8,则菱形的边长为.14.(3分)对于实数a,b,定义运算“※”:a※b=a2+b,则方程x※(x﹣2)=0的根为.15.(3分)已知A(x1,y1),B(x2,y2)都在反比例函数y=的图象上.若x1x2=﹣4,则y1y2的值为.16.(3分)将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB =,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处,则BC 的长为.最新人教版数学九年级上册期末考试试题(含答案)一、选择题(本大共12个小题,每小题4分共48分)在每个小题的下面,都始出了代号为A,B,C,D的四个答案,其中只有一个是正确的)1.3的相反数是()A.3B.C.﹣3D.﹣2.下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形3.为调查某中学学生对社会主义核心价值观的了解程度,某课外活动小组进行了抽样调查,以下样本最具有代表性的是()A.初三年级的学生B.全校女生C.每班学号尾号为5的学生D.在篮球场打篮球的学生4.把正方形按如图所示的规律拼图案,其中第①个图案中有1个正方形,第②个图案中有5个正方形,第③个图案中有9个正方形…按此规律排列下去,则第⑧个图案中正方形的个数为()A.25B.29C.33D.375.有两个相似的三角形,已知其中一个三角形的最长边为12cm,面积为18cm2,而另一个三角形的最长边为16m,则另一个三角形的面积是()cm2A.22B.24C.30D.326.下列命题正确的是()A.平行四边形的对角线一定相等B.三角形任意一条边上的高线、中线和角平分线三线合一C.三角形的中位线平行于第三边并且等于它的一半D.三角形的两边之和小于第三边7.估计(3+)÷的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间8.按照如图的程序计算:如果输入y的值是正整数,输出结果是94,则满足条件的y值有()A.4B.3C.2D.19.如图,AB是⊙O的直径,点C在⊙O上,且不与A、B两点重合,过点C的切线交AB 的延长线于点D,连接AC,BC,若∠ABC=53°,则∠D的度数是()A.16°B.18°C.26.5°D.37.5°10.在距离大足城区的1.5公里的北山之上,有一处密如峰房的石窟造像点,今被称为北山石窟.北山石窟造像在两宋时期达到鼎盛,逐渐都成了以北山佛湾为中心,环绕营盘坡、佛耳岩,观音坡、多宝塔等多处造像点的大型石窟群.多宝塔,也称为“白塔”“北塔”,于岩石之上,为八角形阁式砖塔,外观可辨十二级,其内有八层楼阁,可沿着塔心内的梯道逐级而上,元且期间,小华和妈妈到大足北山游玩,小华站在坡度为l=1:2的山坡上的B点观看风景,恰好看到对面的多宝培,测得眼睛A看到塔顶C的仰角为30°,接着小华又向下走了10米,刚好到达坡底E,这时看到塔顶C的仰角为45°,若AB =1.5米,则多宝塔的高度CD约为()(精确到0.1米,参考数据≈1.732)A.51.0米B.52.5米C.27.3米D.28.8米11.如图,在平面直角坐标中,菱形ABCO的顶点O在坐标原点,且与反比例函数y=的图象相交于A(m,3),C两点,已知点B(2,2),则k的值为()A.6B.﹣6C.6D.﹣612.若关于x的不等式组的解集为x>3,且关于x的分式方程﹣=1的解为非正数,则所有符合条件的整数的a和为()A.11B.14C.17D.20二、填空题(本大服共6个小题,每小题4分,共24分)请将每小题的答案直按填在等卡中对应的13.计算,2﹣2+|﹣3|+(2﹣π)0=.14.如图,在矩形ABCD中,连接AC,以点B为圆心,BA为半径画弧,交BC于点E,已知BE=3,BC=3,则图中阴影部分的面积为(结果保留π).15.从﹣2,﹣1,3这三个数中随机抽取两个数分别记为x,y,把点M的坐标记为(x,y),若点N为(0,3),则在平面直角坐标系内直线MN经过过四象限的概率为.16.如图,在边长为7的正方形ABCD中,E为BC上一点,连接AE,将△ABE沿EF折叠;使点A恰好落在CD上的A′处,若A′D=2,求B′E=.17.大课间到了,小明和小欢两人打算从教室匀速跑到600米外的操场做课间操,刚出发时小明就发现鞋带松了,停下来系鞋带,小欢则直接前往操场,小明系好鞋带后立即沿同一路开始追赶小欢,小明在途中追上小欢后继续前行,小明到达操场时课间操还没有开始,于是小明站在操场等待,小欢继续前往操场,设小明和小欢两人想距s(米),小欢行走的时间为t(分钟),s关于t的函数的部分图象如图所示,当两人第三次相距60米时,小明离操场还有米.18.某公司推出一款新产品,通过市场调研后,按三种颜色受欢迎的程度分别对A颜色、B 颜色、C颜色的产品在成本的基础上分别加价40%,50%,60%出售(三种颜色产品的成本一样),经过一个季度的经营后,发现C颜色产品的销量占总销量的40%,三种颜色产品的总利润率为51.5%,第二个季度,公司决定对A产品进行升级,升级后A产品的成本提高了25%,其销量提高了60%,利润率为原来的两倍;B产品的销量提高到与升级后的A产品的销量一样,C产品的销量比第一季度提高了50%,则第二个季度的总利润率为.三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必写出必要的演算过程和推理步骤,请将解答过程书写在答题卡中对应的位置上19.如图,AB∥EF,AD平分∠BAC,且∠C=45°,∠CDE=125°,求∠ADF的度数.20.由于世界人口增长、水污染以及水资源浪费等原因,全世界面临着淡水资源不足的问题,我国是世界上严重缺水的国家之一,人均占水量仅为2400m3左右,我国已被联合国列为13个贫水国家之一,合理利用水资源是人类可持续发展的当务之急,而节约用水是水资源合理利用的关键所在,是最快捷、最有效、最可行的维护水资源可持续利用的途径之一,为了调查居民的用水情况,有关部门对某小区的20户居民的月用水量进行了调查,数据如下:(单位:t)6.78.77.311.47.0 6.911.79.710.09.77.38.410.68.77.28.710.59.38.48.7整理数据按如下分段整理样本数据并补至表格:(表1)分析数据,补全下列表格中的统计量;(表2)得出结论:(1)表中的a=,b=,c=,d=.(2)若用表1中的数据制作一个扇形统计图,则9.0≤x<10.5所示的扇形圆心角的度数为度.(3)如果该小区有住户400户,请根据样本估计用水量在6.0≤x<9.0的居民有多少户?四、解答题(本大题5个小题,每小题10分,共50分)解答时每小题必写出必要的演算过程和推理步骤,画出必要的图形,(包括辅助线),请将解答过程书写在答题卡中对应的位置上21.计算:(1)(a+b)(a﹣2b)﹣(a﹣b)2(2)÷(﹣x﹣2)22.如图,在平面直角坐标系中,直线AB:y=kx﹣6(k≠0)与x轴,y轴分别交于A,B 两点,点C(1,m)在线AB上,且tan∠ABO=,把点B向上平移8个单位,再向左平移1个单位得到点D.(1)求直线CD的解析式;(2)作点A关于y轴的对称点E,将直线DB沿x轴方向平移与直线CD相交于点F,连接AF、EF,当△AEF的面积不小于21时,求F点横坐标的取值范围.23.2018年11月重庆潮童时装周在重庆渝北举了八场秀,云集了八大国内外潮童品牌,不仅为大家带来了一场品牌走秀盛会,更让人们将目光转移到了00后、10后童模群体身上,开启服装新秀潮流,某大型商场抓住这次商机购进A、B两款新童装共1000件进行试销售,其中每件A款童装进价160元,每件B款童装进价200元,若该商场本次以每件A 款童装按进价加价17元,每件B款童装按进价加价15%进行销售,全部销售完,共获利24800元.