第4讲 绝对值与相反数(基础)

合集下载

七年级上册教案:2_4绝对值与相反数(学生版)

七年级上册教案:2_4绝对值与相反数(学生版)

初一数学助学案(学生版)课题:§2.4 绝对值与相反数一、学习目标1.借助数轴,初步理解绝对值的概念, 能求一个有理数的绝对值;3.会比较两个有理数的绝对值的大小;二、学习重点与难点1.重点:了解绝对值的含义;2.难点:会比较两个有理数的绝对值的大小;三、 学习过程复习回顾1.有理数的分类:2.数轴的三要素 。

3.分别指出数轴上点A 、B 、C 、D 所表示的数:4.在数轴上画出表示下列各数的点:-3.5,3,-0.8,2.5,0.5.在数轴上位于-3.2与1之间的点表示的整数有:___________.6. 比较下列各数的大小:-2, 2.3, 0, 121。

(用“<”连接)(一)创设情境小明的家在学校西边3km 处,小丽的家在学校东边2km 处,小芳的家在学校东边3km 处,我们能够用数轴来表示小明、小丽和小芳的家和学校的位置,以学校为原点,向东为正,小明、小丽和小芳的家分别在A 、B 、C 处。

请画出数轴思考:(1)点A 、B 、C 离原点的距离各是多少?(2)点A 、B 、C 离原点的距离与它们表示的数是正数还是负数有没相关系?(3)在数轴上分别描出下列数所对应的点,并说出它们到原点的距离:0, -2, 5,21, -3.3二、探究新知小结: 叫做这个数的绝对值。

例如:3的绝对值记为 ,读作 。

3 表示的几何意义是_______________________________练习:在数轴上写出A ,B ,C ,D ,E 各点所表示的数的绝对值。

例1. 求4、-3.5的绝对值 例2.比较-3与-6的绝对值的大小-3-2-143210F E D C B A例3.在数轴上画出表示下列各数的点,并分别求出它们的绝对值:-2, +3.5, 0, -1, 12, -0.6 例4.出租车司机小李某天下午某一时段营运,全是在东西走向的人民大道实行。

如果规定向东为正,向西为负,他在这个时段行车里程(单位:千米)如下:-2, +5, -1,+10,-3,若车耗油量为0.8升/千米,你能协助小李算出在这个时段共耗油多少升吗?四、当堂反馈1.比较|-3|, | -0.4| , |-2 |的大小,并用“<”号把他们连接起来.2.填空题: (1)|+3|= , |0|= ; |-8.3| = , |-100| = .(2)若||4x =,则____x =; 若|a |=0, 则a = ____ (3)1||2-的倒数是____.3.选择题:(1)任何一个有理数的绝对值一定( )A 、大于0B 、小于0C 、小于或等于0D 、大于或等于0(2)下列说法:①7的绝对值是7 ②-7的绝对值是7 ③绝对值等于7的数是7或-7 ④绝对值最小的有理数是0.其中准确说法有( )A 、1个B 、2个C 、3个D 、4个五 学习反思初一数学助学案(学生版)课型:新授 执笔:杨存明 审核:初一备课组 姓名 课题:§2.3 绝对值与相反数(2)学习目标:有理数的相反数概念及表示方法,有理数相反数的求法、多重符号的化简和简单计算,在相反数概念学习过程中,理解数形结合等思想方法,培养概括水平.学习重点、难点:重点:互为相反数的数在数轴上的特征难点:根据相反数的意义实行多重符号的化简学习过程:复习回顾1. 叫做这个数的绝对值。

2.3绝对值与相反数(4)

