高考数学模拟复习试卷试题模拟卷1371

合集下载

高考模拟复习试卷试题模拟卷高三数学数学试卷文科

高考模拟复习试卷试题模拟卷高三数学数学试卷文科

高考模拟复习试卷试题模拟卷高三数学数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=15.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.18.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}【分析】根据题意,将集合B用列举法表示出来,可得B={1,3,5},由交集的定义计算可得答案.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2x﹣1,x∈A},则B={1,3,5},则A∩B={1,3},故选:A.【点评】本题考查集合的运算,注意集合B的表示方法.2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.【分析】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选:B.【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2x+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.5.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]【分析】函数f(x)=,由f(x)=0,可得=0,解得x=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.【解答】解:函数f(x)=+sinωx﹣=+sinωx=,由f(x)=0,可得=0,解得x=∉(π,2π),∴ω∉∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为 1 .【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为3 .【分析】先求导,再带值计算.【解答】解:∵f(x)=(2x+1)ex,∴f′(x)=2ex+(2x+1)ex,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为 4 .【分析】根据循环结构,结合循环的条件,求出最后输出S的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为(x﹣2)2+y2=9 .【分析】由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.【解答】解:由题意设圆的方程为(x﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2x﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(x﹣2)2+y2=9.故答案为:(x﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是[,).【分析】由减函数可知f(x)在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2﹣的图象,根据交点个数判断3a与2的大小关系,列出不等式组解出.【解答】解:∵f(x)是R上的单调递减函数,∴y=x2+(4a﹣3)x+3a在(﹣∞.,0)上单调递减,y=loga(x+1)+1在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f(x)|和y=2﹣的函数草图如图所示:由图象可知|f(x)|=2﹣在[0,+∞)上有且只有一解,∵|f(x)|=2﹣恰有两个不相等的实数解,∴x2+(4a﹣3)x+3a=2﹣在(﹣∞,0)上只有1解,即x2+(4a﹣)x+3a﹣2=0在(﹣∞,0)上只有1解,∴或,解得a=或a<,又≤a≤,∴.故答案为[,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域.(Ⅱ)设出目标函数,利用平移直线法进行求解即可.【解答】解:(Ⅰ)由已知x,y满足不等式,则不等式对应的平面区域为,(Ⅱ)设年利润为z万元,则目标函数为z=2x+3y,即y=﹣x+,平移直线y=﹣x+,由图象得当直线经过点M时,直线的截距最大,此时z最大,由得,即M(20,24),此时z=40+72=112,即分别生产甲肥料20车皮,乙肥料24车皮,能够产生最大的利润,最大利润为112万元.【点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD=,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵FG⊄平面BED,OE⊂平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD⊂平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的角为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD•,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值【点评】本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.【分析】(1)根据等比数列的通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;(2)利用对数的运算性质求出bn,使用分项求和法和平方差公式计算.【解答】解:(1)设{an}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴an=2n﹣1.(2)∵bn是log2an和log2an+1的等差中项,∴bn=(log2an+log2an+1)=(log22n﹣1+log22n)=n﹣.∴bn+1﹣bn=1.∴{bn}是以为首项,以1为公差的等差数列.设{(﹣1)nbn2}的前2n项和为Tn,则Tn=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得,整理得到M的坐标与k的关系,由∠MOA=∠MAO,得到x0=1,转化为关于k的等式求得k的值.【解答】解:(1)由+=,得+=,即=,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA=∠MAO,∴x0=1,再设H(0,yH),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为y﹣k(x0﹣2)=﹣(x﹣x0),令x=0,得yH=(k+)x0﹣2k,∵BF⊥HF,∴,即1﹣x1+y1yH=1﹣[(k+)x0﹣2k]=0,整理得:=1,即8k2=3.∴k=﹣或k=.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0,分别代入解析式化简f (x0),f(﹣2x0),化简整理后可得证;(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||}=max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

高考数学模拟试卷复习试题高三模拟卷文科数学7

高考数学模拟试卷复习试题高三模拟卷文科数学7

高考数学模拟试卷复习试题高三模拟卷文科数学本试题卷共8页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求。

