编程MATLAB程序实现复化梯形和辛普森数值积分精选.
数值积分的MATLAB实现

数值积分的MATLAB实现数值积分是通过数值方法计算定积分的近似值。
MATLAB是一种功能强大的数值计算软件,提供了多种函数和工具箱用于数值积分的实现。
在MATLAB中,常用的数值积分方法包括梯形法则、辛普森法则和龙贝格法。
梯形法则是最简单的数值积分方法之一、它的基本思想是将要积分的区间划分成多个小的梯形并计算每个梯形的面积,然后将这些面积相加得到最终的近似积分值。
在MATLAB中,可以使用trapz函数进行梯形法则的计算。
例如,要计算函数sin(x)在区间[0, pi]的积分,可以使用以下代码:```MATLABx = linspace(0, pi, 1000); % 在[0, pi]区间生成1000个等间隔的点y = sin(x); % 计算函数sin(x)在每个点的值integral_value = trapz(x, y) % 使用梯形法则进行数值积分```辛普森法则是一种更精确的数值积分方法,它使用二次多项式来逼近被积函数。
在MATLAB中,可以使用simpson函数进行辛普森法则的计算。
例如,上面例子中的积分可以改用辛普森法则进行计算:```MATLABintegral_value = simpson(x, y) % 使用辛普森法则进行数值积分```龙贝格法是一种高效的自适应数值积分方法,它通过逐步加密网格和逼近函数来提高积分的精度。
在MATLAB中,可以使用quad和quadl函数进行龙贝格法的计算。
例如,计算函数sin(x)在区间[0, pi]的积分:```MATLAB```除了上述方法外,MATLAB还提供了许多其他的数值积分函数和工具箱,用于处理不同类型的积分问题。
例如,int和integral函数可以用于处理多重积分和奇异积分。
Symbolic Math Toolbox中的函数可以用于计算符号积分。
需要注意的是,数值积分是一种近似方法,计算结果的误差与划分区间的精细程度有关。
复合梯形公式、复合辛普森公式matlab

复合梯形公式、复合⾟普森公式matlab 1. ⽤1阶⾄4阶Newton-Cotes公式计算积分程序:function I = NewtonCotes(f,a,b,type)%syms t;t=findsym(sym(f));I=0;switch typecase 1,I=((b-a)/2)*(subs(sym(f),t,a)+subs(sym(f),t,b));case 2,I=((b-a)/6)*(subs(sym(f),t,a)+4*subs(sym(f),t,(a+b)/2)+...subs(sym(f),t,b));case 3,I=((b-a)/8)*(subs(sym(f),t,a)+3*subs(sym(f),t,(2*a+b)/3)+...3*subs(sym(f),t,(a+2*b)/3)+subs(sym(f),t,b));case 4,I=((b-a)/90)*(7*subs(sym(f),t,a)+...32*subs(sym(f),t,(3*a+b)/4)+...12*subs(sym(f),t,(a+b)/2)+...32*subs(sym(f),t,(a+3*b)/4)+7*subs(sym(f),t,b));case 5,I=((b-a)/288)*(19*subs(sym(f),t,a)+...75*subs(sym(f),t,(4*a+b)/5)+...50*subs(sym(f),t,(3*a+2*b)/5)+...50*subs(sym(f),t,(2*a+3*b)/5)+...75*subs(sym(f),t,(a+4*b)/5)+19*subs(sym(f),t,b));case 6,I=((b-a)/840)*(41*subs(sym(f),t,a)+...216*subs(sym(f),t,(5*a+b)/6)+...27*subs(sym(f),t,(2*a+b)/3)+...272*subs(sym(f),t,(a+b)/2)+...27*subs(sym(f),t,(a+2*b)/3)+...216*subs(sym(f),t,(a+5*b)/6)+...41*subs(sym(f),t,b));case 7,I=((b-a)/17280)*(751*subs(sym(f),t,a)+...3577*subs(sym(f),t,(6*a+b)/7)+...1323*subs(sym(f),t,(5*a+2*b)/7)+...2989*subs(sym(f),t,(3*a+4*b)/7)+...1323*subs(sym(f),t,(2*a+5*b)/7)+...3577*subs(sym(f),t,(a+6*b)/7)+751*subs(sym(f),t,b));endsyms xf=exp(-x).*sin(x);a=0;b=2*pi;I = NewtonCotes(f,a,b,1)N=1:I =N=2:I =N=3:I =(pi*((3*3^(1/2)*exp(-(2*pi)/3))/2 - (3*3^(1/2)*exp(-(4*pi)/3))/2))/4N=4:I =(pi*(32*exp(-pi/2) - 32*exp(-(3*pi)/2)))/452. 已知,因此可以通过数值积分计算的近似值。
数值分析 matlab 实验4