2.3绝对值与相反数(4)
符号不同、绝对值相等的两个数互为相反数 ____________________________________. 规律:互为相反数的两个数的和______. 为0
1、-a表示的数是 ( ) A.正数 B.负数 C.正数或负数 D.以上都不准确
2、可以用正数和负数表示相反意义的量: ※某种面粉袋上的质量标识为“25±0.25
( ) B、a与-(-a)互为相反数 D、+(-a)和-(+a)一定相等
1.已知有理数a,b在数轴上的位置如图,从 图中你可以获得哪些信息呢?
a
-b
0
b -a
※有理数a,b在数轴上的位置如图所示,则下
列各式正确的是
a
0 b
(
)
A.a>b
B.a>-b
C.a<b
D.-a<-b
2.在数轴上,点A表示7,点B、C表示的 数互为相反数,且C与A间的距离为2, 问点B、C各对应什么数?
非负 规律:任何一个数的绝对值是一个_____数.
3、可以用绝对值来比较数的大小
相反数:
1、几何意义: 在数轴上原点的两旁,到原点的距离相等的 ____________________________________ 两点所表示的数是一对相反数 __________________________. 2、代数意义:
※如果数轴上的点A到原点的距离是1, 点B到原点的距离是3,则A,B两点间 的距离是________.
3.a、b、c三个数在数轴上的位置如图所示, 其中a、c互为相反数。化简式子:
a b c ac a b c
b a0c来自4.某公路养护车沿南北公路巡视维护,某天早晨从 A地出发,晚上最后到达B地.约定南为正方向,当天 行驶记录如下:(单位:千米)

北师大七年级第二章2.3相反数与绝对值基础知识点

北师大七年级第二章2.3相反数与绝对值基础知识点

2.3相反数与绝对值基础知识点一、相反数1、相反数的概念:只有符号不同的两个数叫做互为相反数,一般来说a 的相反数是—a.几何意义:在数轴上,分别位于原点的两侧,且到原点的距离相等,那么一个数叫做另一个数的相反数,或说它们互为相反数。

2、相反数的性质:任何一个数都有相反数,而且只有一个,正数的相反数一定是负数;负数的相反数一定是正数;0的相反数仍是0.3、注意:(1)若两个数互为相反数,则它们的和为0. 用字母表示:若a=—b 则 a + b = 0 (2)数轴上表示相反数的两个点关于原点对称。

(3)相反数等于它本身的数只有0. 用字母表示为若a =—a 则a=0(4)相反数是成对出现的,不能单独存在。

例如,-3和+3互为相反数,是说-3是+3的相反数,同时+3也是-3的相反数,单独的一个数不能说是相反数。

(5)“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是绝对值相同)。

不能理解为只要符号不同的两个数就互为相反数。

例如-2和-3,符号不同,但它们不互为相反数。

(6)要把“相反数”与“相反意义的量”区别开来。

“相反数”不但数的符号相反,而且要求符号后面的数相同,如+5与-5;而“具有相反意义的量”只要符号相反即可,如+2与-3. 4、多重符号的化简:两中方法(1)正正得正、正负得负(负正得负)(2)查负号的个数,当负号个数为奇数时,结果为负,当负号个数为偶数时,结果为正 二、绝对值1、绝对值的概念:在数轴上,一个数所对应的点到原点的距离叫作这个数的绝对值。

绝对值用符号“”表示,读作绝对值、数a 的绝对值记作a ,如—2的绝对值记作 —2 .2、绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 用数学式子表示数a 的绝对值:(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(1)任何数都有绝对值,且只有一个。

2.3.4绝对值与相反数:绝对值的非负性、绝对值的几何意义与最值问题(同步课件)-七年级数学上册

2.3.4绝对值与相反数:绝对值的非负性、绝对值的几何意义与最值问题(同步课件)-七年级数学上册

ax
b
当a≤x≤b,|x-a|+|x-b|的最小值是b-a
二、求|x-a|+|x-b|+|x-c|的最小值(a<b<c)
a
b
c
x
当x=b,|x-a|+|x-b|+|x-c|的最小值是c-a
03 典例精析
练1、利用数轴,解决下列问题:
(1)|x-3|的最小值是___0___,取得最小值时,x=___3___;
绝对值的几何意义
03 典例精析
例1、两个有理数在数轴上对应的点的距离可以用这两个数的差值的绝对值来
表示:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记为|AB|,
则|AB|=|a-b|=|b-a|。根据以上结论,回答以下问题:
①数轴上表示-7和-2的两个点之间的距离是___5___;
②数轴上表示x和-5的两个点之间的距离用含x的式子表示为_|x_-_(-_5_)_| ;
03 典例精析
练2-1、求当x取何值时,式子|x-1|+|x-2|+|x-3|+…+|x-10|取最小值。 两两配对
当___1_≤_x_≤_1_0__,|x-1|+|x-10|取最小值___9__; 当___2_≤_x_≤_9___,|x-2|+|x-9|取最小值___7__; 当___3_≤_x_≤_8___,|x-3|+|x-8|取最小值___5__; 当___4_≤_x_≤_7___,|x-4|+|x-7|取最小值___3__; 当___5_≤_x_≤_6___,|x-5|+|x-6|取最小值___1__。 综上,当5≤x≤6时,原式取最小值:9+7+5+3+1=25。