1.已知集合A={x|x23x<0},B={y|y=},则A∩B()A.(0,3)B.[1,3)C.(3,0)D.(3,1]2.若复数z满足z2=4,则复数z的实部为()A.2B.1C.2D.03.已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:“∃x0∈R,x0>0”的否定是“∀x∈R,x2x≤0”,则下列命题是真命题的是()A.p∨(¬q)B.p∧qC.p∨qD.(¬p)∧(¬q)4. 已知圆C过点A(2,4),B(4,2),且圆心C在直线x+y=4上,若直线x+2yt=0与圆C相切,则t的值为()A.6±2B.6±2C.2±6D.6±45.已知函数y=sinωx在[,]上是减函数,则ω的取值范围是()A.[−,0)B.[3,0)C.(0,]D.(0,3]6. 设x1=18,x2=19,x3=20,x4=21,x5=22,将这五个数据依次输入下边程序框进行计算,则输出的S值及其统计意义分别是()A.S=2,即5个数据的方差为2B.S=2,即5个数据的标准差为2C.S=10,即5个数据的方差为10D.S=10,即5个数据的标准差为107.若三角形ABC中,sinCsin(AB)=sin2(A+B),则此三角形的形状是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.某四棱锥的三视图如图所示,则该四棱锥的体积为()A.2B.3C.4D.69.如图,点A(2,m),B(n,2),均在双曲线y=(x>0)上,过点A,B分别作AG⊥y轴,BH⊥x轴,垂足为G,H,下列说法错误的是()A.AO=BO B.∠AOB可能等于30°C.△AOG与△BOH的面积相等D.△AOG≌△BOH10.已知平面区域D={(x,y)|},Z=.若命题“∀(x,y)∈D,Z≥m”为真命题,则实数m的最大值为()A.B.C.D.11.设点M,N为圆x2+y2=9上两个动点,且|MN|=4,若点P为线段3x+4y+15=0(xy≥0)上一点,则|+|的最大值为()A.4B.6C.8D.1212.已知e是自然对数的底数,函数f(x)=(ax2+x)ex,若f(x)在[1,1]上是单调增函数,则a的取值范围是()A.[,0]B.(∞,0)∪[,+∞)C.[0,]D.(∞,]∪[0,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.若函数y=的定义域为R,则k∈。

高三数学高考模拟试题及答案.doc-人教版[原创]

高三数学高考模拟试题及答案.doc-人教版[原创]

高三数学高考模拟试题一、选择题(每小题5分;共60分)1.非空集合A 、B 满足≠⊂B A ;U 是全集;则下列式子;①B B A = ;②A B A = ;③(A U) B=U ;④(A U) (B U)=U 中成立的是( ).A .①;②B .③;④C .①;②;③D .①;②;③;④2.已知OM =(3;-2);ON =(-5;-1);则21MN 等于( ). A .(8;1) B .(-8;1) C .(-8;-1) D .4(-;21)3.函数)3(log 1sinl x y -=的定义域是( ).A .(2;3)B .[2;)3C .(2;]3D .(2;+∞) 4.如果数列}{n a 的前n 项和))(49(41*N ∈-=n S n nnn ;那么这个数列( ). A .是等差数列而不是等比数列 B .是等比数列而不是等差数列 C .既是等差数列又是等比数列 D .既不是等差数列又不是等比数列5.锐二面角βα--l 的棱l 上一点A ;射线α⊂AB ;且与棱成45°角;又AB 与β成30°角;则二面角βα--l 的大小是( ).A .30°B .45°C .60°D .90°6.有6个人分别来自3个不同的国家;每一个国家2人。