(1)求购进A、B两款童装各多少件?(2)元且期间该商场又购进A、B两款童装若干件并展开了降价促销活动,在促销期间,该商场将每件A款童装按进价提高(m+10)%进行销售,每件B款童装装按售价降低m%销售.结果在元旦的销售活动中A款童装的销售量比(1)中的销售量降低了m%,B款童装销售量比(1)中销售量上升了20%,两款服装销售利润之和比(1)中利润多了3200元.求m的值.24.在△ABC中,D为BC上一点,连接AD,过点B作BE垂直于CA的延长线于点E,BE与DA的延长线相交于点F.(1)如图1,若AB平分∠CBE,∠ADB=30°,AE=3,AC=7,求CD的长;(2)如图2,若AB=AC,∠ADB=45°,求证;BC=DF.25.阅读下列两则材料,回答问题,材料一:定义直线y=ax+b与直线y=bx+a互为“互助直线”,例如,直线y=x+4与直y=4x+1互为“互助直线“材料二:对于平面直角坐标系中的任意两点P1(x1,y1)、P2(x2,y2),P1、P2两点间的直角距离d(P1,P2)=|x1﹣x2|+|y1﹣y2|.例如:Q1(﹣3,1)、Q2(2,4)两点间的直角距离为d(Q1,Q2)=|﹣3﹣2|+|1﹣4|=8设P0(x0,y0)为一个定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.(1)计算S(﹣1,6),T(﹣2,3)两点间的直角距离d(S,T)=,直线y =2x+3上的一点H(a,b)又是它的“互助直线”上的点,求点H的坐标.(2)对于直线y=ax+b上的任意一点M(m,n),都有点N(3m,2m﹣3n)在它的“互助直线”上,试求点L(5,﹣)到直线y=ax+b的直角距离.五、解答题(本大题1个小题,共12分)解答时每小题必写出必要的演算过程和推理步骤,画出必要的图形,(包括辅助线),请将解答过程书写在答题卡中对应的位置上26.如图①,已知抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于C 点,抛物线的顶点为Q,连接BC.(1)求直线BC的解析式;(2)点P是直线BC上方抛物线上的一点,过点P作PD⊥BC于点D,在直线BC上有一动点M,当线段PD最大时,求PM+MB最小值;(3)如图②,直线AQ交y轴于G,取线段BC的中点K,连接OK,将△GOK沿直线AQ平移得△G′O'K′,将抛物线y=﹣x2+x+2沿直线AQ平移,记平移后的抛物线为y′,当抛物线y′经过点Q时,记顶点为Q′,是否存在以G'、K'、Q'为顶点的三角形是等腰三角形?若存在,求出点G′的坐标;若不存在,请说明理由.2018-2019学年重庆实验外国语学校九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大共12个小题,每小题4分共48分)在每个小题的下面,都始出了代号为A,B,C,D的四个答案,其中只有一个是正确的)1.3的相反数是()A.3B.C.﹣3D.﹣【分析】根据相反数的定义,即可解答.【解答】解:3的相反数是﹣3,故选:C.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.为调查某中学学生对社会主义核心价值观的了解程度,某课外活动小组进行了抽样调查,以下样本最具有代表性的是()A.初三年级的学生B.全校女生C.每班学号尾号为5的学生D.在篮球场打篮球的学生【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A、B、D中进行抽查,不具有代表性,对抽取的对象划定了范围,因而不具有代表性.C、每班学号尾号为5的学生进行调查具有代表性.故选:C.【点评】此题主要考查了抽样调查的可靠性,正确理解抽样调查的意义是解题关键.4.把正方形按如图所示的规律拼图案,其中第①个图案中有1个正方形,第②个图案中有5个正方形,第③个图案中有9个正方形…按此规律排列下去,则第⑧个图案中正方形的个数为()A.25B.29C.33D.37【分析】设第n个图案有a n个正方形(n为正整数).观察图形,根据图形中正方形个数的变化可得出变化规律“a n=4n﹣3(n为正整数)”,再代入n=8即可求出结论.【解答】解:设第n个图案有a n个正方形(n为正整数).观察图形,可知:a1=1,a2=1+4×1=5,a3=1+4×2=9,…,∴a n=1+4(n﹣1)=4n﹣3(n为正整数),∴a8=4×8﹣3=29.故选:B.【点评】本题考查了规律型:图形的变化类,根据图形中正方形个数的变化找出变化规律“a n=4n﹣3(n为正整数)”是解题的关键.5.有两个相似的三角形,已知其中一个三角形的最长边为12cm,面积为18cm2,而另一个三角形的最长边为16m,则另一个三角形的面积是()cm2A.22B.24C.30D.32【分析】根据相似三角形的面积的比等于相似比的平方列式计算,得到答案.【解答】解:设另一个三角形的面积是xcm2,则=()2,解得,x=32,故选:D.【点评】本题考查的是相似三角形的性质,相似三角形的面积的比等于相似比的平方.6.下列命题正确的是()A.平行四边形的对角线一定相等B.三角形任意一条边上的高线、中线和角平分线三线合一C.三角形的中位线平行于第三边并且等于它的一半D.三角形的两边之和小于第三边【分析】根据平行四边形的性质、等腰三角形的性质、中位线定理、三边关系逐项判断即可.【解答】解:A、平行四边形的对角线互相平分,说法错误,故A选项不符合题意;B、等边三角形同一条边上的高线、中线和对角的平分线三线合一,说法错误,故B选项不符合题意;C、三角形的中位线平行于第三边且等于它的一半,说法正确,故C选项符合题意;D、三角形的两边之和大于第三边,说法错误,故D选项不符合题意.故选:C.【点评】本题主要考查平行四边形的性质、等边三角形的相关性质、三角形的中位线定理、三角形的三边关系,解决此题时,只要能熟记相关的性质与判定即可.7.估计(3+)÷的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间【分析】先把无理数式子进行化简,化简到6+的形式,先判断的范围,找到和6相邻的能开方的正整数,同时开方求出的范围,再根据不等式的性质求出6+的范围.【解答】解:∵=6+∵4<6<9∴2<<3∴2+6<6+<3+6∴8<6+<9故选:A.【点评】本题考查了无理数的估值,先求出无理数的范围是关键,在结合不等式的性质就可以求出6+的范围.8.按照如图的程序计算:如果输入y的值是正整数,输出结果是94,则满足条件的y值有()A.4B.3C.2D.1【分析】当输出结果是94,代入3y+1,求得y,再把求得的这个y值作为输出结果代入3y+1,求得y,一直下去,即可得出正整数y的值的个数.【解答】解:当3y+1=94时,解得y=31,当3y+1=31时,解得y=10,当3y+1=10时,解得y=3,当3y+1=3时,解得y=,不是整数,舍去,故选:B.【点评】本题考查了程序图及解一元一次方程,解决本题需分类讨论.9.如图,AB是⊙O的直径,点C在⊙O上,且不与A、B两点重合,过点C的切线交AB 的延长线于点D,连接AC,BC,若∠ABC=53°,则∠D的度数是()A.16°B.18°C.26.5°D.37.5°【分析】连接OC,由切线的性质可得出∠OCD=90°,由OB=OC,∠ABC=53°可得出∠OCB,∠CBD的度数,由∠BCD=90°﹣∠OCB可求出∠BCD的度数,再利用三角形内角和定理即可求出∠D的度数.