2.3.2绝对值与相反数:相反数(同步课件)-七年级数学上册(苏科版2024)_1

2.3.2绝对值与相反数:相反数(同步课件)-七年级数学上册(苏科版2024)_1

若两个数的绝对值相等,则这两个数相等或互为相反数, 即若|a|=|b|,则a=±b。
03 典例精析
例1、填空: (1)a的相反数是__-a__,-a的相反数是__a__; (2)a+b的相反数是____-_(a_+_b_)_=_-_a_-_b___, a-b的相反数是____-(_a_-_b_)=_-_a_+_b____。 (3)正数的相反数都是_负_数__;负数的相反数都是_正__数_。
例2、在①+(+3)与-(-3);②-(+3)与+(-3);③+(+3)与-(+3);④+(-3) 与-(-3),互为相反数的是___③__④___。(填序号)
【分析】先化简后判断: ①3与3,不互为相反数;②-3与-3,不互为相反数; ③3和-3,互为相反数;④-3和3,互为相反数。
03 典例精析
每组数符号不同,符号后的数值相同。
如图,以+250与-250为例: 数值相同
+250
-250
符号不同
02 知识精讲
相反数的概念
只有符号不同的两个数互为相反数(opposite number),其中一个 数叫做另一个数的相反数。
eg:250与-250互为相反数,也可以说250是-250的相反数, -250是250的相反数。
【分析】 -(-4)表示-4的相反数, 对于任意的数a都有-(-a)=a,即一个数 ∵-4的相反数是4, 的相反数的相反数就是这个数本身。 ∴-(-4)=4。
01 课堂引入 2.算一算,找规律: 1个“+”:+5=5; 2个“+”:+(+5)=____5____; “+”号的个数不影响化简的结果, 3个“+”:+[+(+5)]=____5____; 可以直接省略。 4个“+”:+{+[+(+5)]}=____5____。

2024-2025学年初中数学七年级上册(人教版)同步讲练第04讲绝对值(原卷版)

2024-2025学年初中数学七年级上册(人教版)同步讲练第04讲绝对值(原卷版)

第04讲 绝对值知识点01 绝对值的定义与求法1. 绝对值的定义:一般地,数轴上表示数a 的点到 的距离就是数a 的绝对值。

数a 的绝对值记作 ,读作 。

2. 绝对值的求法:(1)求一个数的绝对值:由绝对值的定义可知,一个正数的绝对值是 ,一个负数的绝对值是 ,0的绝对值是 。

1.﹣的绝对值是()A.B.C.D.【即学即练2】2.数轴上有A、B、C、D四个点,其中绝对值等于2的点是()A.点A B.点B C.点C D.点D【即学即练3】3.已知a=﹣2,b=1,则|a|+|﹣b|的值为()A.3B.1C.0D.﹣1知识点02 绝对值的性质1.绝对值的非负性:由定义可知,绝对值表示到原点的距离,所以不能为。

所以绝对值是一个,所以绝对值具有。

即若|a| 0。

几个非负数的和等于0,这几个非负数一定分别等于0。

即:若|a|+|b|+...+|m|=0,则一定有。

题型考点:根据绝对值的非负性求值。

【即学即练1】4.已知|x﹣2|+|y﹣1|=0,则x﹣y的相反数为()A.﹣1B.1C.3D.﹣3【即学即练2】5.若|a|+|b|=0,则a与b的大小关系是()A.a=b=0B.a与b互为倒数C.a与b异号D.a与b不相等知识点03 绝对值与数轴1.绝对值与数轴:在数轴上,一个数离原点越近,绝对值就,一个数离原点越远,绝对值。

题型考点:根据绝对值与数轴进行求解判断。

6.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越 .【即学即练2】7.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n +q =0,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n知识点04 绝对值与相反数1. 绝对值与相反数:①数轴上互为相反数的两个数在原点的两侧,且到原点的距离相等,所以互为相反数的两个数他们的绝对值 。