他们排成一行;要求同一国家的人不能相邻;那么他们不同的排法有( ).A .720B .432C .360D .2407.直线经过点A (2;1);B (1;2m )两点)(R ∈m ;那么直线l 的倾斜角取值范围是( ).A .[0;)πB .[0;2π(]4π;)π C .0[;]4π D .4π[;2π()2π ;)π 8.下列函数中同时具有性质;(1)最小正周期是π;(2)图象关于3π=x 对称;(3)在6π[-;]3π上是增函数的是( ). A .)6π2sin(+=x y B .)3π2cos(+=x y C .)6π2sin(-=x y D .)6π2cos(-=x y 9.设双曲线12222=-by a x 的右准线与两条渐近线交于A 、B 两点;右焦点为F ;且F A ⊥FB ;则双曲线的离心率为( ).A .2B .3C .2D .332 10.设下表是某班学生在一次数学考试中数学成绩的分布表那么分数在[100;110]中和分数不满110分的频率和累积频率分别是( ).A .0.18;0.47B .0.47;0.18C .0.18;1D .0.38;1 11.已知)3π2sin(3)(+=x x f ;则以下选项正确的是( ). A .f (3)>f (1)>f (2) B .f (3)>f (1)>f (2) C .f (3)>f (2)>f (1) D .f (1)>f (3)>f (2) 12.下列各组复合命题中;满足“p 或q ”为真;“p 且q ”为假;“非p ”为真的是( ). A .p ;0=∅;q ;0∅∈B .p ;过空间一点有且仅有一条直线与两异面直线a ;b 都相交;q ;在△ABC 中若B A 2cos 2cos =;则A =BC .p ;不等式x x >||的解集为(-∞;0);q ;y =x sin 在第一象限是增函数D .p ;01cos 1sin >-;q ;椭圆13422=+y x 的一条准线方程是x =4二、填空题(每小题4分;共16分) 13.已知一个球的半径为1;若使其表面积增加到原来的2倍;则表面积增加后球的体积是______________. 14.函数59323+--=x x x y 的单调递减区间是______________.15.已知α、β是实数;给出下列四个论断;(1)||||||βαβα+=+;(2)||||βαβα+≤-;(3)22||>α;22||>β;(4)5||>+βα.以其中的两个论断为条件;其余两个论断作为结论;写出你认为正确的一个命题;________.16.一天内的不同的时刻;经理把文件交由秘书打字。

高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试

高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试

高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试数 学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。

2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 一、选择题:本大题共12小题,每小题5分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数321iz i i =+-(i 为虚数单位)的共轭复数为() (A )12i +(B )1i -(C )1i -(D )12i -(2)已知集合{}1,0=A ,{}A y A x y x z zB ∈∈+==,,,则B 的子集个数为()(A )3 (B )4 (C )7 (D )8(3)已知2.12=a ,8.021-⎪⎭⎫ ⎝⎛=b ,2log 25=c ,则c b a ,,的大小关系为()(A )a b c <<(B )b a c <<(C )c a b <<(D )a c b <<(4)已知向量()1,3a =,()3,b m =,若向量b 在a 方向上的投影为3,则实数m =()(A )3 (B )3-(CD )-(5)设n S 为等差数列{}n a 的前n 项和,且65101=-+a a a ,则11S =()(A )55 (B )66 (C )110 (D )132 (6)已知34cos sin =+θθ)40(πθ<<,则θθcos sin -的值为() (A )32(B )32-(C )31(D )31-(7)已知圆O :224x y +=上到直线:l x y a +=的距离等于1的点恰有3个,则实数a 的值为()(A )B (C)(D )-或(8)某程序框图如图所示,该程序运行后输出的S 的值是()(A )1007(B ) (C )(D )3024(9)已知双曲线122=-my x 与抛物线x y 82=的一个交点为P ,F 为抛物线的焦点,若5=PF ,则双曲线的渐近线方程为()(A )03=±y x (B )03=±y x (C )02=±y x (D )02=±y x (10)记数列{}n a 的前n 项和为n S ,若2(1)4n n S a n++=,则n a =() (A )2n n (B )12n n -(C )2nn (D )12n n - (11)某几何体的三视图如图,其正视图中的曲线部分为半个圆弧,则该几何体的表面积为() (A )π42616++ (B )π32616++ (C )π42610++ (D )π32610++(12)如图,偶函数()x f 的图象如字母M ,奇函数()x g 的图象如字母N , 若方程()()0=x g f ,()()0=x f g 的实根个数分别为m 、n ,则m n +=()(A )18 (B )16 (C )14 (D )12第Ⅱ卷本卷包括必考题和选考题两部分。

高考数学模拟题复习试卷普通高等学校招生全国统一考试(III卷)理科数学

高考数学模拟题复习试卷普通高等学校招生全国统一考试(III卷)理科数学

高考数学模拟题复习试卷普通高等学校招生全国统一考试(III 卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合}0|{}0)3)(2(|{>=≥--=x x T x x x S ,,则S ∩T =A. [2,3]B. ),3[]2,(+∞-∞C. ),3[+∞D. ),3[]2,0(+∞2. =-+=1i 4i 21z z z ,则若 A. 1 B. 1 C. i D. i3. 已知向量)21,23()23,21(==BC BA ,,则∠ABC = A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约15℃,B 点表示四月的平均最低气温约为5℃。