【解答】解:连接OC,如图所示.∵CD为⊙O的切线,∴∠OCD=90°.∵OB=OC,∠ABC=53°,∴∠OCB=53°,∠CBD=180°﹣∠ABC=127°,∴∠BCD=90°﹣∠OCB=37°,∴∠D=180°﹣∠CBD﹣∠BCD=16°.故选:A.【点评】本题考查了切线的性质、等腰三角形的性质、邻补角以及三角形内角和定理,利用切线的性质、等腰三角形的性质以及邻补角,求出∠CBD,∠BCD的度数是解题的关键.10.在距离大足城区的1.5公里的北山之上,有一处密如峰房的石窟造像点,今被称为北山石窟.北山石窟造像在两宋时期达到鼎盛,逐渐都成了以北山佛湾为中心,环绕营盘坡、佛耳岩,观音坡、多宝塔等多处造像点的大型石窟群.多宝塔,也称为“白塔”“北塔”,于岩石之上,为八角形阁式砖塔,外观可辨十二级,其内有八层楼阁,可沿着塔心内的梯道逐级而上,元且期间,小华和妈妈到大足北山游玩,小华站在坡度为l=1:2的山坡上的B点观看风景,恰好看到对面的多宝培,测得眼睛A看到塔顶C的仰角为30°,接着小华又向下走了10米,刚好到达坡底E,这时看到塔顶C的仰角为45°,若AB =1.5米,则多宝塔的高度CD约为()(精确到0.1米,参考数据≈1.732)A.51.0米B.52.5米C.27.3米D.28.8米【分析】如图,设CD=x米.延长AB交DE于H,作AM⊥CD于M,A′N⊥CD于N.想办法构建方程求出x即可.【解答】解:如图,设CD=x米.延长AB交DE于H,作AM⊥CD于M,A′N⊥CD 于N.在Rt△BHE中,∵BE=10米,BH:EH=1:2,∴BH=10(米),EH=20(米),∵四边形AHDM是矩形,四边形A′EDN是矩形,∴AM=DH,AH=DM,A′N=DE,A′E=DN=1.5(米),在Rt△CA′N中,∵∠CA′N=45°,∴CN=A′N=DE=(x﹣1.5)(米),∵AM=DH=(20+x﹣1.5)(米),CM=(x﹣11.5)(米),在Rt△ACM中,∵∠CAM=30°,∴AM=CM,∴20+x﹣1.5=(x﹣11.5),∴x≈52.5,故选:B.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.11.如图,在平面直角坐标中,菱形ABCO的顶点O在坐标原点,且与反比例函数y=的图象相交于A(m,3),C两点,已知点B(2,2),则k的值为()A.6B.﹣6C.6D.﹣6【分析】根据菱形的性质、平行线的性质和全等三角形的判定和性质可以求得点A的坐标,然后根据点A在反比例函数图象上,即可求得k的值,本题得以解决.【解答】解:作AE⊥x轴交x轴于点E,作CF⊥x轴交x轴于点F,作BD∥x轴交AE 于点D,∵四边形AOCB是菱形,∴AB∥CO,AB=CO,∴∠ABO=∠COB,又∵BD∥x轴,∴∠DBO=∠FOB,∴∠ABD=∠COF,∵AD⊥BD,CF⊥OF,∴∠ADB=∠CFO=90°,在△ADB和△CFO中,,∴△ADB≌△CFO(AAS),∴AD=CF,∵A(m,3),B(2,2),∴AD=,∴CF=,同理可证,△AEO≌△OFC,∴OE=CF=,∴点A的坐标为(﹣,3),∵点A在反比例函数y=的图象上,∴3=,解得,k=﹣6,故选:B.【点评】本题考查反比例函数的图象和性质、菱形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.12.若关于x的不等式组的解集为x>3,且关于x的分式方程﹣=1的解为非正数,则所有符合条件的整数的a和为()A.11B.14C.17D.20【分析】根据不等式组的解集确定出a的范围,再由分式方程有正整数解确定出满足题意a的值,求出之和即可.【解答】解:不等式组整理得:,由已知解集为x>3,得到a﹣3≤3,解得:a≤6,分式方程去分母得:(x+a)(x﹣3)﹣ax﹣3a=x2﹣9,解得:x=3﹣2a,由分式方程的解为非正数,∴3﹣2a≤0,∴a≥1.5,∵3﹣2a≠3且3﹣2a≠﹣3,∴a≠0且a≠3,∴1.5≤a≤6且a≠3,∴整数a=2,4,5,6,则所有满足条件的整数a的和是17,故选:C.【点评】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.二、填空题(本大服共6个小题,每小题4分,共24分)请将每小题的答案直按填在等卡中对应的13.计算,2﹣2+|﹣3|+(2﹣π)0= 4.25.【分析】分别计算出2﹣2,|﹣3|,(2﹣π)0的值,即可得出答案.【解答】解:原式=.【点评】本题考查有理数的混合运算,熟练掌握负整数指数幂和零指数幂的意义,绝对值的概念是解题的关键.14.如图,在矩形ABCD中,连接AC,以点B为圆心,BA为半径画弧,交BC于点E,已知BE=3,BC=3,则图中阴影部分的面积为﹣(结果保留π).【分析】连接BF,作BH⊥AC于H,根据正切的定义得到∠BAC=60°,根据等边三角形的性质得到∠ABF=60°,AF=AB=3,根据扇形面积公式、三角形的面积公式计算,【解答】解:如图,连接BF,作BH⊥AC于H,由题意得,BA=BE=3,tan∠BAC==,则∠BAC=60°,又BA=BF,∴△ABF是等边三角形,∴∠ABF=60°,AF=AB=3,则BH=AB×sin∠BAC=,∴图中阴影部分的面积=﹣×3×=﹣,故答案为:﹣.【点评】本题考查的是矩形的性质、扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式是解题的关键.15.从﹣2,﹣1,3这三个数中随机抽取两个数分别记为x,y,把点M的坐标记为(x,y),若点N为(0,3),则在平面直角坐标系内直线MN经过过四象限的概率为.【分析】本题可以先通过树状图统计出所有M点的坐标,然后判断符合MN经过第四象限的点M的个数,在根据概率计算公式P=计算即可.【解答】解:设直线MN的解析式为y=kx+b,∵点N为(0,3),∴y=kx+3,∴k=,∵直线MN经过四象限,∴k<0,∴或,解得:或,从﹣2,﹣1,3这三个数中随机抽取两个数分别记为x,y,把点M的坐标记为(x,y)的有(﹣:(﹣2,﹣1),(﹣2,3),(﹣1,﹣2),(﹣1,3),(3,﹣2),(3,﹣1)6种可能,中(3,﹣2),(3,﹣1)在第四象限,此时的直线MN经过第四象限,∴直线MN经过四象限的概率为,故答案为:.【点评】本题是一道概率和直角坐标系相结合的题目,既考查了概率的计算方法又考查直角坐标系的相关知识.16.如图,在边长为7的正方形ABCD中,E为BC上一点,连接AE,将△ABE沿EF折叠;使点A恰好落在CD上的A′处,若A′D=2,求B′E=.【分析】由正方形的性质和折叠的性质可得AE=A'E,BE=B'E,AB=BC=CD=7,∠B =∠C=90°,A'C=5,由勾股定理可求B'E的长度.【解答】解:∵四边形ABCD是正方形∴AB=BC=CD=7,∠B=∠C=90°,∴A'C=CD﹣A'D=5,∵折叠∴AE=A'E,BE=B'E,在Rt△ABE中,AE2=AB2+BE2,在Rt△A'CE中,A'E2=A'C2+EC2,∴49+BE2=25+(7﹣BE)2,∴BE=故答案为【点评】本题考查了正方形的性质,折叠的性质,勾股定理,利用勾股定理列出方程是本题的关键.17.大课间到了,小明和小欢两人打算从教室匀速跑到600米外的操场做课间操,刚出发时小明就发现鞋带松了,停下来系鞋带,小欢则直接前往操场,小明系好鞋带后立即沿同一路开始追赶小欢,小明在途中追上小欢后继续前行,小明到达操场时课间操还没有开始,于是小明站在操场等待,小欢继续前往操场,设小明和小欢两人想距s(米),小欢行走的时间为t(分钟),s关于t的函数的部分图象如图所示,当两人第三次相距60米时,小明离操场还有180米.