浅谈市政桥梁的抗震结构设计
市政桥梁设计中隔震设计分析探讨

市政桥梁设计中隔震设计分析探讨市政桥梁是城市建设中不可或缺的一部分,在桥梁设计中,隔震设计是一项重要的设计参数。
本文将从隔震设计的基本原理和适用条件,以及隔震设计的作用和分析方法等方面进行探讨。
一、隔震设计的基本原理隔震设计是一种通过减少或抑制地震的振动传递进入结构内部,从而减小结构受震影响的技术手段。
基本原理是通过减少地震波传递的能量,降低结构受到的震动,增加结构的稳定性和安全性。
在隔震设计中,通常采用地震隔离器、阻尼器、减振器等装置,通过这些装置,可以有效地缓解地震的影响,同时保护结构安全。
隔震设计需要根据不同的结构特点和地震条件进行合理的安排和选择,以达到最佳的隔震效果。
同时,还需要考虑隔震设计对结构的影响,包括对结构的负载、变形等因素的影响。
二、隔震设计的适用条件隔震设计适用于一些重要的建筑物和桥梁,如高层建筑、地铁车站、大型桥梁等。
在桥梁设计中,隔震设计需要考虑以下因素:1、桥梁的结构类型:对于悬索桥、斜拉桥等大型桥梁,隔震设计效果更为明显。
对于简单的梁式桥,则隔震设计效果较小。
2、桥梁的设计标准:隔震设计需要根据不同的设计标准进行选择和设计。
3、隔震装置的类型:需要选择合适的隔震装置,包括地震隔离器、阻尼器、减振器等。
4、地震条件和建筑物环境:隔震设计需要根据地震条件和建筑物环境进行适当的调整和选择。
2、提高桥梁的稳定性和安全性:隔震设计可以减少地震对桥梁的影响,提高桥梁的稳定性和安全性。
3、减轻桥梁的损坏和维修成本:隔震设计可以减少桥梁受到地震的损害,降低维修成本。
4、节约设计成本:隔震设计可以节约建设成本,降低桥梁的设计和建设成本。
四、隔震设计的分析方法在隔震设计中,需要进行合理的分析和评估。
评估的方法包括以下几个方面:1、地震条件分析:需要根据地震条件对桥梁进行分析和评估,包括地震强度、地震震源、地震周期等因素。
2、结构分析:需要对桥梁的结构进行分析,包括结构类型、材料、荷载等因素。
市政桥梁设计的防震设计

市政桥梁设计的防震设计市政桥梁作为城市的重要交通设施,其安全性和稳定性显得尤为重要,防震设计是保障市政桥梁安全的必要手段之一。
本文将从市政桥梁防震的意义、桥梁震害分析、抗震设计的基本原则、防震设计中应用的技术手段等方面进行讨论。
地震是一种自然灾害,无法预测和控制,但可以通过做好防震措施来减少地震对市政桥梁及其附属设施的影响。
市政桥梁的防震设计旨在保障桥梁在地震中的安全性和稳定性,防止桥梁的倒塌和人员伤亡,保障正常的交通运输和物资流通,维护城市的经济和社会稳定。
二、桥梁震害分析桥梁的震害是由于地震力在桥梁结构中引起的动力响应所致。
桥梁结构的动力响应包括以下几个方面:首先是结构的抗力不足。
地震作用下,桥梁结构的上部结构和支座会承受强烈的水平地震力,如果结构设计不合理或不符合规范,就可能造成结构的破坏或者失稳。
其次是桥梁结构的屈曲和振动。
在地震作用下,桥梁结构的弯曲、屈曲和摆动会使结构破坏或者失稳,从而导致桥梁的倒塌或者严重损毁。
此外,地震动力会引起土壤液化,造成桥墩和支座的沉降,进一步影响桥梁的稳定性和安全性。
以上几点表明了地震对市政桥梁的危害,因此必须在设计中加强抗震技术的应用。
三、抗震设计的基本原则抗震设计的基本原则是在地震作用下保证建筑结构的安全完整性、稳定性和可修复性。