即若a 与b 互为相反数,则|a | |b |。

苏科版七年级上册数学 第2章 绝对值与相反数 绝对值——绝对值的定义和性质 授课课件

b-1=0. 解:根据题意可知:a-2=0,b-1=0 ,
所以:a=2 ,b=1.
感悟新知
总结
知3-讲
若几个非负数的和为0,则这几个数都为0.
感悟新知
知3-练
1 绝对值最小的数是____0____;绝对值最小的负整数 2 是___-__1___.
2如果+|b-a-11|=0,那么a+b=( )
C
感悟新知
知1-练
1 (中考·连云港)数轴上表示-2的点与原点的距离是 _______2_.
感悟新知
知识点 2 绝对值的求法
知2-讲
1.几何定义:一般地,数轴上表示数a的点与原点的距
离叫做数a的绝对值,记作
a.
2.代数定义:一个正数的绝对值是它本身;一个负数
的绝对值是它的相反数;0的绝对值是0;任意一个
2
A.B.-C.1D.1 1
3
2
2
2
感悟新知
3 写出下列各式的值,并回答问题.
知3-练
1
15
=
__1_5___,2.5
=
__2_.5__,2 3
=
2 __3___;2-15=___1_5__
,-2.5
=
_2__.5__,-
2
=
2 ___3__

3
3由以上可以看出:当a 是正数时,a ___>___ 0 ;
作业2
1
5
5
2 (中考·东营) 的-相1反数是(
A. B.-1 C.3D.-331
3
3
)B
知2-练
感悟新知
知识点 3 绝对值的性质
想一想: 互为相反数的两个数的绝对值有什么关系?

相反数和绝对值

相反数和绝对值一、教材分析1、教材的地位和作用相反数与绝对值是数学中的重要概念,是有理数大小比较和有理数四则运算的基础。

教材先将相反数,再讲绝对值,按数轴---相反数---绝对值的顺序教学,可以充分利用数轴使数与形更好地结合起来。

学好本节课,不仅对于学生完善对有理数的认识,并为学习下章做好知识铺垫,而且使学生认识到数与数、形与形的内在联系,以及数形之间的联系与区别,这对学生认识数学概念的本质,感悟数形结合和转化的数学思想,都具有重要意义。

2、学习目标:【知识与能力】1、借助数轴,理解相反数的意义,知道互为相反数的一对数在数轴上的位置关系,会求有理数的相反数;2、借助数轴,了解绝对值的概念,知道|a|的含义(这里a表示有理数);会求有理数的绝对值;3、会利用绝对值比较两负数的大小。

【过程与方法】经历相反数、绝对值知识的发生过程,丰富学生的数学活动经验。

【情感、态度与价值观】在相反数和绝对值概念的形成过程中,培养学生数形结合的思想。

进一步培养学生分类讨论的思想和观察、归纳与概括的能力。

3、重点:相反数及绝对值的意义难点:利用绝对值比较两个负数的大小关键点:通过数轴,理解相反数和绝对值的意义。

二、教学方法与手段1、教学方法引导学生在独立思考的基础上,采用小组合作交流的探究方式。

以数轴的知识为主线,把数轴的概念和画法、相反数、绝对值以及如何利用数轴和绝对值比较两个有理数的大小等知识有机联系在一起。

2、教学手段采用多媒体辅助教学,激发兴趣,促进学生自主学习,增大课堂容量,提高教学效率。

三、教学过程设计1、尝试发现,探索新知教师设计如下三个问题引导学生思考讨论:问题1:数-4和4有什么相同点和不同点?2.5和-2.5呢?你还能说出两个具有这种特征的数吗?与同学交流,从而引出相反数的意义。

问题2:你能在数轴上标出-4和4,-2.5和2.5的点吗?(利用电脑将相应点加上不同的颜色并闪烁)问题3:你发现数轴上表示互为相反数的点的位置有什么特点?让学生讨论,总结相反数的特征(1)成对出现;(2)只有符号不同;(3)表示互为相反数的点分别在原点两旁且到原点的距离相等;(4)0的相反数是0问题4:观察上面画出的数轴,回答下列问题(1)数轴上表示4和2.5的点到原点的距离分别是多少?(2)数轴上表示-4和-2.5的点到原点的距离分别是多少?(3)数轴上表示0的点到原点的距离分别是多少?在学生回答的基础上,教师投影绝对值的概念和记法:在数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值,记作|a|,例如|4|=4,|-2.5|=2.5.目的:通过学生解决教师设置提出的问题激发学生的学习积极性和好奇心,达到知识的认知。