【分析】由题意小欢的速度为80米/分钟,设小明的速度为x米/分钟,则有:2(x﹣80)=80,可得x=120,设小明在途中追上小欢后需要y分钟两人相距60米,则:120y﹣80y =60,解得y=1.5分钟推出小明一共走了120×(2+1.5)=420(米),由此即可解决问题.【解答】解:由题意小欢的速度为80米/分钟,设小明的速度为x米/分钟,则有:2(x﹣80)=80,∴x=120,设小明在途中追上小欢后需要y分钟两人相距60米,则:120y﹣80y=60,解得y=1.5分钟,小明一共走了120×(2+1.5)=420(米),600﹣420=180(米),故答案为180.【点评】本题考查一次函数的应用,路程,速度,时间的关系等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.18.某公司推出一款新产品,通过市场调研后,按三种颜色受欢迎的程度分别对A颜色、B 颜色、C颜色的产品在成本的基础上分别加价40%,50%,60%出售(三种颜色产品的成本一样),经过一个季度的经营后,发现C颜色产品的销量占总销量的40%,三种颜色产品的总利润率为51.5%,第二个季度,公司决定对A产品进行升级,升级后A产品的成本提高了25%,其销量提高了60%,利润率为原来的两倍;B产品的销量提高到与升级后的A产品的销量一样,C产品的销量比第一季度提高了50%,则第二个季度的总利润率为64%.【分析】利润率=,单个产品利润=成本×利润率,总利润=成本×利润率×销售量.题目没有给出三种产品明确的成本量和销售量,故可设原成本为a,A、B、C三种产品原销售量分别为x、y、z.根据“三种颜色产品的总利润率为51.5%”得等量关系:A产品利润+B产品利润+C产品利润=总产品利润;根据“C颜色产品的销量占总销量的40%”得等量关系40%×总销售量=z.用代入消元法整理方程组,得到用z分别表示x 和y的式子.第二季度时,根据题意用a、x、z表示各产品的成本、销售量、利润率,求三种产品的利润和和成本和,相除即得到总利润率.【解答】解:依题意得:三种产品原利润率分别为40%,50%,60%设三种颜色产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,得:由②得:x+y=z③把③代入①整理得:x=z,y=z第二季度时,A产品成本为:(1+25%)a=a,B、C产品成本仍为aA、B产品销售量为:(1+60%)x=x,C产品销售量为:(1+50%)z=zA产品利润率变为80%,B、C产品利润率不变∴总利润为:总成本为:∴总利润率为:==64%故答案为:64%【点评】本题考查了三元一次方程组的应用,解题关键是明确利润、利润率、成本、销售量之间的关系,大胆设未知量,通过代入消元用一个未知数表示其他的未知量,再进行计算.对计算能力的要求较高.三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必写出必要的演算过程和推理步骤,请将解答过程书写在答题卡中对应的位置上。

【数学】九年级上册济南数学全册期末复习试卷综合测试(Word版 含答案)

【数学】九年级上册济南数学全册期末复习试卷综合测试(Word 版 含答案)一、选择题1.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠2.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.3.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=4.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐5.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 6.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:17.△ABC 的外接圆圆心是该三角形( )的交点.A .三条边垂直平分线B .三条中线C .三条角平分线D .三条高8.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .12B .13C .23D .169.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( ) A .2020 B .﹣2020 C .2021 D .﹣2021 10.下列方程是一元二次方程的是( )A .2321x x =+B .3230x x --C .221x y -=D .20x y +=11.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤12.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .73B .234+C .1433D .223313.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 14.如图,△ABC 中,∠C =90°,∠B =30°,AC =7,D 、E 分别在边AC 、BC 上,CD =1,DE ∥AB ,将△CDE 绕点C 旋转,旋转后点D 、E 对应的点分别为D ′、E ′,当点E ′落在线段AD ′上时,连接BE ′,此时BE ′的长为( )A .3B .3C .7D .715.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x ,则下列方程中,正确的是( ) A .600(1+x )=950 B .600(1+2x )=950 C .600(1+x )2=950D .950(1﹣x )2=600二、填空题16.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21⎡⎤=⎣⎦,…,则123420192020⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(其中“+”“-”依次相间)的值为______.17.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;18.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;19.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.20.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 21.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.22.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .23.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________. 24.方程290x 的解为________.25.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 26.