下面叙述不正确的是A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. =+=ααα2sin 2cos 43tan 2,则若 A. 2564 B. 2548 C. 1 D. 2516 6. 已知3152342542===c b a ,,,则A. b < a < cB. a < b < cC. b < c < aD. c < a < b7. 执行右面的程序框图,如果输入的a = 4,b = 6,那么输出的n =A. 3B. 4C. 5D. 68. 在△ABC 中,4π=B ,BC 边上的高等于31BC ,则sinA = A. 103B. 1010 C.55D. 10103 9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. 53618+B. 51854+C. 90D. 8110. 在封闭的直三棱柱ABCA1B1C1内有一个体积为V 的球,若AB ⊥BC ,AB = 6,BC = 8,AA1 = 3,则V 的最大值是A. π4B. 29π C. π6 D. 332π 11. 已知O 为坐标原点,F 是椭圆C :)1(12222>>=+b a by a x 的左焦点,A 、B 分别为C 的左、右顶点。

高考数学模拟复习试卷试题模拟卷12113

高考数学模拟复习试卷试题模拟卷12113

高考模拟复习试卷试题模拟卷【考情解读】1.能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题.【重点知识梳理】1.实际问题中的常用角(1)仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).(2)方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).(3)方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.(4)坡度:坡面与水平面所成的二面角的正切值.【高频考点突破】考点一考查测量距离例1、如图所示,有两座建筑物AB和CD都在河的对岸(不知道它们的高度,且不能到达对岸),某人想测量两座建筑物尖顶A、C之间的距离,但只有卷尺和测量仪两种工具.若此人在地面上选一条基线EF,用卷尺测得EF的长度为a,并用测角仪测量了一些角度:∠AEF=α,∠AFE=β,∠CEF=θ,∠CFE=φ,∠AEC=γ.请你用文字和公式写出计算A、C之间距离的步骤和结果.【方法技巧】求距离问题时要注意(1)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解;(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.【变式探究】隔河看两目标A与B,但不能到达,在岸边选取相距 3 km的C,D两点,同时,测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A,B,C,D在同一平面内),求两目标A,B之间的距离.考点二考查高度问题例2、如图,在湖面上高为10 m处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)()A.2.7 mB.17.3 mC.37.3 m D.373 m【方法技巧】求解高度问题首先应分清(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.【变式探究】如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是________米.考点三考查方位角例3、如图,我国的海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其东北方向与它相距16海里的B处里一外国船只,且D岛位于海监船正东142海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方向航行.为了将该船拦截在离D岛12海里处,不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值.(参考数据:sin 36°52′≈0.6,sin 53°08′≈0.8)【方法技巧】解决方位角问题其关键是弄清方位角概念.结合图形恰当选择正、余弦定理解三角形,同时注意平面图形的几何性质的应用.【变式探究】如图,一船在海上自西向东航行,在A处测得某岛M的方位角为北偏东α角,前进m km后在B处测量该岛的方位角为北偏东β角,已知该岛周围n km范围内(包括边界)有暗礁,现该船继续东行,当α与β满足条件________时,该船没有触礁危险.考点四考查函数思想在解三角形中的应用例4、如图所示,一辆汽车从O点出发沿一条直线公路以50公里/小时的速度匀速行驶(图中的箭头方向为汽车行驶方向),汽车开动的同时,在距汽车出发点O点的距离为5公里、距离公路线的垂直距离为3公里的M点的地方有一个人骑摩托车出发想把一件东西送给汽车司机.问骑摩托车的人至少以多大的速度匀速行驶才能实现他的愿望,此时他驾驶摩托车行驶了多少公里?