人教版2020七年级数学上册数轴、相反数、绝对值讲义(新版)新人教版

数轴、相反数、绝对值(讲义)➢ 课前预习1. 为了表示相反意义的量,我们可以把其中一个量规定为正的, 用正数来表示,而把与这个量意义相反的量规定为负的,用负数来表示.请根据上述内容回答问题:(1)如果规定向东为正,那么向东走 5 m 可记作+5 m,向西走 8 m可记作m.(2)一种袋装食品标准净重为 200 g,质监工作人员为了了解该种食品每袋的净重与标准的误差,把食品净重 205 g 记为+5 g,那么食品净重 197 g 就记为g.2. 正数可分为正整数和正分数,那么负数也可以分为负整数和负分数.比如:-2,-5 等都是负整数,而-1.5, 数.请将下列各数进行分类:1 都是负分 23 3,-2.5,3.14, ,-9,100,02其中属于整数的有:;其中属于分数的有:;其中属于正数的有:;其中属于负数的有:.3. 如图,点 A 表示小明的家,动物园在小明家西边 500 米,书店在小明家东边 500 米,车站在书店东边 200 米,小明从动物园出发向东走 1000 米,到达;动物园和书店到小明家的距离都是米;小明从家出发,走了 500 米,可以到达 ; 动 物 园 和 车 站 之间的距离为米.B 动物园ACD家书店 车站1➢ 知识点睛1.与2. 有理数的分类:统称为有理数.有理数有理数3. 非正数:非正整数:;非负数: ;非负整数:4. 数轴的定义:规定了、、叫做数轴.任何一个都可以用数轴上的一个点来表示.画数轴时注意以下几点: ①三要素; ②直线; ③数字和点的位置.. . 的一条画数轴:5. 数轴的作用:、、.6. 利用数轴比较大小:数轴上两个点表示的数,越往右数越,越往左数越,右边的总比左边的.正数0,负数0,正数负数.7. 相反数的定义:地,的两个数,互为相反数.特别 .互为相反数的两个数,和为 0.8. 绝对值的定义:在上,一个数所对应的点与原点的叫做这个数的绝对值.9. 绝对值法则:正数的绝对值是;;.字母表示: a 请尝试写出下列式子的相反数:a 的相反数是 a 的相反数是 a b 的相反数是; ; .事实上:绝对值是它本身的数是;绝对值是它的相反数的数是.2➢ 精讲精练1. 若上升 5 m 记作+5 m,则 8 m 表示表示支出 10 元,那么+50 元表示;如果 10 元 ;如果零上 5℃记作+5℃,那么零下 2℃记作;太平洋中的马里亚纳海沟深达 11 034 m,可记作海拔 11 034 m(即低于海平面 11 034m),则比海平面高 50 m 的地方,它的高度记作海拔 , 比 海 平 面 低30 m 的地方,它的高度记作海拔.2. 有四包真空小包装火腿,每包以标准克数(450 克)为基数, 超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A.+2B. 3 C.+3D.+43. 某超市出售的三种品牌的洗衣液袋上分别标有净重为(800±2) g,(800±3) g,(800±5) g 的字样,从中任意拿出两袋,它们的质量最多相差( )A.10 gB.8 gC.7 gD.5 g4. 把下列各数填入它所在的集合里:2,7, 2 ,0,2 015,0.618,3.14, 1.732, 5,+3 3①正数集合:{…}②负数集合:{…}③整数集合:{…}④非正数集合:{…}⑤非负整数集合:{…}⑥有理数集合:{…}5. 在数轴上表示下列各数:0, 3.5,11 , 1,+3, 2 2 ,并23比较它们的大小.36. a,b 为有理数,在数轴上的位置如图所示,则下列关于 a,b,0 三者之间的大小关系,正确的是()a0bA.0<a<bB.a<0<bC.b<0<aD.a<b<07. 在数轴上大于 4.12 的负整数有.8. 到原点的距离等于 3 的数是.9. 数轴上表示 2 和 101 的两个点分别为 A,B,则 A,B 两点间的距离是.10. 在数轴上,点 M 表示的数是 2,将它先向右移 4.5 个单位, 再向左移 5 个单位到达点 N,则点 N 表示的数是.11. 