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.27.把函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.28.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8. (1)请补充完整下面的成绩统计分析表:平均分 方差 众数 中位数甲组89乙组538 8(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.29.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.30.若关于x 的一元二次方程22(1)0k x x k -+-=的一个根为1,则k 的值为__________.三、解答题31.如图①,BC 是⊙O 的直径,点A 在⊙O 上,AD ⊥BC 垂足为D ,弧AE =弧AB ,BE 分别交AD 、AC 于点F 、G .(1)判断△FAG 的形状,并说明理由;(2)如图②若点E 与点A 在直径BC 的两侧,BE 、AC 的延长线交于点G ,AD 的延长线交BE 于点F ,其余条件不变(1)中的结论还成立吗?请说明理由. (3)在(2)的条件下,若BG =26,DF =5,求⊙O 的直径BC .32.某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y (个)与销售单价x (元)符合一次函数关系,如图所示:(1)根据图象,直接写出y 与x 的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元 (3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?33.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.34.(1)如图①,在△ABC中,AB=m,AC=n(n>m),点P在边AC上.当AP=时,△APB∽△ABC;(2)如图②,已知△DEF(DE>DF),请用直尺和圆规在直线DF上求作一点Q,使DE是线段DF和DQ的比例项.(保留作图痕迹,不写作法)35.如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为6.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N的坐标.四、压轴题MN=,在劣弧MN和优弧MN上分别有36.MN是O上的一条不经过圆心的弦,4AM BM.点A,B(不与M,N重合),且AN BN=,连接,(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由.37.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.38.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .(1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.39.如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)当点B移动到使AB:OA=:3时,求的长;(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.(3)连接PQ,试说明3PQ2+OA2是定值.40.如图,PA切⊙O于点A,射线PC交⊙O于C、B两点,半径OD⊥BC于E,连接BD、DC和OA,DA交BP于点F;(1)求证:∠ADC+∠CBD=12∠AOD;(2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题1.D【解析】 【分析】由函数是二次函数得到a-1≠0即可解题. 【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0, 解得:a≠1, 故选你D. 【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.2.A解析:A 【解析】 【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可. 【详解】由题意得:m ﹣1≠0, 解得:m≠1, 故选A . 【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.D解析:D 【解析】 【分析】根据题意分别用含x 式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案. 【详解】解:设增长率为x ,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2, 根据题意可列方程为233(1)3(1)10x x ++++=. 故选:D . 【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.4.B解析:B【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】∵S 2甲=1.7,S 2乙=2.4, ∴S 2甲<S 2乙, ∴甲队成员身高更整齐; 故选B. 【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键5.A解析:A 【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .6.B解析:B 【解析】 【分析】可证明△DFE ∽△BFA ,根据相似三角形的面积之比等于相似比的平方即可得出答案. 【详解】∵四边形ABCD 为平行四边形, ∴DC ∥AB , ∴△DFE ∽△BFA , ∵DE :EC=3:1, ∴DE :DC=3:4, ∴DE :AB=3:4, ∴S △DFE :S △BFA =9:16. 故选B .7.A解析:A 【解析】 【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可.解:△ABC的外接圆圆心是△ABC三边垂直平分线的交点,故选:A.【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.8.B解析:B【解析】【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:21 63 ,故选:B.【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.9.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a代入已知方程,即可求得a2+3a的值,然后再代入求值即可.【详解】解:根据题意,得a2+3a﹣1=0,解得:a2+3a=1,所以a2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键10.A解析:A【解析】【分析】根据一元二次方程的定义逐一判断即可.解:A . 2321x x =+是一元二次方程,故本选项符合题意;B . 3230x x --是一元三次方程,故本选项不符合题意;C . 221x y -=是二元二次方程,故本选项不符合题意;D . 