(1) 解题过程如下:(1)MATLAB中创建复化梯形公式和复化辛普森公式的 M 文件:1)复化梯形公式文件:function s=T_fuhua(f,a,b,n)h=(b-a)/n;s=0;for k=1:(n-1)x=a+h*k;s=s+feval(f,x);ends=h*(feval(f,a)+feval(f,b))/2+h*s;2)复化辛普森公式文件:function s=S_fuhua(f,a,b,n)h=0;h=(b-a)./(2*n);s1=0;-5-s2=0;for k=1:n-1x=a+h*2*k;s1=s1+feval(f,x);endfor k=1:nx=a+h*(2*k-1);s2=s2+feval(f,x);ends=h*(feval(f,a)+feval(f,b)+s1*2+s2*4)/3;在MATLAB中输入:f=inline('x/(4+x^2)');a=0;b=1;%inline 构造内联函数对象for n=2:10s(n-1)=T_fuhua(f,a,b,n);s(n-1)=vpa(s(n-1),10);%调用复化梯形公式,生成任意精度的数值endexact=int('x/(4+x^2)',0,1);exact=vpa(exact,10)%求出积分的精确值输出结果:exact =.1115717755s =Columns 1 through 60.1088 0.1104 0.1109 0.1111 0.1113 0.1114Columns 7 through 90.1114 0.1114 0.1115在MATLAB中输入以下函数用以画出计算误差与 n 之间的曲线:r=abs(exact-s);n=2:10;plot(double(n),double(r(n-1)))得到结果如图所示:(2)在 MATLAB中输入以下程序代码:f=inline('x/(4+x^2)');a=0;b=1;n=9;%inline 构造内联函数对象t=T_fuhua(f,a,b,n);t=vpa(t,10)s=S_fuhua(f,a,b,n);s=vpa(s,10)%调用复化梯形和复化辛普森公式,生成任意精度的数值exact=int('x/(4+x^2)',0,1);exact=vpa(exact,10)%求出积分的精确值计算结果:t =.1114379370s =.1115717991exact =.1115717755E1=|t-exact|=0.0001338385E2=|s-exact|=0.0000000236所以,两种方法计算所得的绝对误差:E1>E2(1)中的两个结果 s 与t,两个函数的计算量基本相同,但是精度却有很大差别:与精确值exact =.1115717755比较,复化梯形公式的结果t =.1114379370 只有三位有效数字,而复化辛普森公式的结果 s =.1115717991 却有七位有效数字。
(整理)Matlab积分.

一.数值积分的实现方法1.变步长辛普生法基于变步长辛普生法,MA TLAB给出了quad函数来求定积分。
该函数的调用格式为:[I,n]=quad('fname',a,b,tol,trace)其中fname是被积函数名。
a和b分别是定积分的下限和上限。
tol用来控制积分精度,缺省时取tol=0.001。
trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。
返回参数I即定积分值,n为被积函数的调用次数。
例8-1 求定积分。
(1) 建立被积函数文件fesin.m。
function f=fesin(x)f=exp(-0.5*x).*sin(x+pi/6);(2) 调用数值积分函数quad求定积分。
[S,n]=quad('fesin',0,3*pi)S = 0.9008n = 772.牛顿-柯特斯法基于牛顿-柯特斯法,MA TLAB给出了quad8函数来求定积分。
该函数的调用格式为:[I,n]=quad8('fname',a,b,tol,trace)其中参数的含义和quad函数相似,只是tol的缺省值取10-6。
•该函数可以更精确地求出定积分的值,且一般情况下函数调用的步数明显小于quad函数,从而保证能以更高的效率求出所需的定积分值。
(1) 被积函数文件fx.m。
function f=fx(x)f=x.*sin(x)./(1+cos(x).*cos(x));(2) 调用函数quad8求定积分。
I=quad8('fx',0,pi)I = 2.4674分别用quad函数和quad8函数求定积分的近似值,并在相同的积分精度下,比较函数的调用次数。
调用函数quad求定积分:format long;fx=inline('exp(-x)');[I,n]=quad(fx,1,2.5,1e-10)I = 0.28579444254766n = 65调用函数quad8求定积分:format long;fx=inline('exp(-x)');[I,n]=quad8(fx,1,2.5,1e-10)I = 0.28579444254754n = 333.被积函数由一个表格定义在MATLAB中,对由表格形式定义的函数关系的求定积分问题用trapz(X,Y)函数。
数值分析MATLAB编程——数值积分法