文具店、书店和玩具店依次坐落在一条东西走向的大街上, 文具店在书店西边 20 米处,玩具店位于书店东边 100 米处, 小明从书店沿街向东走了 40 米,接着又向东走了 60 米,此时小明的位置在()A.玩具店B.文具店C.文具店西边 40 米D.玩具店东边 60 米12. 已知数轴上点 A 与原点的距离为 2,则点 A 对应的有理数是,点 B 与点 A 之间的距离为 3,则点 B 对应的有理数是.13. 下列各组数中,互为相反数的是()A.0.4 与 0.41 C. ( 8) 与 8 14. 下列化简不正确的是(B.3.8 与 2.9D. ( 3) 与 ( 3) )A. ( 4.9)4.9B. ( 4.9)4.9C.( 4.9)4.915. 下列各数中,属于正数的是(A. ( 2)C. ( a)D. 4.9 )( 4.9)B. 3 的相反数D. 3 的相反数的相反数16. a,b 是有理数,它们在数轴上的对应点的位置如图所示,把a, a,b, b 按照从小到大的顺序排列正确的是()A. baabC. b aaba0B. baD. b bbba aa417. 有理数的绝对值一定是()A.正数B.整数C.正数或零D.非正数18. 下列说法正确的是()A.一个数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个数一定是负数19. 填空:3.5 =; 1= 2;5=;若 x<0,则 x,x;若 m<n,则 m n.20. 下列各数中: 2, 1 , 3 , 0 ,2 , ( 2),2,3是正数的有.21. 若 xx ,则 x 的取值范围是( )A. x 22. 若 a1B. x 0C.x≥03 ,则 a=;若 3 a ,则 a=D.x≤0 ;若 a 2 ,a<0,则 a=.23. 若 a b ,b=7, 则 a=;若 a b ,b=7,a≠b, 则 a=.24. 填空:(1)11 =;3(2) 4.2 4.2 == _;(3) 35= + = ;(4) 22 =||=;(5) 3 6.2 = × = _;2 (6)14=÷ = × =.335【参考答案】➢ 课前预习1. (1)-8.(2)-3.2. 其中属于整数的有:3,-9,100,0;其中属于分数的有:-2.5,3.14, 其中属于正数的有:3,3.14,100;3 ; 2其中属于负数的有:-2.5, 3 ,-9. 23. 书店,500,动物园或书店,1 200.➢ 知识点睛1. 整数、分数正整数 整数 0正有理数 正整数2. 有理数 负整数正分数分数负分数 正分数 有理数 0负整数 负有理数 负分数3. 负数和 0;正数和 0;负整数和 0;正整数和 0 4. 原点、单位长度、正方向、直线; 有理数.5. 表示数比较大小表示距离6. 大,小;大;大于,小于,大于7. 符号不同.0 的相反数为 0.8. 数轴,距离9. 它本身;负数的绝对值是它的相反数;0 的绝对值是 0a (a 0)a 0 (a 0) a (a 0)右侧框内答案框 2:图略框 3:-a,a,-a+b框 4:正数和 0,负数和 06➢ 精讲精练1. 下降 8 m 收入 50 元-2℃ +50 m -30 m2. A3. A4. ①7,2 015,0.618,3.14,+3; ②-2,2 ,-1.732,-5 3③-2,7,0,2 015,-5,+3; ④-2,2 ,0,-1.732,-5 3⑤7,0,2 015,+3;⑥-2,7,2 ,0,2 015,0.618,3.14,-1.732,-5,+3 35. 11223 31 0 图略; 26. B 7. -4,-3,-2,-18. ±39. 99 10. -2.511. B 12. ±2;-5,1,-1,513. C14. D15. B16. C17. C18. C19. 3.51-5-x -x2120., 3 ,-(-2)3-m +n21. D22. ±3 3-223. ±7 -724. (1) 11 ; (2)4.2 3(4)2 2 0;(5)3(6) 2 14 3323 3 144.2 0; (3)3 6.2 18.6; 1 7.5 8;7。