以市政桥梁的抗震设计为例,具体包括以下几个方面:1、满足建筑物破坏和人员伤害防范等基本安全要求;2、采用适当的抗震加强措施,提高桥梁的强度和稳定性;3、采用可靠的附属设施和避免地震破坏后造成的次生灾害;4、确保桥梁建设与城市规划相适应,考虑城市基础设施和城市功能发展规划的需要。
以上四点基本原则的实施是桥梁防震设计的核心要素。
四、防震设计中应用的技术手段在市政桥梁的防震设计中,应用的技术手段主要包括以下几个方面:1、提高桥梁的抗震能力。
通过优化设计和结构加固,减少和避免地震强度对桥梁造成的破坏和影响。
2、采用抗震附属设施。
在桥梁的设计中有效融入防震结构构件以及节能、环保等附属设施,实现结构的抗震性和可恢复性。
市政桥梁设计的防震设计

市政桥梁设计的防震设计市政桥梁是城市基础设施之一,是交通运输和城市发展的重要组成部分。
在地震频繁的区域,市政桥梁设计的防震能力显得尤为重要。
为了保证桥梁在地震中不发生破坏,需要进行防震设计,本文将从地震特点、桥梁的震害形式、防震设计目标、防震设计方法等方面对市政桥梁设计的防震设计进行探讨。
1. 地震特点地震是由地震波引起的地球表面的震动,其能量是强烈、瞬间的。
地震的特点包括:地震波的传播速度很快,通常为每秒7-8公里;地震震源的深浅不同,深震比浅震能量传播范围更广,但不易引起破坏;地震的震级大小与能量释放呈指数关系,随着震级增大,破坏力也会呈指数级增长。
2. 桥梁的震害形式地震会对桥梁造成多种不同形式的震害,主要包括以下几种:(1)结构振动:地震波会引起桥梁结构振动,进而导致桥梁结构的破坏。
(2)桥墩和墩台的倒塌:地震使得地基土层发生液化,导致桥墩和墩台的倒塌。
(3)桥梁墩身的折断:桥梁地震振动引起的桥梁墩身折断,是桥梁地震毁坏的主要形式之一。
(4)桥面和栏杆的破坏:地震振动会导致桥面和栏杆的破坏,影响桥梁的使用功能。
3. 防震设计目标市政桥梁的防震设计目标主要包括以下几点:(1)确保桥梁的完整性和使用功能;(2)减少地震对桥梁造成的损害和破坏;(3)提高桥梁的抗震能力,使桥梁能够承受地震的作用;(4)实现桥梁设计的可靠性和经济性。
市政桥梁的防震设计方法包括了建筑材料、结构形式、设计参数和施工工艺等方面,在设计中综合考虑这些方面的因素,最终确定最佳防震设计方案,具体包括以下几点:(1)选用适当的建筑材料和结构形式:在桥梁的结构设计中,需要选择适当的建筑材料以及结构形式,以提高桥梁的防震能力,同时考虑到设计的经济性和可靠性,选择材料和形式需要进行科学的评估和分析。
(2)确定合理的设计参数:在桥梁防震设计中,需要评估地震的频率和强度,并根据评估结果确定合理的设计参数,如桥梁的防震等级、抗震设防烈度、强震动加速度等。
市政桥梁设计中的抗震设计

市政桥梁设计中的抗震设计市政工程是城市建设的重要组成部分,而在市政工程中,桥梁设计是一个至关重要的环节。
而在桥梁设计中,抗震设计更是至关重要的一环。
地震是自然灾害中非常危险的一种,一旦发生地震会对桥梁造成严重的损坏,甚至导致垮塌,所以在市政桥梁设计中的抗震设计显得非常重要。
本文将从市政桥梁设计中的抗震设计角度来进行讨论。
一、抗震设计的重要性市政桥梁是城市的重要交通基础设施,负责承载道路交通。
一旦桥梁在地震中出现严重损坏或垮塌,将直接影响城市交通,甚至造成人员伤亡。
抗震设计对于市政桥梁来说至关重要。
