06数据分析技术
十种常用的数据分析方法

⼗种常⽤的数据分析⽅法01 细分分析 细分分析是分析的基础,单⼀维度下的指标数据的信息价值很低。
细分⽅法可以分为两类,⼀类逐步分析,⽐如:来北京市的访客可分为朝阳,海淀等区;另⼀类是维度交叉,如:来⾃付费SEM的新访客。
细分⽤于解决所有问题。
⽐如漏⽃转化,实际上就是把转化过程按照步骤进⾏细分,流量渠道的分析和评估也需要⼤量⽤到细分的⽅法。
02 对⽐分析 对⽐分析主要是指将两个相互联系的指标数据进⾏⽐较,从数量上展⽰和说明研究对象的规模⼤⼩,⽔平⾼低,速度快慢等相对数值,通过相同维度下的指标对⽐,可以发现,找出业务在不同阶段的问题。
常见的对⽐⽅法包括:时间对⽐,空间对⽐,标准对⽐。
时间对⽐有三种:同⽐,环⽐,定基⽐。
例如:本周和上周进⾏对⽐就是环⽐;本⽉第⼀周和上⽉第⼀周对⽐就是同⽐;所有数据同今年的第⼀周对⽐则为定基⽐。
通过三种⽅式,可以分析业务增长⽔平,速度等信息。
03 漏⽃分析 转化漏⽃分析是业务分析的基本模型,最常见的是把最终的转化设置为某种⽬的的实现,最典型的就是完成交易。
但也可以是其他任何⽬的的实现,⽐如⼀次使⽤app的时间超过10分钟。
漏⽃帮助我们解决两⽅⾯的问题: 在⼀个过程中是否发⽣泄漏,如果有泄漏,我们能在漏⽃中看到,并且能够通过进⼀步的分析堵住这个泄漏点。
在⼀个过程中是否出现了其他不应该出现的过程,造成转化主进程收到损害。
04 同期群分析 同期群(cohort)分析在数据运营领域⼗分重要,互联⽹运营特别需要仔细洞察留存情况。
通过对性质完全⼀样的可对⽐群体的留存情况的⽐较,来分析哪些因素影响⽤户的留存。
同期群分析深受欢迎的重要原因是⼗分简单,但却⼗分直观。
同期群只⽤简单的⼀个图表,直接描述了⽤户在⼀段时间周期(甚⾄是整个LTV)的留存或流失变化情况。
以前留存分析只要⽤户有回访即定义为留存,这会导致留存指标虚⾼。
05 聚类分析 聚类分析具有简单,直观的特征,⽹站分析中的聚类主要分为:⽤户,页⾯或内容,来源。
常用数据分析与处理方法

D3.js是一款基于JavaScript的数据可视化 库,提供了丰富的可视化效果和交互功能, 适用于制作复杂的数据可视化作品。
可视化设计原则
明确目的
在可视化设计之前,要明确可视化的目 的,确保图表能够有效地传达信息。
对比和层次感
通过对比和层次感来突出重要的信息 和数据点,使图表更加易于理解和记
05 数据挖掘
关联规则挖掘
关联规则挖掘
Apriori算法
通过发现数据集中项之间的有趣关系,帮 助企业识别顾客购买行为。
一种挖掘频繁项集的算法,通过不断剪枝 来减小候选项集的大小。
FP-Growth算法
支持度与置信度
一种高效挖掘频繁项集的算法,通过构建 FP树来快速生成频繁项集。
衡量关联规则强度的两个重要指标,支持 度表示规则在数据集中出现的频率,置信 度表示规则的预测强度。
数据来源
01
02
03
内部数据
来自组织内部的数据,如 销售记录、财务报告、员 工信息等。
外部数据
来自组织外部的数据,如 市场调查、竞争对手信息、 行业报告等。
公开数据
来自公共渠道的数据,如 政府机构、公共数据库、 社交媒体等。
数据收集方法
调查法
通过问卷、访谈等方式收集数据。
实验法
通过实验设计和实验结果收集数据。
忆。
简洁明了
设计时要尽量简洁明了,避免过多的 图表元素和复杂的布局,以免干扰信 息的传达。
可交互性
如果条件允许,可以设计交互式图表, 让用户能够通过交互来探索数据和获 取更多的信息。
THANKS FOR WATCHING
感谢您的观看
常用数据分析与处理方法
目录
数据分析方法包括哪些

数据分析方法包括哪些
数据分析方法包括常见的以下几种:
1. 描述性统计分析:通过计算数据的平均值、中位数、标准差等来描述数据的分布、集中趋势和离散程度。
2. 相关分析:用于研究不同变量之间的相关性,可以通过计算相关系数或绘制散点图来分析变量之间的关系。
3. 回归分析:用于探究自变量对因变量的影响程度和关系类型,可以通过构建回归模型来预测因变量的值。