20x y +=是二元一次方程,故本选项不符合题意;故选A .【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.11.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴x = ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.12.C解析:C【解析】【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题.【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,∴易证AE ⊥BC ,∵A 、C 关于BD 对称,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b ,∴a +b ==; 故选C .【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k ≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k ≥0且k ≠0, 解得:116k ≤且k ≠0. 故选:C .【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k ≠0.14.B解析:B【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴CDCA=CECB,∠CDE=∠CAB=∠D′=60°∴'CDCA='CECB,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC=7,∠ABC=30°,∴AB=2AC=27,BC=3AC=21,∵DE∥AB,∴CDCA=CECB,∴7=21,∴CE=3,∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=3∴E′H=12CE′=3,CH=3HE′=32,∴BH=22BC CH-=9214-=53∴BE′=HE′+BH=33,故选:B.本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.15.C解析:C【解析】【分析】设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=950.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题16.-22【解析】【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数解析:-22【解析】【分析】2020的整数部分的规律,根据题意确定算式-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算.【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4 (2020)中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.17.-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围. 【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),解析:-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围.【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),∵a=10>,开口向上,∴y<0时,x的取值范围是-1<x<2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.18.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠C解析:3或9 或23或343【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径, ∴∠ACB=90︒,∵sin ∠CAB=45, ∴45BC AB =, ∵AB=10, ∴BC=8, ∴22221086AC AB BC =-=-=,∵点D 为BC 的中点,∴CD=4.∵∠ACB=∠DCE=90︒, ①当∠CDE 1=∠ABC 时,△ACB ∽△E 1CD,如图∴1AC BC CE CD =,即1684CE =, ∴CE 1=3,∵点E 1在射线AC 上,∴AE 1=6+3=9,同理:AE 2=6-3=3.②当∠CE 3D=∠ABC 时,△ABC ∽△DE 3C ,如图∴3AC BC CD CE =,即3684CE =, ∴CE 3=163, ∴AE 3=6+163=343, 同理:AE 4=6-163=23. 故答案为:3或9 或23或343. 【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.19.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB =90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =62,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,0OA >6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.20.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为1203180π⨯=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.21.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红解析:5 8【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是55 538= +故答案为: 58.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.22..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB 解析:103. 【解析】 试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC ∽△ADE∴AC :AE=BC :DE∴DE=83∴103AD =考点: 1.相似三角形的判定与性质;2.勾股定理.23.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键.24.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这x=±解析:3【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.x=±.故答案为3【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.25.6【解析】【分析】将方程的根-2代入原方程求出m的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解. 