抗震设计是指在桥梁设计的初期,考虑到地震因素,采取相应的措施,使桥梁在地震发生时能够保持稳定,减少损坏,确保市政交通的正常运转。
二、抗震设计的原则1. 安全可靠性原则:在市政桥梁设计中,抗震设计的首要原则就是确保桥梁的安全可靠性。
即在地震发生时,桥梁能够保持稳定,能够承受地震力,减少损坏,确保市政交通的畅通。
2. 预防为主原则:在市政桥梁抗震设计中,采取预防为主的原则,即在设计时就预先考虑到地震因素,尽量在设计阶段避免地震灾害对桥梁的损害。
3. 综合性原则:在市政桥梁抗震设计中,需要综合考虑不同的因素,包括地震烈度、地基条件、桥梁结构等,综合设计出抗震性能较好的桥梁结构。
三、抗震设计的内容1. 结构设计:在市政桥梁的抗震设计中,结构设计是一个非常重要的环节。
要采用抗震设计规范中规定的抗震设计参数,采用适当的结构形式和材料,确保桥梁在地震发生时能够承受地震力,保证结构的安全性。
2. 地基设计:地基是桥梁的支撑,地基的设计直接影响到桥梁的抗震性能。
在抗震设计中,需要选择适当的地基处理方式,确保地基的承载能力和稳定性,从而提高桥梁的抗震性能。
3. 设计参数:在市政桥梁的抗震设计中,需要严格按照抗震设计规范中规定的设计参数进行设计,包括地震烈度、地震作用组合、结构体系等参数,以确保桥梁的抗震性能。
4. 节段分析:在抗震设计中,需要进行桥梁的节段分析,对桥梁结构进行细致的地震响应分析,以确定桥梁在地震发生时的受力情况,从而优化设计,提高抗震性能。
桥梁工程中的抗震设计

桥梁工程中的抗震设计抗震是桥梁工程设计的重要环节之一,它直接关系到桥梁的耐久性和安全性。
在地震频发的地区,桥梁的抗震设计更加重要。
本文将探讨桥梁工程中的抗震设计原理和方法。
一、地震力的分析和计算抗震设计首先需要对地震力进行分析和计算。
地震力的大小和方向是影响桥梁抗震性能的重要因素。
地震力的计算需要考虑到地震烈度、震源距离、土壤条件等多个因素,并结合地震学和土木工程学的理论进行分析。
通过合理的计算方法,能够准确预测桥梁在地震作用下的响应。
二、桥梁结构的抗震设计1. 抗震设计的目标桥梁结构的抗震设计目标是在地震波作用下,保证桥梁的整体稳定性和结构安全性。
一般来说,桥梁的主要抗震性能指标包括位移限值、加速度限值和应力限值等。
在设计过程中,需要根据桥梁的特点和使用环境确定相应的指标,以确保桥梁在地震中具有足够的抗震能力。
2. 结构抗震设计的方法结构抗震设计的方法有很多,其中常用的包括弹性设计、弹塑性设计和减震设计等。
弹性设计是指在地震荷载下,结构仍然处于弹性状态,通过控制应力、位移等参数,确保结构的安全性。
弹塑性设计考虑了结构的塑性变形能力,在超出弹性阶段后,通过合理的塑性形变控制,提高结构的耗能能力。
减震设计是通过设置减震装置,将地震力转化为其他形式消耗,从而减小结构的震动反应。
三、桥梁基础的抗震设计桥梁基础是支撑整个桥梁结构的关键组成部分,其抗震设计至关重要。
抗震基础设计需要考虑到地震力传递、土壤的动力特性等因素。
一般来说,桥梁基础的抗震设计可以采用加固和加深基础、选用合适的基础形式等方法,以提高基础的抗震性能。
四、监测与维护桥梁工程的抗震设计不仅仅局限于初始设计阶段,还需要在桥梁运行的全生命周期内进行监测和维护。
通过实时监测桥梁的工作状态和结构响应,能够及时发现和处理可能存在的问题,保证桥梁的安全稳定运行。