4. 聚类分析:将相似对象归入同一类别,通过计算对象之间的相似性来实现聚类分析。
5. 预测分析:通过历史数据和趋势分析来预测未来的趋势和结果,可以使用时间序列分析、回归模型等方法进行预测。
6. 统计推断:通过从样本中获取信息来对总体进行推断,可以进行抽样调查、假设检验等统计推断方法。
7. 空间分析:研究地理空间中的现象和分布规律,可以使用地理信息系统(GIS)等方法进行空间分析。
8. 文本挖掘:通过对大量文本数据进行分析和挖掘,提取其中的信息和模式,用于情感分析、主题识别等应用。
9. 时间序列分析:研究时间序列数据的变化趋势和规律,通过分析序列的自相关性和滞后效应来进行预测和分析。
10. 实验设计:设计科学实验来研究变量之间的因果关系,通过对实验数据的分析和比较来推断变量之间的影响关系。
注意文中不能出现标题相同的文字。
数据分析技术在商业决策中的应用

数据分析技术在商业决策中的应用在当今竞争激烈的商业世界中,数据已成为企业最宝贵的资产之一。
企业通过收集、分析和利用大量的数据,可以获得有价值的洞察,从而做出更明智的商业决策。
数据分析技术作为挖掘数据价值的关键手段,在商业决策的各个环节发挥着日益重要的作用。
数据分析技术能够帮助企业更好地了解市场和客户需求。
通过对市场数据的分析,企业可以洞察市场趋势、竞争态势以及消费者行为模式的变化。
例如,电商平台可以通过分析用户的浏览记录、购买行为和评价数据,了解消费者的偏好和需求,从而精准地推荐商品,优化产品组合,并制定更有针对性的营销策略。
此外,企业还可以利用社交媒体数据、行业报告等多源数据,预测市场的发展方向,提前布局新产品或服务,抢占市场先机。
在产品研发方面,数据分析技术也具有重要意义。
企业可以收集用户对现有产品的反馈数据,包括使用体验、故障报告等,找出产品的优点和不足之处。
通过对这些数据的深入分析,研发团队能够明确改进的方向,开发出更符合市场需求和用户期望的产品。
同时,数据分析还可以在产品研发的早期阶段,帮助评估不同方案的可行性和潜在风险,降低研发成本和时间。
供应链管理是企业运营的重要环节,数据分析技术在其中同样能发挥巨大作用。
通过对供应链中的库存数据、销售数据、物流数据等进行分析,企业可以优化库存管理,减少库存积压和缺货现象的发生。
例如,根据销售数据预测产品的需求,合理安排采购和生产计划,确保供应链的高效运作。
此外,数据分析还可以帮助企业评估供应商的表现,选择更可靠、成本更低的供应商合作伙伴,提升整个供应链的竞争力。
在人力资源管理方面,数据分析技术也能为企业提供支持。
企业可以通过分析员工的绩效数据、培训记录、离职率等,评估员工的工作表现和潜力,制定更合理的薪酬体系和激励机制。
同时,利用数据分析还可以预测员工的离职倾向,提前采取措施挽留关键人才,降低人才流失带来的损失。
然而,要充分发挥数据分析技术在商业决策中的作用,企业需要克服一些挑战。
数据分析PPT课件

描述性分析是对数据进行基础处 理,包括数据清洗、整理、分类 和汇总等,以揭示数据中的基本
特征和规律。
描述性分析主要通过统计指标, 如均值、中位数、众数、方差等, 来描述数据的集中趋势和离散趋
势。
描述性分析还可以通过绘制图表, 如柱状图、折线图、饼图等,直 观地展示数据的分布特征和变化
趋势。
推断性分析
感谢您的观看
数据科学将成为一门独立的学科
随着数据的重要性日益凸显,数据科学将逐渐成为一门独立的学科, 拥有自己的知识体系和人才培养体系。
数据共享和开放将成为趋势
随着数据的重要性和价值被越来越多的人所认识,数据共享和开放将 成为一种趋势,推动数据创新和产业发展。
提高数据分析能力的建议
加强学习和培训
通过参加培训课程、阅读专业书籍和文 章等方式,不断学习和掌握新的数据分
是指基于数据和分析结果进行决策的方法, 它强调数据在决策中的重要性,帮助企业和 组织更好地理解业务、市场和客户。
数据科学家
是指专门从事数据分析工作的人员,他们 具备统计学、编程和商业知识,能够运用 数据分析工具和算法解决实际问题。
数据分析的流程
数据收集