相反数和绝对值解题指导

相反数和绝对值相反数和绝对值是数学的重要基础概念之一,有着广泛的应用.不少学生在学习时觉得不好理解,应用时经常出问题,下面就和同学们一起学习相反数和绝对值.【相反数和绝对值知识点归纳总结】1、相反数的概念关键要理解“只有符号不同”的含义,规定零的相反数是零;2、互为相反数指的是一对数,甲、乙两数互为相反数包括甲是乙的相反数,乙也是甲的相反数;3、相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O的两边,并且到原点的距离相等。

4、多重符号化简的依据就是相反数的意义,化简的结果是由“-”号的个数来决定的,简称:奇负偶正。

5、什么是一个数的绝对值呢?从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离。

注意,这里的距离,是以单位长度为度量单位的,是一个非负的量。

6、一个正数的绝对值是它本身,一个负数的绝对值是它的相反数;零的绝对值是零。

7、两个负数,绝对值大的反而小。

【用相反数和绝对值解题】一、用相反数和绝对值的概念例1.(重庆市2005年中考题) 5的相反数是( )A. -5B. 5C.D.解析:根据相反数的概念:只有符号不同的两个数叫做互为相反数,易知本题选A例2.(绵阳市2005年)绝对值为4的实数是A. ±4B. 4C. -4D. 2解析:求绝对值等于4的数用绝对值几何定义比较直观,绝对值等于4的整数即在数轴上到原点距离等于4的整数点表示的数,故本题选A二、用相反数和绝对值的性质特征例3.(佛山市2005年中考题) -2的绝对值是()。

