r板桩墙计算

合集下载

桩基础计算公式

桩基础计算公式
有护壁部分V2(m3)
3.14*0.65*0.65*1*6=7.9599
圆台部分V3(m3)
3.14/3*(7.9-6)*(0.6*0.6+0.5*0.5+0.5*0.5)=1.810
球缺部分V4(m3)
3.14/6*0.5*(3*0.6*0.6+0.5*0.5)=0.348
挖土量合计(m3)
(V1+ V2+V3+V4)*2=21.646
球缺部分V3(m3)
3.14/6*0.5*(3*0.6*0.6+0.5*0.5)=0.348
桩心混凝土 V(m3)
(V1+ V2+V3)*2=15.219
护壁混凝土
第1节护壁体积V1(m3)
(3.14*0.85*0.85-3.14*0.65*0.65)*0.1+3.14*0.65*0.65*1-3.14*(0.5*0.5+0.575*0.575+0.5*0.575)/3=0.512
3.14*(0.4+0.15+0.2)*(0.4+0.15+0.2)*0.35=0.618
有护壁部分V2(m3)
3.14*0.55*0.55*1*5=4.74925
圆台部分V3(m3)
3.14/3*(7.5-5)*(0.5*0.5+0.4*0.4+0.4*0.5)=1.596
球缺部分V4(m3)
3.14/6*0.4*(3*0.5*0.5+0.4*0.4)=0.190
3.14/6*0.4*(3*0.5*0.5+0.4*0.4)=0.190
桩心混凝土 V(m3)
(V1+ V2+V3)*2=4.799

港口水工建筑物之 第五章 板桩码头

港口水工建筑物之 第五章 板桩码头

㈣、其它形式
拖板式、尼龙带式、锚杆式,加筋土结构及混合式。
三、拉杆
1、 位置
从减小板桩墙的跨中弯矩来看,拉杆宜放在标高较低处,但为
了保证水上穿拉杆和导梁胸墙的施工条件,一般在平均水位以下, 设计低水位以上0.5~1.0m,且不得低于导梁或胸墙的施工水位。
2、 尺度与材料
⑴直径:由强度计算确定,一般40~80mm; ⑵间距:对钢筋砼板桩墙,取板桩宽度的整数倍,对单设导梁的
极钢 阴管 极桩 保牺 护牲 阳
二、 锚碇结构
锚碇板(墙) 锚碇桩(板桩) 锚碇叉桩(斜拉桩)
㈠、锚碇板(墙)
1、 受力原理 依靠其前面回填料的土抗力来承受拉杆拉力,承载能力较小,
水平位移较大。
2、 型式 ⑴锚碇板:平板、T型、双向梯形
⑵锚碇墙:现浇钢筋砼连续墙,预制钢筋砼板,现场安装。
3、 尺寸 ⑴高度:由稳定计算确定,一般不宜小于埋置深度的1/3,长
承受拉杆拉力。
4. 导梁
连接板桩荷拉杆的构件,拉杆 穿过板桩固定在导梁上,使每根板
桩均受到拉杆作用。
5. 帽梁
帽梁作用相当于前面的胸墙,
一般是现浇的。当水位差不大时,
可将帽梁和导梁合二为一,成为胸 墙。
6. 码头设备
便于船舶系靠和装卸作业。
施工工序 打设板桩(浇注地连墙) →
安装导梁→锚碇结构施工
⑷主桩挡板(套板)结合
与3不同的是,它是在主桩后面放置挡板或在主桩之间
插放套板来挡土。墙后土压力直接作用在挡板(套板)上,
最后全部传给主桩,主桩受力很打,因此适用于水深不大的
情况,且要求先开挖港池,以便挡板(套板)的安放。
4、 按施工方法分
⑴ 预制沉入板桩 ⑵ 地下墙 ①水下砼连续墙: 用钻机在地下开沟槽, 用水下浇注砼方法形成连 续墙; ②预制板桩成槽沉放:

桩板墙计算书

桩板墙计算书

K65+260深路堑设计说明1.1 工程概况拟建的路线在走行至本路段时,地形起伏较大,设计拟以深挖路堑形式通本路段。

本段深挖路堑总长约140m。

左侧边坡设计按4级放坡开挖,坡比自上而下分别为1:1.25、1:1.25、1:1、1:1,最大坡高约33.7m;右侧边坡设计按5级放坡开挖,坡比自上而下分别为1:1.25、1:1.25、1:1、1:1、1:1,最大坡高约46.9m。