是指通过各种方式获取数据的过程,包括 调查、观察、实验等。
数据分析ppt课件
目 录
• 数据分析概述 • 数据来源与收集 • 数据预处理与探索 • 数据分析方法与技术 • 数据分析应用案例 • 数据分析的挑战与未来发展
01 数据分析概述
数据分析的定义
数据分析
是指通过统计方法和分析工具对大量 数据进行分析,从而提取出有价值的 信息和洞见的过程。
数据驱动决策
Tableau
Tableau是一款可视化数据分析工具, 它能够帮助用户快速创建各种图表和报 表,直观地展示数据和分析结果。
数据分析与数据建模

数据缺失与异常的处理
缺失数据处理
对于缺失的数据,可以采用插值、删除等方法进行处理。插值方法可以根据已有的数据点进行线性插 值或多项式插值;删除方法则直接将缺失的数据点删除。
异常值处理
对于异常值,可以采用删除、替换等方法进行处理。删除方法直接将异常值删除;替换方法则可以用 均值、中位数或众数等代替异常值。在处理异常值时,可以采用基于统计的方法,如Z分数法、IQR法 等,对异常值进行识别和判断。
预测未来销售趋势,制定合理的库存计 划和采购策略。
详细描述
分析消费者购买习惯和偏好,识别畅销 商品和滞销商品。
案例二:金融风控数据分析与数据建模
总结词:通过分析金融 交易数据,识别异常行 为和潜在风险,保障资
金安全。
01
监测交易活动,识别可 疑交易和欺诈行为。
03
预测市场走势,为投资 决策提供依据,降低投
04 数据分析方法与技术
描述性分析
总结
描述性分析是对数据进行简单的统计和整理 ,以揭示数据的基本特征和规律。
描述性分析步骤
数据收集、数据清洗、数据整理、数据展示 。
描述性分析工具
Excel、Tableau、Power BI等。
预测性分析
总结
预测性分析是通过建立数学模型,利用历史数据预测未来的趋势和 结果。
数据分析的重要性
数据分析在现代商业、科研、政府和社会等领域中发挥着越来越重要的作用。通过对数据进行深入分析,可以发 现隐藏的模式、趋势和关联,为决策提供有力支持,推动业务创新和改进。
数据分析的流程
数据清洗
对数据进行预处理,包括缺失 值处理、异常值处理、数据转 换等。
数据分析
运用统计分析、可视化等方法 ,深入挖掘数据中的信息。
高中信息技术课程中的数据分析与可视化技术

了解数据可视化在数据分析中的作用和意义
掌握常用数据可视化工具和技术
数据分析的基本流程和方法
数据分析工具的使用和操作
数据分析工具的种类:Excel、Python、R等
数据分析工具的操作技巧:掌握常用函数、图表类型和参数设置等
数据分析工具的应用场景:商业分析、科研数据分析、数据挖掘等
数据分析工具的使用方法:数据导入、数据清洗、数据筛选、数据可视化等
物流运输路线优化:通过数据分析,合理规划运输路线,降低成本和提高效率
人力资源管理:通过员工数据分析,优化招聘、培训和绩效管理等方面的工作
科学数据分析与可视化
医学领域:利用数据分析和可视化技术,帮助医生诊断疾病、制定治疗方案和评估治疗效果。
01
02
气象预报:通过数据分析和可视化技术,预测天气变化、气候变化和自然灾害等。
01
02
使用方法:如何安装、启动和操作这些工具
实例演示:通过具体案例展示如何使用这些工具进行数据分析和可视化
03
04
注意事项:在使用这些工具时需要注意的事项和技巧
数据分析与可视化技术的应用实例
05
商业数据分析与可视化
电商销售数据分析:通过数据分析,了解消费者购买行为,优化产品推荐和营销策略
金融市场趋势预测:利用可视化技术,实时监测市场动态,为投资决策提供依据
学生基础参差不齐
教学方法单一
教材内容滞后
缺乏专业教师资源
未来发展的展望和建议
数据分析与可视化技术的进一步融合,以提高数据分析和解释的准确性。
开发更高效的数据处理和分析工具,以满足不断增长的数据处理需求。
培养更多的数据分析专业人才,以支持数据驱动决策的普及和应用。
数据分析专业介绍

数据分析具有数据驱动、量化分析、 预测和决策支持等特点,能够为企业 提供科学、准确的决策依据。
数据分析的重要性
决策支持