【方法技巧】函数思想在解三角形中常与余弦定理应用及函数最值求法相综合,此类问题综合性较强,能力要求较高,要求考生要有一定的分析问题解决问题的能力.解答本题利用了函数思想,求解时把速度表示为时间的函数,利用函数最值求法完成解答,注意函数中以1t 为整体构造二次函数,求最值.【变式探究】如图所示,已知树顶A 离地面212米,树上另一点B 离地面112米,某人在离地面32米的C处看此树,则该人离此树________米时,看A ,B 的视角最大.【真题感悟】【高考湖北,文15】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.【高考湖南,文17】(本小题满分12分)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =. (I )证明:sin cos B A =;(II) 若3sin sin cos 4C A B -=,且B 为钝角,求,,A B C .【高考陕西,文17】ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量(,3)m a b =与(cos ,sin )n A B =平行.(I)求A ;(II)若7,2a b ==求ABC ∆的面积.【高考浙江,文16】(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=. (1)求2sin 2sin 2cos A A A的值; (2)若B ,34a π==,求ABC ∆的面积.【押题专练】1.有一长为10 m 的斜坡,倾斜角为75°,在不改变坡高和坡顶的前提下,通过加长坡面的方法将它的倾斜角改为30°,则坡底要延长()A .5 mB .10 mC .10 2 mD .10 3 m 2.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°,距灯塔68海里的M 处,下午2时到达这座灯塔的东南方向N 处,则该船航行的速度为()[来源:学*科*网Z*X*X*K]A.1722海里/小时 B .346海里/小时C.1762海里/小时 D .342海里/小时3.甲船在岛A 的正南B 处,以每小时4千米的速度向正北航行,AB =10千米,同时乙船自岛A 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间为()A.1507分钟B.157小时 C .21.5分钟 D .2.15小时4.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点间的距离为()A .50 2 mB .50 3 mC .25 2 m D.2522 m5.地上画了一个角∠BDA =60°,某人从角的顶点D 出发,沿角的一边DA 行走10米后,拐弯往另一边的方向行走14米正好到达∠BDA 的另一边BD 上的一点,我们将该点记为点N ,则N 与D 之间的距离为()A .14米B .15米C .16米D .17米6.已知等腰三角形的面积为32,顶角的正弦值是底角的正弦值的3倍,则该三角形的一腰长为()A. 2B. 3 C .2 D.67.如图,在某灾区的搜救现场,一条搜救犬从A 点出发沿正北方向行进x m 到达B 处发现生命迹象,然后向右转105°,行进10 m 到达C 处发现另一生命迹象,这时它向右转135°回到出发点,那么x =________.8.一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.9.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是________ m.10.如图,在某平原地区一条河的彼岸有一建筑物,现在需要测量其高度AB.由于雨季河宽水急不能涉水,只能在此岸测量.现有的测量器材只有测角仪和皮尺.现在选定了一条水平基线HG ,使得H ,G ,B 三点在同一条直线上.请你设计一种测量方法测出建筑物的高度,并说明理由.(测角仪的高为h)11.如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里的C 处的乙船.[来源:学*科*网](1)求处于C 处的乙船和遇险渔船间的距离;(2)设乙船沿直线CB 方向前往B 处救援,其方向向CA →成θ角,求f(x)=sin2θsin x +34cos2θcosx(x ∈R)的值域.12.A ,B ,C 是一条直线上的三个点,AB =BC =1 km ,从这三点分别遥望一座电视塔P ,A 处看塔,塔在东北方向,B 处看塔,塔在正东方向,C 处看塔,塔在南偏东60°方向.求塔到直线AC 的距离.13.某单位设计一个展览沙盘,现欲在沙盘平面内,设计一个对角线在l 上的四边形电气线路,如图所示.为充分利用现有材料,边BC ,CD 用一根长为5米的材料弯折而成,边BA ,AD 用一根长为9米的材料弯折而成,要求∠A 和∠C 互补,且AB =BC.(1)设AB =x 米,cos A =f(x),求f(x)的解析式,并指出x 的取值范围;(2)求四边形ABCD 面积的最大值.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考数学模拟复习试卷试题模拟卷11613