A. 2 B.-2 C.±2 D.解析:由绝对值的特征:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 所以-2的绝对值是2例4.(济南市2005年中考题)若a与2 互为相反数, 则|a+2|等于( )A. 0B. -2C.2D. 4解析:由相反数的特征若a、b两数互为相反数,则a+b=0,反之也成立.可知a+2=0, 再由绝对值的特征可得本题选A三.用相反数和绝对值解决实际问题例5. 质检员抽查某种零件的长度,超过规定长度的记为正数,不足规定长度的记为负数.检查结果如下:第一个为0.13毫米,第二个为-0.2毫米,第三个为-0.1毫米,第四个为0.15毫米,则长度最小的零件是第几个?哪一个零件与规定长度的误差最小?解析: ∵|-0.2|>|0.15|>|0.13|>|-0.1|∴长度最小的零件是第二个,与规定长度的误差最小的是第三个.四.用相反数和绝对值中的数学思想相反数和绝对值的应用十分广泛.因此我们在学习时,不仅应该深入理解概念,掌握特征,灵活运用,还应注意在应用过程中学会思想方法.1.整体代换例6. 若|a-2|=2-a,求a的取值范围.解析:根据已知条件等式的结构特征,我们把a-2看作一个整体,那么原式变形为|a-2|=-(a-2),又由绝对值概念知a-2≤0,故a的取值范围是a≤2.2.数形结合例7.(全国初中数学竞赛试题)设x是实数,y=|x-1|+|x+1|.下列四个结论:Ⅰy没有最小值;Ⅱ只有一个x使y取到最小值;Ⅲ有有限多个x(不只一个)使y取到最小值;Ⅳ有无穷多个x使y取到最小值.其中正确的是 [ ].A.Ⅰ B.Ⅱ C.ⅢD.Ⅳ解析:我们知道,|x|的几何意义是表示数轴上点x到原点的距离.类似地可知,|x-a|的几何意义是表示数轴上点x到点a的距离.一些有关绝对值的竞赛题,利用上述绝对值的几何意义,借助数形结合,常常会得到妙解. 原问题可转化为求x取那些值时,数轴上点x 到点1与点-1的距离之和为最小.从数轴上可知,区间[-1,1]上的任一点x到点1与点-1的距离之和均为2;区间[-1,1] 之外的点x 到点1与点-1的距离之和均大于2.所以函数y=|x-1|+|x+1|当-1≤x≤1时,取得最小值2.故选(D).3.分类例8.(2003年哈尔滨市中考题)已知|x|=3,|y|=2,且xy<0,则x+y的值等于()A.5或-5 B.1或-1 C.5或1 D.-5或-1解析:|x|=3,|y|=2,所以x=±3,y=±2,又因为xy<0,x、y异号.所以有两种情况:(1)当x=3,y=-2时,x+y=1.(2)当x=-3,y=2时x+y=-1.故选B.练习:1.(玉林市2005年中考题)若-m=4,则m=__________.2. 正式排球比赛,对所使用的排球的重量是有严格规定的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值与相反数
【要点梳理】 要点一、相反数
1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0. 要点诠释:
(1)“只”字是说仅仅是符号不同,其它部分完全相同. (2)“0的相反数是0”是相反数定义的一部分,不能漏掉. (3)相反数是成对出现的,单独一个数不能说是相反数. (4)求一个数的相反数,只要在它的前面添上“-”号即可. 2.性质:
(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).
(2)互为相反数的两数和为0. 要点二、多重符号的化简
多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 . 要点诠释:
(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3. 要点三、绝对值
1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3. 要点诠释:
(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:
(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)一个有理数是由符号和绝对值两个方面来确定的. 2.性质:
(1)0除外,绝对值为一正数的数有两个,它们互为相反数. (2)互为相反数的两个数(0除外)的绝对值相等.
(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0. 要点四、有理数的大小比较
1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴
(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩
上的位置如图所示,则a <b . 2.法则比较法:
利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:
(3)判定两数的大小.
3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.
4. 求商法:设a 、b 为任意正数,若
1a b >,则a b >;若1a b =,则a b =;若1a
b
<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.
5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.
【典型例题】
类型一、相反数的概念
1.
的相反数是( )
A .2016
B .﹣2016
C .
D .
举一反三:
【变式】若a 与1互为相反数,则|a+1|等于( ) A.-1 B.0 C.1 D.2 类型二、多重符号的化简
2.化简:
(1)﹣{+[﹣(+3)]}; (2)﹣{﹣[﹣(﹣|﹣3|)]}.
类型三、绝对值的概念
3.求下列各数的绝对值. 112-,-0.3,0,132⎛⎫-- ⎪⎝⎭
类型四、比较大小
4.比较下列有理数大小:
(1)-1和0; (2)-2和|-3| ; (3)13⎛⎫-- ⎪⎝⎭
和1
2
- ; (4)1--______0.1--
举一反三: 【变式】比大小: 6
5
3
-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000;
1.38-______-1.384; -π______-3.14. 类型五、绝对值非负性的应用
5.已知|2-m|+|n-3|=0,试求m-2n 的值.
类型六、绝对值的实际应用
6.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,
用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.
请用绝对值知识说明:
(1)哪几瓶是合乎要求的(即在误差范围内的)? (2)哪一瓶净含量最接近规定的净含量?
【巩固练习】
一、选择题
1.2015的相反数是( ) A.2015 B.-2015 C.-
D.
2.如果0a b +=,那么,a b 两个数一定是( ).
A .都等于0
B .一正一负
C .互为相反数
D .互为倒数 3.下列判断中,正确的是( ).
A .如果两个数的绝对值相等,那么这两个数相等;
B .如果两个数相等,那么这两个数的绝对值相等;
C .任何数的绝对值都是正数;
D .如果一个数的绝对值是它本身,那么这个数是正数.
4.已知点M 、N 、P 、Q 在数轴上的位置如图,则其中对应的数的绝对值最大的点是( )
A .M
B .N
C .P
D .Q 5.下列各式中正确的是( ). A .103<-
B .11
34
->- C .-3.7<-5.2 D .0>-2 6.若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是( ).
A .a >b
B .|a|>|b|
C .-a <-b
D .-a <|b| 二、填空题
7.如果a 与1互为相反数,则|a+2|等于________. 8. 化简下列各数: (1)23⎛⎫--
= ⎪⎝⎭_ ;(2)45⎛⎫
-+= ⎪⎝⎭
;(3){[(3)]}-+-+=________. 9.已知|x|=2,|y|=5,且x >y ,则x =________,y =________.
10.数a 在数轴上的位置如图所示.则|a-2|= .
11.在数轴上,与-1表示的点距离为2的点对应的数是 .
12334x x -=-,则x 的取值范围是________. 三、解答题
13.绝对值大于2而小于6的所有整数的和是多少?(列式计算)
14.化简下列各数,再用“<”连接.
(1)-(-54) (2)-(+3.6) (3)53⎛⎫-+ ⎪⎝⎭ (4)24
5⎛⎫-- ⎪⎝⎭
15.已知:a 是﹣(﹣5)的相反数,b 比最小的正整数大4,c 是最大的负整数.计算:3a+3b+c 的值是多少?。

相关文档
最新文档