综上所述,桥梁工程中的抗震设计是确保桥梁安全的重要环节。
通过合理的地震力分析和计算、结构和基础的抗震设计,以及监测和维护工作,可以提高桥梁的抗震能力,保障桥梁的安全性和耐久性。
市政桥梁设计的防震设计

市政桥梁设计的防震设计全文共四篇示例,供读者参考第一篇示例:市政工程是指由政府主导和管理的城市基础设施建设工程,其中桥梁设计是市政工程中的一个重要领域。
随着地震频率的增加,对于市政桥梁设计的防震设计也越来越受到重视。
设计人员需要充分考虑桥梁的抗震能力,确保在地震发生时可以有效抵御震荡力,保障桥梁的安全性和稳定性。
本文将就市政桥梁设计的防震设计进行探讨。
一、抗震设计原则市政桥梁设计的抗震设计必须遵循一定的原则,以确保桥梁在地震发生时能够发挥出最大的抗震能力。
是结构的合理布局。
桥梁结构要合理布局,考虑到桥梁在地震中可能受到的横向和纵向振动力,确保结构的稳固性和抗震能力。
是材料的选择。
抗震设计需要选择抗震性能好的建筑材料,如高强度混凝土、钢结构等,以确保结构在地震中不会轻易受损。
还需要考虑桥梁的整体性能、变形能力和破坏机制等方面的问题,从而确保抗震设计能够真正发挥作用。
二、防震设计方案市政桥梁的防震设计方案是保证桥梁在地震中安全性和稳定性的关键。
针对不同类型的桥梁,设计人员需要选择合适的防震设计方案。
一般而言,包括增加结构强度、设置局部防震措施、提高桥墩和桥台的抗震能力等。
增加结构强度是一种常见的抗震设计方案,通过提高桥梁结构的强度和刚度,来抵御地震力的作用。
设置局部防震措施是指在桥梁的结构关键部位设置专门的抗震构件或装置,以增强结构的抗震性能。
而提高桥墩和桥台的抗震能力则是通过加固和加固构件来提高桥梁桥墩和桥台的抗震性能。
这些抗震设计方案的采用将有效提高桥梁抗震性能,保障其在地震中的安全性。
三、抗震设计实施市政桥梁的抗震设计实施是指设计方案从理论到实际的一系列操作。
在抗震设计实施中需要进行多方面的工作,包括抗震设计的模拟分析、实验验证、结构设计和施工监管等。
需要进行抗震设计的模拟分析,通过现代工程软件对桥梁进行模拟分析,计算结构在地震作用下的受力情况,确定合理的抗震设计方案。
需要进行实验验证,通过对抗震构件的试验和检测,验证抗震设计方案的有效性和可靠性。
市政桥梁设计的防震设计

市政桥梁设计的防震设计市政桥梁是城市交通的重要组成部分,其设计和建设关乎城市的发展和市民的生活质量。
地震是一种破坏性的自然灾害,对于市政桥梁的设计和建设提出了严峻挑战。
进行防震设计是市政桥梁设计的重要内容之一。
防震设计是指在设计和建设过程中,对市政桥梁的结构和材料进行合理的布局和选择,以增强其抗震能力,降低地震灾害对桥梁的破坏程度,保障市政桥梁的安全性和稳定性。
在进行防震设计时,需要考虑桥梁的地理环境、地震烈度、土壤条件、桥梁结构和材料等因素,以确定合适的防震设计方案。
市政桥梁的地理环境和地震烈度是进行防震设计的重要基础。
不同地区的地质结构和地震烈度有所不同,需要根据具体情况来确定防震设计方案。
一般来说,地震烈度较高的地区需要采取更加严格的防震设计措施,以提高桥梁的抗震能力。
地震烈度还会影响桥梁的设计参数,如桥墩的强度和刚度等,需要在设计中进行综合考虑。
土壤条件也是影响市政桥梁抗震能力的重要因素。
土壤的不同密实度、湿度和厚度等特性会影响地震波传播的速度和幅度,从而影响桥梁的地震响应。