数值分析MATLAB编程——数值积分法1、调用函数--f.Mfunction y=f(x)%------------------------------------------------------------函数1 y=sqrt(4-sin(x)*sin(x));%------------------------------------------------------------函数2 %y=sin(x)/x;%if x==0% y=0;%end%------------------------------------------------------------函数3 %y=exp(x)/(4+x*x);%------------------------------------------------------------函数4 %y=(log(1+x))/(1+x*x);2、复合梯形公式--tixing.M%复合梯形公式clear alla=input('请输入积分下限:');b=input('请输入积分上限:');n=input('区间n等分:');h=(b-a)/n;x=a:h:b;T=0;for k=1:n;T=0.5*h*(f(x(k))+f(x(k+1)))+T;endT=vpa(T,8)3、复合Simpson公式--simpson.M%复合Simpson公式clear alla=input('请输入积分下限:');b=input('请输入积分上限:');n=input('区间n等分:');h=(b-a)/n;x=a:h:b;S=0;for k=1:n;xx=(x(k)+x(k+1))/2;S=(1/6)*h*(f(x(k))+4*f(xx)+f(x(k+1)))+S;endS=vpa(S,8)4、Romberg算法--romberg.M%Romberg算法clear alla=input('请输入积分下限:');b=input('请输入积分上限:');n=input('区间n等分:');num=0:n;R=[num'];h=b-a;T=h*(f(a)+f(b))/2;t(1)=T;for i=2:n+1;u=h/2;H=0;x=a+u;while x<b;H=H+f(x);x=x+h;endt(i)=(T+h*H)/2;T=t(i);h=u;endR=[R,t'];for i=2:n+1for j=n+1:-1:1if j>=it(j)=(4^(i-1)*t(j)-t(j-1))/(4^(i-1)-1);elset(j)=0;endendR=[R,t'];endR=vpa(R,8)R(n,n)5、变步长算法(以复化梯形公式为例)--tixing2.M%复合梯形公式,确定最佳步长format longclear alla=input('请输入积分下限:');b=input('请输入积分上限:');eps=input('请输入误差:');k=1;T1=(b-a)*(f(a)+f(b))/2;T2=(T1+(b-a)*(f((a+b)/2)))/2; while abs((T1-T2)/3)>=epsM=0;n=2^k;h=(b-a)/n;T1=T2;x=a:h:b;for i=1:n;xx=(x(i)+x(i+1))/2;M=M+f(xx);endT2=(T1+h*M)/2;k=k+1;endT=vpa(T2,8)n=2^k。
复化求积公式求数值积分

应用软件课程设计——复化求积公式求数值积分数学0801班 ***一、实验目的程序1:利用复化梯形公式以及复化辛普森公式求解定积分的数值解。
程序2:分析剖分区间个数对复化梯形公式精度的影响。
程序3:比较MATLAB 的quad 、quadl 命令与上述两种方法的精度;比较在相同剖分区间下两种求数值积分方法的精度。
分析与探讨两种方法精度不同的原因。
说明:原题目给出的积分精确值I=4.006994稍过粗糙,所以通过计算机求解得到更为精确的解析解。
详见测试结果。
二、算法说明自定义函数有:积分函数〔在此题中为dx e I x ⎰+=201〕:hanshu.m 〔附录1〕复化梯形公式求定积分数值解tixing.m 〔附录2〕 复化辛普森公式求定积分数值解xps.m 〔附录3〕 积分原函数解析解jxj.m 〔附录4〕程序1:p1.m 〔附录5〕1、n=2000;%确定积分区间分割份数2、tx=tixing(0,2,n);%用复化梯形公式求解3、xps=xps(0,2,n);%用复化辛普森公式求解4、显示结果disp(['积分区间分割分数为:',num2str(n)]) disp('复化梯形公式的求解结果:'),disp(tx) disp('复化辛普森公式的求解结果:'),disp(xps)程序2-1:p21.m 〔附录6〕1、jxj=jxj(2)-jxj(0);%求出解析解。
2、tx=zeros(5,1);%给数值解向量赋值。
d=zeros(5,1);%给误差向量赋值。
3、i=1,2,3,4,54、n=10^i;%定义剖分份数。
5、tx(i)=tixing(0,2,n);%将剖分份数n 代入,求出该n 下的数值解。
d(i)=tx(i)-jxj;%求出误差。
6、结束循环 7、输出结果程序2-2:p22.m 〔附录7〕1、jxj=jxj(2)-jxj(0);%求出解析解。
matlab软件求解数值积分及复化梯形公式、复化公式估计误差的方法心得