高考数学模拟复习试卷试题模拟卷11613

高考模拟复习试卷试题模拟卷【考情解读】1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【重点知识梳理】1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sinαcosβ±cosαsinβ. cos(α∓β)=cosαcosβ±sinαsinβ. tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sinαcosα.cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α. tan 2α=2tan α1-tan2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tanαtanβ). (2)cos2α=1+cos 2α2,sin2α=1-cos 2α2. (3)1+sin 2α=(sinα+cosα)2, 1-sin 2α=(sinα-cosα)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4.4.函数f(α)=asin α+bcos α(a ,b 为常数),可以化为f(α)=a2+b2sin(α+φ)⎝⎛⎭⎫其中tan φ=b a 或f(α)=a2+b2·cos(α-φ)⎝⎛⎭⎫其中tan φ=a b . 【高频考点突破】考点一 三角函数式的化简与给角求值【例1】 (1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)[2sin 50°+sin 10°(1+3tan 10°)]·2sin280°=______.【答案】(1)cos α (2)6 【规律方法】(1)三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.(2)对于给角求值问题,一般给定的角是非特殊角,这时要善于将非特殊角转化为特殊角.另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.【变式探究】 (1)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .22-1(2)化简:sin2αsin2β+cos2αcos2β-12cos 2αcos 2β=________.【答案】(1)C (2)12考点二 三角函数的给值求值、给值求角【例2】 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.【规律方法】(1)解题中注意变角,如本题中α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β;(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦较好.【变式探究】 已知cos α=17,cos(α-β)=1314,且0<β<α<π2, (1)求tan 2α的值; (2)求β.考点三 三角变换的简单应用【例3】 (·广东卷)已知函数f(x)=Asin ⎝⎛⎭⎫x +π4,x ∈R ,且f ⎝⎛⎭⎫5π12=32.(1)求A 的值;(2)若f(θ)-f(-θ)=32,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫3π4-θ.【规律方法】解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两个,一个是变换函数的名称,一个是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.【变式探究】 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4.(1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.【真题感悟】【高考重庆,文6】若11tan ,tan()32,则tan =() (A) 17 (B) 16 (C) 57 (D) 56【答案】A【高考上海,文1】函数x x f 2sin 31)(-=的最小正周期为.【答案】π【高考广东,文16】(本小题满分12分)已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值.【答案】(1)3-;(2)1.1.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定 【答案】D2. (·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.3.(·湖南卷) 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-44.(·江西卷) 已知函数f(x)=(a +2cos2x)cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.5.(·全国卷) △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知3acos C =2ccos A ,tan A =13,求B.6.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 【答案】17.(·山东卷) △ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cos A=63,B=A+π2.(1)求b的值;(2)求△ABC的面积.8.(·四川卷) 如图1-3所示,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高度是60 m,则河流的宽度BC等于()图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m 【答案】C9.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.10.(·重庆卷) 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8. (1)若a =2,b =52,求cos C 的值;(2)若sin Acos2B 2+si n Bcos2A 2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值.【押题专练】1.若tan θ=3,则sin 2θ1+cos 2θ=( )A. 3 B .-3 C.33D .-33【答案】A2.已知sin α+cos α=13,则sin2⎝⎛⎭⎫π4-α= ( )A.118 B.1718 C.89D.29【答案】B3.已知α∈⎝⎛⎭⎫π,32π,且cos α=-45,则tan ⎝⎛⎭⎫π4-α等于 ( )A .7B.17C .-17D .-7【答案】B4.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于 ( ) A.5π12B.π3C.π4D.π6【答案】C6.在△ABC 中,tan A +tan B +3=3tan A·tan B ,则C 等于 ( ) A.π3B.2π3C.π6D.π4【答案】A7.cos π9·cos 2π9·cos ⎝⎛⎭⎫-23π9=( )A .-18 B .-116 C.116D.18【答案】A8.设f(x)=1+cos 2x 2sin ⎝⎛⎭⎫π2-x+sin x +a2sin⎝⎛⎭⎫x +π4的最大值为2+3,则常数a =________.【答案】±39.若sin ⎝⎛⎭⎫π2+θ=35,则cos 2θ=________.【答案】-72510.函数f(x)=sin ⎝⎛⎭⎫2x -π4-22sin2x 的最小正周期是________.【答案】π11.已知cos4α-sin4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3=________.【答案】2-15612.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值.13.已知函数f(x)=cos2x +sin xcos x ,x ∈R.(1)求f ⎝⎛⎭⎫π6的值;(2)若sin α=35,且α∈⎝⎛⎭⎫π2,π,求f ⎝⎛⎭⎫α2+π24.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考数学模拟考试试卷(含有答案)

高考数学模拟考试试卷(含有答案)