数据分析能够为企业提供科学、 准确的决策依据,帮助企业做出 更好的战略规划和业务决策。
业务优化
通过对数据的分析,企业可以发 现业务中的问题和瓶颈,进而优 化业务流程和提高效率。
机器学习与数据挖掘
算法应用
选择合适的机器学习算法对数据进行分类、聚类、预测等任务。
数据挖掘
从大量数据中发现潜在的模式和关联关系,如关联规则挖掘、序列模式挖掘等。
Python与R语言基础
Python
Python是一种通用编程语言,在数据分析领域应用广泛,具有简洁的语法和丰富的数 据分析库。
R语言
R语言是专门为统计计算和数据可视化而设计的语言,拥有强大的统计分析功能和丰富 的统计包。
实践项目
实践项目是提高学生数据分析能力的重要途径,学生可 以通过参与实际项目或自己设计项目,将所学知识应用 于实际问题中,提高解决实际问题的能力。
06
数据分析专业就业前景
就业市场需求与趋势
数据分析师需求持续增长
随着大数据时代的来临,企业对于数据分析师的需求越来 越大,数据分析师已成为当今就业市场上的热门职业。
04
数据分析的未来发展
大数据时代的挑战与机遇
挑战
随着大数据的爆炸式增长,数据分析师面临 数据质量、数据处理和数据管理等方面的挑 战。
机遇
大数据提供了丰富的洞察机会,数据分析师 可以利用先进的技术和工具挖掘数据价值, 为企业决策提供有力支持。
人工智能与机器学习的融合
人工智能和机器学习技术的发展为数 据分析提供了强大的支持,能够自动 化处理大量数据并发现潜在规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题名称:入侵检测的数据分析技术课的类型:授新课教学目标:学习入侵检测的数据分析技术。
教学重点:入侵检测的数据分析技术教学难点:入侵检测的数据分析技术课时安排:2课时教学方法:多媒体原理分析、讲授教学过程:一、序言本次课堂主要介绍入侵分析的各项应用技术,包括基于误用检测( misuse detection的模式匹配、专家系统、状态转移,基于异常检测(anomaly detection的量化分析、统计分析、非参量统计分析、随机过程分析、规则分析、神经网络以及其他诸如免疫系统、基因算法、数据挖掘、基于代理、基于内核等检测模型及技术,介绍过程中还会穿插一些作者在研究入侵检测系统时的经验和体会。
二、入侵检测数据分析技术前面我们介绍了入侵分析的定义、目标、需求以及通用的处理模型,本节所要介绍的是入侵分析的各项应用技术。
入侵检测从分析引擎所采用的技术上来说,可以分为误用检测( misuse detection)和异常检测(anomaly detection)两大类。
误用检测搜索审计事件数据,查看其中是否存在预先定义的误用模式;异常检测则提取正常模式审计数据的数学特征,检查事件数据中是否存在与之相违背的异常模式。
下面,我们就从这两个方面来介绍入侵检测的分析技术。
(一)误用检测误用检测对系统事件的检查基于这样一个问题:系统行为是否代表着特定的攻击模式?首先对标识特定入侵的行为模式进行编码,建立误用模式库,然后对实际检测过程中得到的审计事件数据进行过滤,检查是否包含入侵行为的标识。
执行误用检测,需要具备以下几个条件:了解误用行为模式的组成部分;完备的检测规则库;可信的用户行为记录;可靠的行为记录分析技术。
误用检测的缺陷在于只能检测已知的攻击模式,当出现针对新漏洞的攻击手段或针对旧漏洞的新攻击方式时,需要由人工或者其他机器学习系统得出新攻击的特征模式,添加到误用模式库中,才能使系统具备检测新的攻击手段的能力,如同市场上众多的杀毒软件一样,需要不断的、及时的升级,才能保证系统检测能力的完备性。
1.1简单模式匹配简单模式匹配是最为通用的误用检测技术,特点是原理简单、扩展性好、检测效率高、可以实时检测,但只能适用于比较简单的攻击方式,并且误报率高。
简单模式匹配虽然在性能上存在很大问题,但由于系统的实现、配置、维护都非常方便,因此得到了广泛的应用。
著名的Snort就采用了这种检测手段。
Snort是跨平台的轻量级网络入侵检测工具,可以用于监视小型的TCP/IP网络,检测各种可疑的网络行为或已知的攻击手段。