2 自然地理概况2.1 地形地貌深挖区处于构造侵蚀中低山地貌单元。

地形坡度较陡,地表多分布坡残积可塑粉质黏土,覆盖层较薄,植被较发育,多为灌木草丛和甘蔗等。

路堑边坡走向约290°,自然边坡稳定坡度约18~32°。

路堑所在山体最大高程约657.70m,最低点高程约515.50m,最大切割深度约146.20m。

2.2 气象田林县为广西至云贵高原的过渡地带山地,系构造侵蚀中低山陡坡地貌。

全境东北、西北、西南和中部较高。

向东南、向北逐步倾斜。

地貌类型境内以山地为主,由土山(砂岩与泥页岩组成)和石山两类组成。

境内地形较复杂、山高谷深,垂直高度差异明显,自然斜坡较陡,植被发育茂盛。

气候属亚热带季风类型,随着海拔的升高和地势的不同,形成许多区域性小气候。

极端最高气温40℃,极端最低气温为-7.3℃。

年平均气温16.4~21.6℃,年平均降雨量1204mm,年平均蒸发量为1590.1毫米,全年盛吹东南风,风向频率占30%(指县城),多年平均风速1.2m/s。

由于冬春、夏秋受两种不同性质的大气环流影响,季风气候明显,干、湿季界线分明,一般雨季(5~10月)降水量占全年总降水量的80%以上,干季(11~4月)降水量占全年总降水量的20%以下;平均无霜期长达346天,年内平均日照1696.4小时,日照充足,热能资源丰富。

2.3 水文项目区域属右江水系。

路线所经区域主要河流为驮娘江及其支流。

驮娘江是右江上游,发源于云南省大冲脑包山北麓,自西向东流入西林县,在西林县的平那村弄南屯入县境,在县境河长91.4公里,流域面积1158平方公里,多年平均流量135.7立方米每秒,平均径流量3.378亿立方米,天然落差556米。

桩板墙计算

桩板墙计算

桩板墙计算桩板式挡土墙验算[执行标准:公路] 计算项目:桩板式挡土墙 1计算时间:2014-02-24 20:02:09 星期一------------------------------------------------------------------------原始条件:墙身尺寸:桩总长: 30.000(m)嵌入深度: 12.000(m)截面形状: 方桩桩宽: 2.000(m)桩高: 3.000(m)桩间距: 5.000(m)挡土板的类型数: 1板类型号板厚(m) 板宽(m) 板块数1 0.500 1.000 18嵌入段土层数: 1柱底支承条件: 铰接计算方法: M法土层序号土层厚(m) 重度(kN/m3) M(MN/m4)1 50.000 18.000 10.000初始弹性系数A: 0.000(MN/m3)初始弹性系数A1: 0.000(MN/m3)物理参数:桩混凝土强度等级: C30桩纵筋合力点到外皮距离: 50(mm)桩纵筋级别: HRB335桩箍筋级别: HRB335桩箍筋间距: 300(mm)板混凝土强度等级: C30板纵筋合力点到外皮距离: 50(mm)板纵筋级别: HRB335挡土墙类型: 一般挡土墙墙后填土内摩擦角: 35.000(度)墙后填土粘聚力: 0.000(kPa)墙后填土容重: 19.000(kN/m3)墙背与墙后填土摩擦角: 17.500(度)土压力计算方法: 库仑坡线土柱:坡面线段数: 1折线序号水平投影长(m) 竖向投影长(m) 换算土柱数1 6.000 0.000 1第1个: 定位距离0.000(m) 公路-I级地面横坡角度: 45.000(度)墙顶标高: 0.000(m)挡墙分段长度: 10.000(m)钢筋混凝土配筋计算依据:《混凝土结构设计规范》(GB 50010--2002)===================================================================== 第 1 种情况: 组合1注意:内力计算时,土压力分项(安全)系数= 1.000[土压力计算] 计算高度为18.000(m)处的库仑主动土压力无荷载时的破裂角= 30.258(度)公路-I级路基面总宽= 6.000(m), 路肩宽=0.000(m) 安全距离=0.500(m)单车车辆外侧车轮中心到车辆边缘距离= 0.350(m), 车与车之间距离=0.600(m) 经计算得,路面上横向可排列此种车辆3列布置宽度= 10.501(m)布置宽度范围内车轮及轮重列表:第1列车:中点距全部破裂体轮号路边距离(m) 轮宽(m) 轮压(kN) 上轮压(kN)01 0.500 0.300 15.000 15.00002 2.300 0.300 15.000 15.00003 0.500 0.600 60.000 60.00004 2.300 0.600 60.000 60.00005 0.500 0.600 60.000 60.00006 2.300 0.600 60.000 60.00007 0.500 0.600 70.000 70.00008 2.300 0.600 70.000 70.00009 0.500 0.600 70.000 70.00010 2.300 0.600 70.000 70.000第2列车:中点距全部破裂体轮号路边距离(m) 轮宽(m) 轮压(kN) 上轮压(kN)01 3.600 0.300 15.000 15.00002 5.400 0.300 15.000 15.00003 3.600 0.600 60.000 60.00004 5.400 0.600 60.000 60.00005 3.600 0.600 60.000 60.00006 5.400 0.600 60.000 60.00007 3.600 0.600 70.000 70.00008 5.400 0.600 70.000 70.00009 3.600 0.600 70.000 70.00010 5.400 0.600 70.000 70.000第3列车:中点距全部破裂体轮号路边距离(m) 轮宽(m) 轮压(kN) 上轮压(kN)01 6.700 0.300 15.000 15.00002 8.500 0.300 15.000 15.00003 6.700 0.600 60.000 60.00004 8.500 0.600 60.000 60.00005 6.700 0.600 60.000 60.00006 8.500 0.600 60.000 60.00007 6.700 0.600 70.000 70.00008 8.500 0.600 70.000 70.00009 6.700 0.600 70.000 70.00010 8.500 0.600 70.000 70.000布置宽度B0=10.501(m) 分布长度L0=20.000(m) 荷载值SG=1650.000(kN) 换算土柱高度h0 = 0.414(m)第1破裂角:29.781(度)Ea=777.642 Ex=741.650 Ey=233.841(kN) 作用点高度Zy=6.176(m)(一) 桩身内力计算计算方法: m 法背侧--为挡土侧;面侧--为非挡土侧。