高考数学模拟考试试卷(含有答案)本试卷共19题。

全卷满分120分。

考试用时120分钟注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡的非答题区域均无效。

3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z 则T S ( ) A .∅ B .S C .T D .Z2.已知复数z 满足1z =且有510z z ++=则z = ( )A .12-±B .12±C .22±D i 12±3.已知α,β均为锐角,且sin cos()sin ααββ+=则tan α的最大值是 ( )A .4B .2CD 4.为了激发同学们学习数学的热情,某学校开展利用数学知识设计LOGO 的比赛,其中某位同学利用函数图像的一部分设计了如图的LOGO ,那么该同学所选的函数最有可能是 ( )A .()sin x x x f -=B .()sin cos f x x x x =-C .()221f x x x =-D .()3sin f x x x =+5.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(N n ∈,从左数第1根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线:1l y x =+交于点n A (n x ,n y )和n B (nx ',n y ')则200n n n y y ='=∑( ) 参考数据:取221.18.14=.A .814B .900C .914D .10006.表面积为4π的球内切于圆锥则该圆锥的表面积的最小值为( ) A .4πB .8πC .12πD .16π7.已知定点(,0)P m ,动点Q 在圆O :2216x y +=上,PQ 的垂直平分线交直线 OQ 于M 点,若动点M 的轨迹是双曲线则m 的值可以是 ( ) A .2B .3C .4D .58.设cos0.1a =和10sin0.1b =,110tan 0.1c =则 ( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<二、选择题:本题共3小题,每小题6分,共18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟复习试卷试题模拟卷【考情解读】1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法. 【重点知识梳理】1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式 Sn =n (a1+an ) 2 =na1+n (n -1)2d . ②等比数列的前n 项和公式 (ⅰ)当q =1时,Sn =na1;(ⅱ)当q≠1时,Sn =a1(1-qn )1-q =a1-anq1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.(6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如an = (-1)nf(n)类型,可采用两项合并求解.例如,Sn =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.(3)1n +n +1=n +1-n.【高频考点突破】 考点一 分组转化法求和【例1】设数列{an}满足a1=2,a2+a4=8,且对任意n ∈N*,函数f(x)=(an -an +1+an +2)x +an +1cos x -an +2sin x 满足f′⎝⎛⎭⎫π2=0. (1)求数列{an} 的通项公式;(2)若bn =2⎝⎛⎭⎫an +12an ,求数列{bn}的前n 项和Sn.规律方法 常见可以使用公式求和的数列:(1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解;(2)奇数项和偶数项分别构成等差数列或等比数列的,可以分项数为奇数和偶数时,分别使用等差数列或等比数列的求和公式.【变式探究】在等差数列{an}中,已知公差d =2,a2是a1与a4的等比中项. (1)求数列{an}的通项公式;(2)令bn =a n (n +1)2,记Tn =-b1+b2-b3+b4-…+(-1)nbn ,求Tn.考点二 错位相减法求和【例2】 (·江西卷)已知首项都是1的两个数列{an},{bn}(bn≠0,n ∈N*)满足anbn +1-an +1bn +2bn +1bn =0.(1)令cn =anbn ,求数列{cn}的通项公式; (2)若bn =3n -1,求数列{an}的前n 项和Sn.【规律方法】(1)一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解;(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn -qSn”的表达式.【变式探究】数列{an}满足a1=1,nan +1=(n +1)an +n(n +1),n ∈N*.(1)证明:数列⎩⎨⎧⎭⎬⎫an n 是等差数列;(2)设bn =3n·an ,求数列{bn}的前n 项和Sn.考点三 裂项相消法求和【例3】正项数列{an}的前n 项和Sn 满足:S2n -(n2+n -1)Sn -(n2+n)=0. (1)求数列{an}的通项公式an ;(2)令bn =n +1(n +2)2a2n,数列{bn}的前n 项和为Tn ,证明:对于任意的n ∈N*,都有Tn <564.规律方法利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【变式探究】 (·山东卷)已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(1)求数列{an}的通项公式;(2)令bn=(-1)n-14nanan+1,求数列{bn}的前n项和Tn.【真题感悟】【高考福建,文17】等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【答案】(Ⅰ)2n a n =+;(Ⅱ)2101.