Snort为系统管理员提供了足够的信息,帮助对可疑行为作出正确的判断。
由于具有简单的系统结构和良好的扩展性,Snort可以迅速地用于弥补网络系统存在的安全漏洞,相对于需要较长时间才能提供特征库更新的商业安全产品来说,更能够满足管理员的需求。
Snort最大的优势在于系统的成本,商业化的入侵检测系统动辄需要花费几万到几十万美元,而Snort基于GNU GeneralPublic License,可以免费应用在各种环境中,并且开放全部源代码,又有众多安全研究组织和个人的热心支持,因此完全可以保证规则库的更新。
笔者所在的研究小组曾经对Snort的全部源程序进行了分析,下图是Sn ort系统的流程:从系统流程来看,Snort的检测相对来说是比较简单的,需要说明的是Snort对检测规则所采用的二维链表。
Snort的规则库采用文本方式存储,可读性和可修改性都比较好,缺点是不能作为直接的数据结构给检测引擎进行调用,因此每次在启动时,都需要对规则库文件进行解析,以生成可供检测程序高效检索的数据结构。
Snort采用了一种二维链表的结构。
二维链表横向的节点称为RuleTreeNode,纵向的节点称为OptTreeNodeo规则库中的每条规则分为两个部分:Rule Header和Rule Option。
其中Rule Header决定了该规则处于二维链表横向的哪一个节点上(RuleTreeNode); Rule Option决定了该规则处于二维链表纵向的哪一个节点上(OptTreeNod^。
检测过程同样按照二维链表的顺序进行,将抓取的数据包和根据规则库所生成的二维链表进行逐一的比较,如果找到匹配的规则条目,则根据该规则所规定的响应方式进行响应(Pass Log,Alert),然后再处理下一个数据包;如果没有匹配的规则条目,则直接返回,处理下一个数据包。
1.2专家系统专家系统(expertsystem是最早的误用检测方案之一,被许多经典的检测模型所采用,例如MIDAS,IDES,NextGeneration IDES (NIDES ),DIDS 和CMDS。
在MIDAS,IDES 和NIDES 中,所采用的专家系统是由Alan W hitehurst设计的P-BEST,DIDS和CMDS则使用了由美国国家航空和宇宙航行局(NationalAeronautics and Space Administration 简称NASA )开发的CLIPS 系统。
专家系统的应用方式是:首先使用类似于if-then的规则格式输入已有的知识(攻击模式),2006 年9 月19 日然后输入检测数据(审计事件记录),系统根据知识库中的内容对检测数据进行评估,判断是否存在入侵行为模式。
专家系统的优点在于把系统的推理控制过程和问题的最终解答相分离,即用户不需要理解或干预专家系统内部的推理过程,而只须把专家系统看做是一个自治的黑盒子(black box)。
当然,要达到这一目的,黑盒子的生成是一项困难而费时的工作,用户必须把决策引擎和检测规则以硬编码的方式嵌入到系统中。
专家系统中的攻击知识通常使用if-then的语法规则表示。
用来表示攻击发生的条件排列在规则的左边(if部分),当这些条件满足时,系统采取规则右边(then部分)所给出的动作。
当专家系统应用于入侵检测时,存在以下一些实际的问题:处理海量数据时存在效率问题。
这是由于专家系统的推理和决策模块通常使用解释型语言实现,执行速度比编译型语言要慢;缺乏处理序列数据的能力,即数据前后的相关性问题;专家系统的性能完全取决于设计者的知识和技能;只能检测已知的攻击模式(误用检测的通病);无法处理判断的不确定性;规则库的维护同样是一项艰巨的任务,更改规则时必须考虑到对知识库中其他规则的影响。
1.3状态转移法状态转移法(state transition即proache)采用优化的模式匹配(pattern-matching)技术来处理误用检测问题,由于处理速度的优势和系统的灵活性,状态转移法已成为当今最具竞争力的入侵检测模型之一。
这种方法采用系统状态和状态转移的表达式来描述已知的攻击模式。