【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.26.8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可. 由题意得,解得 考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x 轴只有一个公共点;时,抛物线与x 轴没有公共点. 27.y =2(x ﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y =2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y =2(x ﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y =2(x ﹣3)2﹣2,故答案为y =2(x ﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.28.(1),8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.【详解】(1)甲组方差: ()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10故甲组中位数:(8+9)÷2=8.5乙组平均分:(9+6+8+10+7+8)÷6=8填表如下:故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.29.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.30.0【解析】把x=1代入方程得,,即,解得.此方程为一元二次方程,,即,故答案为0.解析:0【解析】把x =1代入方程得,2110k k -+-=,即20k k -=,解得120,1k k ==.此方程为一元二次方程,10k ∴-≠,即1k ≠,0.k ∴=故答案为0.三、解答题31.(1)△FAG 是等腰三角形,理由见解析;(2)成立,理由见解析;(3)BC =523. 【解析】【分析】(1)首先根据圆周角定理及垂直的定义得到∠BAD+∠CAD =90°,∠C+∠CAD =90°,从而得到∠BAD =∠C ,然后利用等弧对等角等知识得到AF =BF ,从而证得FA =FG ,判定等腰三角形;(2)成立,同(1)的证明方法即可得答案;(3)由(2)知∠DAC =∠AGB ,推出∠BAD =∠ABG ,得到F 为BG 的中点根据直角三角形的性质得到AF =BF =12BG =13,求得AD =AF ﹣DF =13﹣5=8,根据勾股定理得到BD=12,AB =ABC =∠ABD ,∠BAC =∠ADB =90°可证明△ABC ∽△DBA ,根据相似三角形的性质即可得到结论.【详解】(1)△FAG 等腰三角形;理由如下:∵BC 为直径,∴∠BAC =90°,∴∠ABE+∠AGB =90°,∵AD ⊥BC ,∴∠ADC =90°,∴∠ACD+∠DAC =90°,∵AE AB=,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(2)成立,理由如下:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵AE AB=,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,∴AF=BF,∵AF=FG,∴BF=GF,即F为BG的中点,∵△BAG为直角三角形,∴AF=BF=12BG=13,∵DF=5,∴AD=AF﹣DF=13﹣5=8,∴在Rt△BDF中,BD12,∴在Rt△BDA中,AB=∵∠ABC=∠ABD,∠BAC=∠ADB=90°,∴△ABC∽△DBA,∴BCBA=ABDB,∴BC=523,∴⊙O 的直径BC =523. 【点睛】 本题考查圆周角定理、相似三角形的判定与性质及勾股定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.32.(1)y =﹣2x +260;(2)销售单价为80元;(3)销售单价为90元时,每天获得的利润最大,最大利润是3200元.【解析】【分析】(1)由待定系数法可得函数的解析式;(2)根据利润等于每件的利润乘以销售量,列方程可解;(3)设每天获得的利润为w 元,由题意得二次函数,写成顶点式,可求得答案.【详解】(1)设y =kx +b (k ≠0,b 为常数)将点(50,160),(80,100)代入得1605010080k b k b=+⎧⎨=+⎩ 解得2260k b =-⎧⎨=⎩∴y 与x 的函数关系式为:y =﹣2x +260(2)由题意得:(x ﹣50)(﹣2x +260)=3000化简得:x 2﹣180x +8000=0解得:x 1=80,x 2=100∵x ≤50×(1+90%)=95∴x 2=100>95(不符合题意,舍去)答:销售单价为80元.(3)设每天获得的利润为w 元,由题意得w =(x ﹣50)(﹣2x +260)=﹣2x 2+360x ﹣13000=﹣2(x ﹣90)2+3200∵a =﹣2<0,抛物线开口向下∴w 有最大值,当x =90时, w 最大值=3200答:销售单价为90元时,每天获得的利润最大,最大利润是3200元.【点睛】本题综合考查了待定系数法求一次函数的解析式、一元二次方程的应用、二次函数的应用等知识点,难度中等略大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

m ,
山东省济南市第一学期期末九年级数学试题
本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共 2 页,满分为 45 分;第Ⅱ卷共 4 页,满分为 75 分.本试题共 6 页,满分为 120 分.考试时间为 120 分钟.答 卷前,考生务必用 0.5 毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答 题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用 计算器.
第 I 卷(选择题 共 45 分)
注意事项:第Ⅰ卷为选择题,每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标
号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效. 一、选择题(本大题共 15 个小题,每小题 3 分,共 45 分.在每小题给出的四个选项中,只
有一项是符合题目要求的.) 1.下面几个几何体,主视图是圆的是
A .
B .
C .
D .
2.一元二次方程 x 2-9=0 的解是
A . x =3
B . x =﹣3
C . x 1=3,x 2=﹣3
D . x 1=9,x 2=﹣9
2 3.反比例函数是 y = 的图象在
x
A .第一、二象限
B .第一、三象限
C .第二、三象限
D .第二、四象限
4.如果两个相似三角形的相似比是 1:2,那么它们的面积比是
A .1:2
B .1: 2
C .1:4
D .2:1 5.如图,在边长为 1 的小正方形组成的网格中, ∠AOB 如图放置,则 sin ∠AOB =
1 A .
B .
C .