【高考北京,文16】(本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=. (I )求{}n a 的通项公式;(II )设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 【答案】(I )22n a n =+;(II )6b 与数列{}n a 的第63项相等.【高考安徽,文18】已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .【答案】(Ⅰ)12n n a -=(Ⅱ) 112221n n ++--【高考山东,文19】已知数列{}n a 是首项为正数的等差数列,数列11n naa +⎧⎫⎨⎬•⎩⎭的前n 项和为21nn +. (I )求数列{}n a 的通项公式;(II )设()12n an n b a =+⋅,求数列{}n b 的前n 项和n T .【答案】(I )2 1.n a n =- (II) 14(31)4.9n n n T ++-⋅=【高考重庆,文16】已知等差数列{}n a满足3a=2,前3项和3S=9 2 .(Ⅰ)求{}n a的通项公式,(Ⅱ)设等比数列{}n b满足1b=1a,4b=15a,求{}n b前n项和n T.【答案】(Ⅰ)+1=2nna,(Ⅱ)21nnT.1.(·江西卷)已知首项都是1的两个数列{an},{bn}(bn≠0,n∈N*)满足anbn+1-an+1bn+2bn+1bn=0.(1)令cn=anbn,求数列{cn}的通项公式;(2)若bn=3n-1,求数列{an}的前n项和Sn.2.(·全国卷)等差数列{an}的前n项和为Sn.已知a1=10,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=1anan+1,求数列{bn}的前n项和Tn.3.(·山东卷)已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(1)求数列{an}的通项公式;(2)令bn=(-1)n-14nanan+1,求数列{bn}的前n项和Tn.4.(·江西卷)正项数列{an}的前n项和Sn满足:S2n-(n2+n-1)Sn-(n2+n)=0.(1)求数列{an}的通项公式an;(2)令bn=n+1(n+2)2a2n ,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<564.5.(·湖南卷)设Sn 为数列{an}的前n 项和,Sn =(-1)nan -12n ,n ∈N*,则 (1)a3=________;(2)S1+S2+…+S100=________.6.(·山东卷)设等差数列{an}的前n 项和为Sn ,且S4=4S2,a2n =2an +1.(1)求数列{an}的通项公式;(2)设数列{bn}的前n 项和为Tn ,且Tn +an +12n =λ(λ为常数),令cn =b2n(n ∈N*),求数列{cn}的前n 项和Rn.【押题专练】1.等差数列{an}的通项公式为an =2n +1,其前n 项和为Sn ,则数列⎩⎨⎧⎭⎬⎫Sn n 的前10项的和为 ()A .120B .70C .75D .100【答案】C2.已知函数f(n)=⎩⎪⎨⎪⎧n2 (当n 为奇数时),-n2(当n 为偶数时),且an =f(n)+f(n +1),则a1+a2+a3+…+a100等于()A .0B .100C .-100D .10 200【答案】B3.数列a1+2,…,ak +2k ,…,a10+20共有十项,且其和为240,则a1+…+ak +…+a10的值为()A .31B .120C .130D .185【答案】C4.已知数列{an}满足a1=1,an +1·an =2n(n ∈N*),则S2 016=() A .22 016-1B .3·21 008-3C .3·21 008-1D .3·21 007-2【答案】B5.已知数列{an}:12,13+23,14+24+34,…,110+210+310+…+910,…,若bn =1anan +1,那么数列{bn}的前n 项和Sn 为()A.n n +1B.4n n +1C.3n n +1D.5n n +1【答案】B6.数列{an}满足an +an +1=12(n ∈N*),且a1=1,Sn 是数列{an}的前n 项和,则S21=() A.212B .6C .10D .11【答案】B7.已知函数f(n)=n2cos(nπ),且an =f(n)+f(n +1),则a1+a2+a3+…+a100= ()A .-100B .0C .100D .10 200【答案】A8.设f(x)=4x 4x +2,利用倒序相加法,可求得f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+…+f ⎝⎛⎭⎫1011的值为________.【答案】59.在等差数列{an}中,a1>0,a10·a11<0,若此数列的前10项和S10=36,前18项和S18=12,则数列{|an|}的前18项和T18的值是________.【答案】6010.在数列{an}中,a1=1,an +1=(-1)n(an +1),记Sn 为{an}的前n 项和,则S2 013=________.【答案】-1 00511.等比数列{an}的前n 项和Sn =2n -1, 则a21+a22+…+a2n =________.【答案】13(4n -1)12.已知数列{an}的前n 项和是Sn ,且Sn +12an =1(n ∈N*). (1)求数列{an}的通项公式;(2)设bn =log 13(1-Sn +1)(n ∈N*),令Tn =1b1b2+1b2b3+…+1bnbn +1,求Tn.13.在等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表中的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(1)求数列{an}的通项公式;(2)若数列{bn}满足:bn=an+(-1)nln an,求数列{bn}的前n项和Sn.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

相关文档
最新文档