MATLAB软件是数值计算和科学计算的强大工具,尤其在数值积分和数值微积分中,它提供了许多内置函数,可以快速有效地解决各种问题。
以下是我使用MATLAB求解数值积分,以及使用复化梯形公式和复化公式估计误差的一些心得:1. 数值积分:MATLAB的内置函数`integral`可以用于数值积分。
这个函数使用自适应Simpson方法,可以处理复杂函数的积分。
我发现,对于一些非标准函数,`integral`函数能够给出相当精确的结果。
2. 复化梯形公式:复化梯形公式是一种数值积分的方法,它通过把积分区间分成许多小的子区间,然后在每个子区间上应用梯形法则来近似积分。
在MATLAB中,我们可以使用梯形法则的公式来实现这个方法。
值得注意的是,为了得到更精确的结果,我们需要将子区间的数量增加。
3. 复化公式估计误差:估计复化梯形公式的误差是重要的,因为它可以帮助我们了解我们的近似有多准确。
误差可以通过比较复化梯形公式的近似值和真实值来估计。
在MATLAB中,我们可以使用try-catch语句来捕获可能的错误,并据此调整我们的近似。
4. 细心和耐心:在使用MATLAB进行数值计算时,细心和耐心是关键。
我们需要仔细检查我们的代码,确保所有的变量都被正确地定义和使用。
同时,由于数值计算可能会产生一些意想不到的结果,我们需要有耐心去调试和优化我们的代码。
5. 理解你的算法:对于任何数值方法,理解其背后的数学原理是非常重要的。
这不仅可以帮助你理解你的代码是如何工作的,而且当出现问题时,你可以更有效地找到问题的根源。
6. 使用MATLAB的文档和社区:MATLAB的文档非常全面,对于不熟悉某个函数或方法的人来说,查阅文档是非常有帮助的。
此外,MATLAB的社区也非常活跃,当你遇到问题时,你可以在这里寻求帮助。
以上就是我在使用MATLAB求解数值积分以及使用复化梯形公式和复化公式估计误差的一些心得。
总的来说,MATLAB是一个功能强大的工具,但是要充分利用它,我们需要理解其背后的数学原理,耐心地调试我们的代码,并善于利用其文档和社区资源。
实验四 数值积分

实验四数值积分
实验目的
1.掌握复化梯形公式与复化辛普森公式原理与算法。
2.用Matlab实现两种算法,并对两种数值积分法进行比较。
实验原理
(一)复化梯形公式
根据积分的基本定义,将积分区间均匀细分,可得:
当每个区间充分小的时候,将积分区间近似为一个梯形,根据梯形面积公式有:其中h为步长。
综合两式,可得到复化梯形公式:
(二)复化辛普森公式
由牛顿-柯特斯公式可知,当n=2时有辛普森公式:
同样利用复化积分的原理,有:
可以得到复化辛普森公式:
实验内容
(一)用复化梯形公式求的值,n=10
(二)用复化辛普森公式求的值,n=10
实验报告要求包含Matlab程序、计算结果,以及结果分析。
数据整理与结果分析
1.编写复化梯形公式与复化辛普森公式的Matlab程序。
2.两种方法求解结果的截图。
3.对比两种公式求解结果的差异,讨论原因。
实验讨论与总结
1.对比两种求解方法的精度与误差。
2.对比复化求积法和普通牛顿-柯特斯公式的差异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运行结果:
>> S_n=S_P_S(0,1,20)
S_n =
-0.4423
实验心得
通过此次实验的操作,我掌握了复合梯形公式和复合辛普森公式,对编程又有了新的突破!
最新文件仅供参考已改成word文本。方便更改
h=(b-a)/n;
fork=0:n
x(k+1)=a+k*h;
ifx(k+1)==0
x(k+1)=10^(-10);
end
end
T_1=h/2*(f(x(1))+f(x(n+1)));
fori=2:n
F(i)=h*f(x(i));
end
T_2=sum(F);
T_n=T_1+T_2;
运行结果:
>> T_n=F_H_T(0,1,20)
T_n =
-0.4336
2.编程序实现复化辛普森数值积分求积公式
functiony=f(x)
y=sqrt(x).*log(x);
functionS_n=S_P_S(a,b,n)
h=(b-a)/n;
fork=0:n
x(k+1)=a+k*h;
x_k(k+1)=x(k+1)+1/2*h;
if(x(k+1)==0)|(x_k(k+1)==0)
x(k+1)=10^(-10);
x_k(k+1)=10^(-10);
end
S_1=h/6*(f(x(1))+f(x(n+1)));
fori=2:n
F_1(i)=h/3*f(x(i));
end
forj=1:n
F_2(j)=2*h/3*f(x_k(j));
end
S_2=sum(F_1)+sum(F_2);
数值分析实验报告——
实验目的
[1]掌握复化梯形和辛普森数值积分 Nhomakorabea的基本原理和方法;
[2]编程MATLAB程序实现复化梯形和辛普森数值积分
实
验
内
容
与
步
骤
实
验
内
容
与
步
骤
1.编程序实现复化梯形数值积分求积公式
functiony=f(x)
y=sqrt(x).*log(x);
functionT_n=F_H_T(a,b,n)