高速公路桩板墙计算书

高速公路桩板墙计算书

桩板式挡土墙验算[执行标准:公路]计算项目:桩板式挡土墙 1------------------------------------------------------------------------ 原始条件:墙身尺寸:桩总长: 20.000(m)嵌入深度: 10.000(m)截面形状: 方桩桩宽: 1.600(m)桩高: 2.400(m)桩间距: 5.000(m)挡土板的类型数: 3板类型号板厚(m) 板宽(m) 板块数1 0.400 1.000 32 0.400 1.000 43 0.400 1.000 3嵌入段土层数: 1柱底支承条件: 铰接计算方法: M法土层序号土层厚(m) 重度(kN/m3) M(MN/m4)1 50.000 19.000 5.000初始弹性系数A: 5.000(MN/m3)初始弹性系数A1: 5.000(MN/m3)物理参数:桩混凝土强度等级: C25桩纵筋合力点到外皮距离: 35(mm)桩纵筋级别: HRB335桩箍筋级别: HPB235桩箍筋间距: 300(mm)板混凝土强度等级: C25板纵筋合力点到外皮距离: 35(mm)板纵筋级别: HRB335挡土墙类型: 一般挡土墙墙后填土内摩擦角: 23.000(度)墙后填土粘聚力: 0.000(kPa)墙后填土容重: 19.500(kN/m3)墙背与墙后填土摩擦角: 15.000(度)土压力计算方法: 库仑坡线土柱:坡面线段数: 5折线序号水平投影长(m) 竖向投影长(m) 换算土柱数1 1.500 0.000 02 0.750 0.500 03 24.500 0.000 1第1个: 距离0.000(m),宽度24.500(m),高度0.513(m) 2004路基规范挡土墙车辆荷载4 6.300 -3.500 05 44.300 13.500 0地面横坡角度: 25.000(度)墙顶标高: 0.000(m)挡墙分段长度: 5.000(m)钢筋混凝土配筋计算依据:《混凝土结构设计规范》(GB 50010--2002)=====================================================================第 1 种情况: 组合1注意:内力计算时,土压力分项(安全)系数 = 1.000[土压力计算] 计算高度为 10.000(m)处的库仑主动土压力无荷载时的破裂角 = 38.700(度)第1破裂角: 39.300(度)Ea=440.756 Ex=425.738 Ey=114.076(kN) 作用点高度 Zy=3.415(m)(一) 桩身内力计算计算方法: m 法背侧——为挡土侧;面侧——为非挡土侧。

《基础工程》培训讲义板桩墙计算39

《基础工程》培训讲义板桩墙计算39


0.3331.8

t
0
2
解得 t0 1.49m
可求得每延米板桩墙的最大弯矩 M max为:
M
max

1 6
19
0.333(1.8

1.49)3

1 6
19

3

1 2
1.493
=21.6kN·m
三、单支撑(锚碇式)板桩墙的计算
当基坑开挖高度较大时,不能采用悬臂式板桩墙,此时可 在板桩顶部附近设置支撑或锚碇拉杆,成为单支撑板桩墙,如 图2-19所示。
由于基坑内抽水后引起 的水头差h 造成的渗流, 其最短渗流途径为h1+t, 在流程t中水对土粒动水力 应是垂直向上的,故可要 求此动水力不超过土的有
效重度b,则不产生流砂
的安全条件为
K i w b
基坑抽水后水头差引起的渗流
式中:K——安全系数,取2.0;
h
i——水力梯度, i w——水的重度。