目前,实现基于状态转移的入侵检测可以用3种方法:状态转移分析(state transition analysiS、着色Petri网(colored petrinets简称CP-Nets)和基于语言/应用程序接口的方法(Ianguage/APIbased approach)。
下面,我们将对状态转移分析进行介绍,包括如何建立误用模型以及如何使用模型对审计事件数据进行过滤。
状态转移分析(State Tran sition An alysis状态转移分析是使用高层状态转移图(state transition diagrams来表示和检测已知攻击模式的误用检测技术。
这种技术首先在STAT系统及USTAT(基于Unix系统的版本)中实现,STAT 系统由美国加州大学Santa Barbaba分校(University ofCalifornia,Santa Bar-baba 的Phillip Porras 和Richard Kemmerer开发,USTAT则由KoralIlgun和Kemmerer完成。
状态转移图是一种针对入侵或渗透过程的图形化表示方法。
图 4.5以序列的方式给出了状态转移图的各个组成部分。
节点(no des表示系统的状态,弧线代表每一次状态的转变。
所有入侵者的渗透过程都可以看做是从有限的特权开始,利用系统存在的脆弱性(vul nerabilities),逐步提升自身的权限。
正是这种共性使得攻击特征可以使用系统状态转移的形式来表示。
在每个步骤中,攻击者获得的权限或者攻击成功的结果都可以表示为系统的状态。
1^4.5狀态转移图当使用状态转移图提取入侵序列的特征时,系统应该限制为仅表示那些导致状态变化的关键行为。
从初始状态到处于攻击下的系统状态所经过的状态转移路径依赖于主体的实施过程,不同的攻击者即使利用相同的系统脆弱性对目标系统进行攻击,所得到的状态转移图也是不同的。
在每种系统状态下,我们都可以得到相应的、针对该状态的判断结果------ 断言(assertionS。
状态转移分析系统使用有限状态机(finite state machine模型来表示入侵过程。
入侵过程由一系列导致系统从初始状态转移到入侵状态的行为组成。
初始状态表示在入侵发生之前的系统状态,入侵状态则代表入侵完成后系统所处的状态。
系统状态通常使用系统属性(system attributes 或用户权限(userprivileges)来描述。
用户的行为和动作导致系统状态的转变。
用于误用检测的状态转移分析引擎包括一组状态转移图,各自代表一种入侵或渗透模式。
在每个给定的时间点,我们都认为是由于一系列的用户行为使得系统到达了每个状态转移图中的特定状态。
每次当新的行为发生时,分析引擎检查所有的状态转移图,查看是否会导致系统的状态转移。
如果新行为否定了当前状态的断言(assertions,分析引擎就将转移图回溯到断言仍然成立的状态;如果新行为使系统状态转移到了入侵状态,状态转移信息就被发送到决策引擎,并根据预先定义的策略采取相应的响应措施。
STAT系统的优点在于:状态转移图提供了一种针对入侵渗透模式的直观的、高层次的、与审计记录无关的表示方法;利用状态转移法,可以描述出构成特定攻击模式的特征行为序列;状态转移图给出了保证攻击成功的特征行为(sig nature actio ns的最小子集,这使得检测器可以适应相同入侵模式的不同表现形式;基于状态的特征检测可以使攻击行为在尚未到达侵入状态(compromised state之前被检测到,从而及时采取响应措施阻止攻击行为;系统可以检测协同攻击和慢速攻击。
STAT系统同时也包含了以下一些缺陷:当前状态的断言和特征行为需要手工编码;断言和特征行为在用于表示复杂的、细致的入侵模式时可能存在问题;对当前状态下得出的断言进行评估时,可能需要从目标系统获取额外的信息,这个过程通常会导致系统性能的下降;STAT系统是属于研究性质的原型系统,不能检测一些常见的攻击手段,实际应用时必须与其他检测器协同工作;STAT原型系统与其他基于状态转移的方法相比,速度较慢。