在进行防震设计时,需要根据实际情况对土壤条件进行合理评估,并确定相应的设计参数,以提高桥梁的抗震性能。
市政桥梁的结构和材料选择也是进行防震设计的重要内容。
合理的结构布局和选材可以有效提高桥梁的抗震能力。
采用适当的桥梁形式和构造方式,可以减小桥梁的振动响应;选用高强度和耐震性好的材料,可以提高桥梁的抗震性能。
还可以利用新型材料和技术,在设计和建设中提高桥梁的整体抗震能力。
在进行防震设计时,还需要注意桥梁的连续性和整体性。
市政桥梁通常是城市交通的重要枢纽,其连续性和整体性对于保障城市的交通运输具有重要意义。
在进行防震设计时,需要充分考虑桥梁的连续性,保证桥梁在地震发生时能够保持稳定,不会出现结构破坏或坍塌。
还需要考虑桥梁的整体性,避免出现局部结构破坏导致整体功能的丧失。
除了在设计阶段进行防震设计外,合理的建设和维护也是保障市政桥梁抗震能力的重要环节。
桥梁抗震设计

桥梁抗震设计桥梁作为城市交通的重要组成部分,承担着连接两岸的重要任务。
然而,在地震频发的地区,桥梁的抗震性能显得尤为重要。
本文将探讨桥梁抗震设计的关键要素,以及现代技术在提升桥梁抗震性能方面的应用。
一、地震对桥梁的影响地震是自然界中一种不可预知的自然灾害,它给桥梁结构带来了巨大的挑战。
地震力的作用下,桥梁结构可能发生严重的破坏,甚至导致垮塌,给交通运输带来严重影响。
因此,桥梁抗震设计显得尤为重要。
二、桥梁抗震设计要素1. 结构设计:桥梁结构设计是抗震设计的基础,其中包括桥梁的布局、材料选择和连接方式等。
合理的结构设计能够提升桥梁的抗震性能,降低破坏风险。
2. 地震动力学参数:在桥梁抗震设计中,需要考虑到地震动力学参数,如地震波的峰值加速度、频谱特征等。
这些参数可以通过历史地震数据和地震模拟计算获得。
3. 桥墩设计:桥墩是桥梁结构中承受地震荷载的重要部分。
在桥墩设计中,需要考虑墩身的尺寸、形状和材料等因素,以提高桥梁的抗震性能。
4. 受力分析:通过受力分析,可以确定桥梁各部分在地震作用下的应力分布情况。
合理的受力分析可以指导桥梁设计过程中的结构优化。
5. 抗震设计指标:抗震设计指标是评估桥梁抗震性能的重要依据,常用的指标包括破坏概率、损伤指标和位移响应等。
通过合理选择抗震设计指标,可以有效提升桥梁的安全性能。
三、现代技术在桥梁抗震设计中的应用1. 桥梁模型试验:桥梁模型试验是评估桥梁抗震性能的有效手段。
通过搭建桥梁模型,并对其进行地震模拟测试,可以获取桥梁在地震作用下的响应情况,从而指导实际工程中的设计与施工。
2. 数值模拟分析:借助计算机技术,可以对桥梁结构进行数值模拟分析。
通过建立桥梁的有限元模型,结合地震动力学参数,可以模拟桥梁在地震中的响应情况,并对其进行优化设计。
3. 新材料应用:新材料的应用对桥梁抗震性能具有重要影响。
例如,高性能混凝土、钢材以及纤维增强复合材料等,都可以提升桥梁的抗震能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈市政桥梁的抗震结构设计
发表时间:2018-08-07T11:42:23.553Z 来源:《建筑学研究前沿》2018年第8期作者:余辉[导读] 对于市政桥梁而言,其抗震性能的好坏势必会对人民生命财产造成重大影响。