5 5
2
D . 2
6.菱形具有而平行四边形不具有的性质是 A .两组对边分别
平行 B .两组对角分别相等 C .对角线互相平分 D .对角线互相垂直
7.如图,四边形 ABCD 内接于⊙O ,∠A =110°,
则∠BOD 的度数是 A .70° B .110° C .120° D .140°
第 5 题图
第 7 题图 8.如图,点 D ,E 分别在△ABC 的边 AB ,AC 上,DE ∥BC ,AD =18 c BD =9 cm ,AC =24 cm ,则 CE 的长为 A .16 B .8 C .24 D .12 9.对于二次函数 y =-4(x -6)²+3,下列说法中,正确的是
A .开口向上,顶点坐标为(6,3)
B .开口向下,顶点坐标为(6,3)
C .开口向上,顶点坐标为(-6,3)
D .开口向下,顶点坐标为(-6,3)
10. 一个盒子中装有 9 颗蓝色幸运星,n 颗红色幸运星,从中任意取出一颗红色幸运星的频 率为 0.25,则 n 为 A .1 B .3 C .5 D .7 11.三角形的內心是三角形中 A .三条高的交点 B .三边垂直平分线的交点 C .三条中线的交点 D .三条角平分线的交点 12.如图,小正方形的边长均为 1,则图中三角形(阴影部分)与△ ABC 相似的是
A
B
C
D
13.某商店购进一种商品,单价为 30 元.试销中发现这种商品每天的销售量 P (件)与每件
的销售价 x (元)满足关系:P = 100 - 2x .若商店在试销期间每天销售这种商品获得 200
元的利润,根据题意,下面所列方程正确的是 A . (x - 30)(100 - 2x ) = 200
C . (30 - x )(100 - 2x ) = 200
B . x (100 - 2x ) = 200
D . (x - 30)(2x -100) = 200
14.如图,在 x 轴的上方,直角∠BOA 绕
原点
O 按顺时针方向旋转.若∠BOA 的 两边分别与函数1y x =-
、2
y x
= 的图象 交于
B 、A 两点,则∠OAB 大小的 变化趋势为 A .逐渐变小 B .逐渐变大
C .时大时小
D .保持不变
第 14 题图
15.抛物线 y =ax 2+bx +c 的顶点为 D (﹣1,2),与 x 轴的一个交点 A 在点(﹣3,0)和
(﹣2,0)之间,其部分图象如图,则以下结论:
①b 2﹣4ac <0;②a +b +c <0;③c ﹣a =2;④方程 ax 2+bx +c ﹣2=0 有两个相等的实数根.
其中正确结论的个数为
D
y
A -3 -2
-1 0
x
数学模拟试题
第 2 页(共 6 页)
第 12 题图
2
第Ⅱ卷(非选择题共75 分)
注意事项:
1.第II 卷必须用0.5 毫米黑色签字笔作答,答案必须写在答题纸各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.
2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步
骤.二、填空题(本大题共6 个小题,每小题3 分,共18 分.)
16.菱形的两条对角线长分别为6cm,8cm,则这个菱形的周长是.
17.若x=2 是关于x 的一元二次方程x2 + x +m = 0 的一个根,则另一根为.
18.已知,Rt△ABC 中,∠C=90°,c=2,a=1,sinB 的值为.
19.生物工作者要估计一片山林中雀鸟的数量,先捕获100 只,给它们戴上脚环后放回山林,经过一段时间后,再从中随机捕获150 只雀鸟,发现其中戴脚环的有20 只,由此可估计这片山上雀鸟的总数约为只.
20.如图,在Rt△ABC 中,∠B=90°,∠A=30°,BC=2,
将△ABC 绕点C 顺时针旋转120°至△A′B′C′的位置,
则点A 经过的路线的长度是.
21.在平面直角坐标系中,正方形A1B1C1D1 、
D1E1E2B2 、A2B2C2D2 、D2E3E4B3 、
A3B3C3D3 ……按如图所示的方式放置,其中点
B1 在y 轴上,点C1、E1、E2、C2、E3、
E4、C3……在x 轴上,已知正方形A1B1C1D1 的
第17 题
边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2015B2015C2015D2015 的边长是三、解答题(本大题共7 个小题,共57 分.解答应写出文字说明、证明过程或演算步骤.)22.(本题满分7 分)完成下列各题:
(1)(本题满分3分)计算:cos 45°-sin30°
数学模拟试题第 3 页(共6 页) 3
(2)(本题满分4分)解方程:x2 +2x-15 =0
23.(本题满分7 分)完成下列各题:
(1)(本题满分3分)如图,正方形ABCD,E、F分别为DC、BC中
点.求证:△ADE≌△ABF.
第23(1)图
(2)(本题满分4分)如图,AB 为⊙O 的直径,BC 切⊙O 于点B,AC 交⊙O 于点D.求证:∠ABD = ∠ACB
第23(2)图
24.(本题满分8 分)一个不透明的布袋里装有3 个球,其中2 个红球,1 个白球,它们除颜色外其余都相同.
(1)则摸出1 个球是白球的概率为;
(2)摸出1 个球,记下颜色后放回,并搅匀,再摸出1 个球,求两次摸出的球恰好颜色不同
的概率(要求画树状图或列表);
25.(本题满分8 分)为进一步发展基础教育,2014 年某县投入教育经费6000 万元.2016 年投入教育经费8640 万元.假设该县这两年投入教育经费的年平均增长率相同.
(1)求这两年该县投入教育经费的年平均增长率;
(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017 年该县投入教育经费多少万元.
26(本题满分9 分)如图,反比例函数
k
y
x
=(x>0)的图象经过线段OA 的端点A,O 为原
点,作AB⊥x 轴于点B,点B 的坐标为(2,0),tan∠AOB= 3 .
2
(1)求k 的值;
(2)将线段AB 沿x 轴正方向平移到线段DC 的位置,反比例函数
k
y
x
=(x>0)的图象恰好经
过DC 的中点E,求直线AE 的函数表达式;
(3)若直线AE 与x 轴交于点M、与y 轴交于点N,请你探索线段AN 与线段ME 的大小关系,写出你的结论并说明理由. y
N
A D
E
M
O B C x
第26 题图
27.(本题满分9 分)如图1,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且P A=PE,PE 交CD 于F.
(1)证明:PC=PE;
(2)求∠CPE 的度数;
(3)如图2,把正方形ABCD 改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP 与线段CE 的数量关系,并说明理由.
28.(本题满分9 分)如图,抛物线经过A(- 2,0 ),B(- 1
,0 ),C(0, 2 )三点.2
(1)求抛物线的解析式;
(2)在直线AC 下方的抛物线上有一点D,使得△DCA 的面积最大,求点D 的坐标;
(3)设点M 是抛物线的顶点,试判断抛物线上是否存在点H 满足∠AMH = 90︒?若存在,请求出点H 的坐标;若不存在,请说明理由.
y
C
A B
O x
M
第28 题图
数学模拟试题第 6 页(共6 页) 6
答案一、选择题:。

相关文档
最新文档