36042919920120xxxx 516200 摘要:对于市政桥梁而言,其抗震性能的好坏势必会对人民生命财产造成重大影响。
基于此,本文从市政桥梁抗震结构设计原则出发,分析了市政桥梁抗震设计的要点,最后提出了详细的市政桥梁抗震设计措施。
关键词:市政桥梁;抗震结构;设计引言:市政桥梁结构设计应坚持安全、坚固原则,积极引进先进技术,如新结构、新型设备以及新材料与新的施工工艺,严格按照施工设计总则、荷载以及每种材料技术条件要求等各项施工设计部规范及其技术标准。
1、市政桥梁抗震结构设计原则 1.1安全性原则
在桥梁设计中应重视桥梁的安全性。
以抗震设计为例,桥位应选择在对抗震有利的地段,尽可能避免选择在软弱粘性土层、可液化土层和地层严重不均匀的地段,特别是发震断层地段。
如必须设置在可液化或松软土层的河岸地段时,桥长应适当增长,将桥台置于稳定的河岸上,而桥墩基础要加强。
桥型要选择抗震性能好、整体性强的结构体系,如连续梁,无铰拱等。
1.2耐久性原则
随着城乡建设的不断发展,城市桥梁和公路桥梁的负荷越来越重,造成混凝土结构桥梁的不同程度的损坏;在设计和施工过程中不注重细部结构的设计也是造成桥梁耐久性的一个很重要的因素,这些问题的存在严重影响了桥梁的使用寿命,因而从多方面对混凝土结构的耐久性设计的分析和研究是非常必要的。
2、市政桥梁抗震结构设计要点 2.1主梁设计要点
在进行市政桥梁结构设计的过程中,首先需要做好主梁设计工作。
主梁结构是整个市政桥梁结构的重中之重,因此,科学的进行主梁结构的设计是非常有必要的。
主梁结构一般选用的造型有T形和箱型两类,箱型仅在混凝土结构主梁中被使用,该类主梁在设计时要注意保持一定的间距和片数,间距和片数呈反函数关系。
梁高以及细部尺寸的确定需要进行一定的荷载计算,如主梁分布呈对称形式,则荷载分布也呈对称形式,选用杠杆法计算主梁的荷载量,反之则选用偏心受压法来计算。
另外,在进行主梁结构设计的过程中,需要充分的考虑主梁结构的适用性问题,不同的主梁结构应采用不同的结构类型,具体需要结合市政桥梁的实际情况以及日后的交通量进行科学的选择。
2.2桥梁上部结构的设计要点
在进行市政桥梁结构设计的过程中,还应该做好桥梁上部结构的设计工作,具体包括如下几个方面的环节。
桥体表面的结构设计工作。
在桥体表面的结构设计中,应充分的考虑汽车的冲击和碾压,因此,需要考虑到稳定性的问题,需要做好结构的稳定性设计。
做好桥面的二道防水层的设计工作。
二道防水层的主要作用就是进行防水,避免由于水的腐蚀作用而导致桥面的腐蚀,影响到市政桥梁的使用质量。
3、市政桥梁抗震设计措施 3.1市政桥梁抗震设计总体原则
从抗震角度出发,合理的结构体系应符合下列各项要求。
具有明确的计算简图和合理的地震作用传递途径;具有合理的刚度和承载力分布,避免因局部削弱或突变而成为薄弱部位;具备必要的承载力、良好的变形能力和耗能能力。
从以上概念出发,理想的桥梁结构体系布置应是:从几何线形上看,桥梁是直的,各墩高度相差不大。
因为弯桥或斜桥使地震反应复杂化,而墩高不等则导致桥墩刚度变化,使抗侧力桥墩中刚度较大的最先破坏。
从结构布局上看,桥梁尽量保持小跨径,使桥墩承受的轴压水平较低,从而获得更好的延性;弹性支座布置在多个桥墩上,把地震力分散到更多的桥墩;各个桥墩的强度和刚度在各个方向都相同;基础是建造在坚硬的场地上。
虽然由于各种限制条件,理想的抗震体系实践中很难达到,但在设计之初,仍应考虑使桥梁结构尽可能地满足上述要求。
3.2节点抗震设计
节点是连接桥墩和盖梁的传力构件,是保证整个结构良好工作的关键部位,属于能力保护构件。
因此,对其强度和刚度要求都较高。
在桥梁结构中,如果桥墩和盖梁刚度比较接近,则在地震作用下,结构受到侧向赓性力作用,节点核心区箍筋受力很大,容易出现节点刚度退化。
一方面会导致节点核心区混凝土剪切破坏;另一方面又会导致桥墩内力重分布,墩底截面弯矩加大,更快达到屈服状态,降低桥梁结构横桥向整体的抗震能力。
而在盖梁和桥墩抗弯刚度相差较大时,在地震横桥向作用下,墩底和墩顶部位的塑性铰更容易形成,节点部位相对更加安全,符合能力抗震设计思想。
当节点部位出现刚度软化以后,对墩顶截面的约束减弱,从而导致墩顶截面弯矩减小。
在桥梁结构中,节点构造形式与房屋框架结构中的节点相差较大,而且桥梁结构在横向地震作用下主要依靠墩柱的延性发生变形,而不是依靠盖梁的延性,因而不能套用房屋框架结构节点抗震设计。
3.3整体优化设计
从结构上来说,要清楚哪些结构有利于抗震,哪些结构抗震不利,其中包括桥型、上部结构、下部结构、墩台、基础的处理等等。
构造细节措施则包括一些基本的抗震措施,比如支座的选择、挡块的设置等等,还包括构件细节的构造措施、比如墩的箍筋配置、节点配筋构造。
在确定路线的总体走向和主要控制点时,应尽量避开基本烈度较高的地区和震害危险性较大的地段。
对于地震区的桥型选择,尽量减轻结构的自重和降低其重心,以减小结构物的地震作用和内力,提高稳定性;力求使结构物的质量中心与刚度中心重合,以减小在地震中因扭转引起的附加地震力,应协调结构物的长度和高度,以减少各部分不同性质的振动所造成的危害作用,适当降低结构刚度,使用延性材料提高其变形能力,从而减少地震作用,加强地基的调整和处理,以减小地基变形和防止地基失效。
3.4减隔震设计
地震力的作用是巨大的,我们在市政桥梁抗震设计中一般会采用两种途径去减轻市政桥梁震害:传统抗震设计和减隔震设计。
传统抗震设计是增大构件断面及配筋,致使结构刚度增大,达到减轻震害的目的;而减隔震设计是采用柔性支承延长结构周期,减小结构地震反应;采用阻尼器装置耗散能量,限制结构位移,保证结构在正常使用荷载作用下具有足够的刚度。
减隔震技术随着科技的发展以及新材料的应用,越来越多地被应用在市政桥梁抗震设计中,但它只适用于以下条件:上部结构连续,下部结构刚度较大,结构基本振动周期比较短;市政桥梁下部结构高度变化不规则,刚度分配不均匀;场地条件比较好,预期地面运动特性具有较高的卓越频率。
减隔震装置经常采用如下几种:整体型减隔震装置包括铅芯橡胶支座、高阻尼橡胶支座、摩擦摆隔震支座;分离型减隔震装置包括橡胶支座+金属阻尼器、橡胶支座+黏性材料阻尼器、橡胶支座+摩擦阻尼器。
结束语
总而言之,地震历来都是严重危害人类社会的自然灾害。
如果震区的交通线遭到破坏,就会给救灾工作造成巨大困难,并且影响灾后的回复工作,加重次生灾害,导致更加巨大的损失。
作为交通线中的关键环节,桥梁结构的抗震性能就成为人们特别关心的问题。
参考文献
[1]尤君鑫.关于市政桥梁抗震结构设计的分析[J].科技研究,2.15
[2]陈建兵.关于市政桥梁抗震结构设计的分析[J].城市建设理论研究,2015
[3]邹成.市政桥梁抗震设计问题研究[J].建筑工程技术与设计,2017。