EA

1
2
(h

t)2
Ka

1 2
19 0.333(8

t)2

EP K

1 2

1 2

K
pt
2

1 3 19 t 2 4

? 根据锚碇点0的力矩平衡条件,得:
E
A

2 3
(h

t)

d


EP K
h

d

2 3
t
将E A与E p 代入上式:
h1

桩板墙计算

桩板墙计算
08 5.400 0.600 70.000 70.000
09 3.600 0.600 70.000 70.000
10 5.400 0.600 70.000 70.000
(一) 桩身内力计算
计算方法: m 法
背侧--为挡土侧;面侧--为非挡土侧。
背侧最大弯矩 = 32714.221(kN-m) 距离桩顶 22.500(m)
面侧最大弯矩 = 0.000(kN-m) 距离桩顶 0.000(m)
最 大 剪 力 = 6652.834(kN) 距离桩顶 29.500(m)
05 6.700 0.600 60.000 60.000
06 8.500 0.600 60.000 60.000
07 6.700 0.600 70.000 70.000
第 1 种情况: 组合1
注意:内力计算时,土压力分项(安全)系数 = 1.000
[土压力计算] 计算高度为 18.000(m)处的库仑主动土压力
无荷载时的破裂角 = 30.258(度)
公路-I级
路基面总宽= 6.000(m), 路肩宽=0.000(m) 安全距离=0.500(m)
08 2.300 0.600 70.000 70.000
09 0.500 0.600 70.000 70.000
10 2.300 0.600 70.000 70.000
5 2.000 43.937 -60.720 -79 0.000
6 2.500 81.487 -90.410 -77 0.000
7 3.000 135.276 -125.673 -75 0.000
墙背与墙后填土摩擦角: 17.500(度)

最全面的桩基计算总结

最全面的桩基计算总结

最全面的桩基计算总结桩基础计算一.桩基竖向承载力《建筑桩基技术规范》5.2.2 单桩竖向承载力特征值Ra应按下式确定:Ra=Quk/K式中Quk——单桩竖向极限承载力标准值;K——安全系数,取K=2。

5.2.3对于端承型桩基、桩数少于4根的摩擦型柱下独立桩基、或由于地层土性、使用条件等因素不宜考虑承台效应时,基桩竖向承载力特征值应取单桩竖向承载力特征值。

5.2.4对于符合下列条件之一的摩擦型桩基,宜考虑承台效应确定其复合基桩的竖向承载力特征值: 1 上部结构整体刚度较好、体型简单的建(构)筑物;2 对差异沉降适应性较强的排架结构和柔性构筑物;3 按变刚度调平原则设计的桩基刚度相对弱化区;4 软土地基的减沉复合疏桩基础。

当承台底为可液化土、湿陷性土、高灵敏度软土、欠固结土、新填土时,沉桩引起超孔隙水压力和土体隆起时,不考虑承台效应,取η=0。

单桩竖向承载力标准值的确定:方法一:原位测试1.单桥探头静力触探(仅能测量探头的端阻力,再换算成探头的侧阻力)计算公式见《建筑桩基技术规范》5.3.32.双桥探头静力触探(能测量探头的端阻力和侧阻力)计算公式见《建筑桩基技术规范》5.3.4方法二:经验参数法1.根据土的物理指标与承载力参数之间的关系确定单桩承载力标准值《建筑桩基技术规范》5.3.52.当确定大直径桩(d>800mm)时,应考虑侧阻、端阻效应系数,参见5.3.6钢桩承载力标准值的确定:1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.7混凝土空心桩承载力标准值的确定:1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.8嵌岩桩桩承载力标准值的确定:1.桩端置于完整、较完整基岩的嵌岩桩单桩竖向极限承载力,由桩周土总极限侧阻力和嵌岩段总极限阻力组成。

后注浆灌注桩承载力标准值的确定:1.承载力由后注浆非竖向增强段的总极限侧阻力标准值、后注浆竖向增强段的总极限侧阻力标准值,后注浆总极限端阻力标准值;特殊条件下的考虑液化效应:对于桩身周围有液化土层的低承台桩基,当承台底面上下分别有厚度不小于1.5m、1.0m 的非液化土或非软弱土层时,可将液化土层极限侧阻力乘以土层液化折减系数计算单桩极限承载力标准值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.板桩下端固定支承时的土压力分布
板桩下端入土较深时,板桩下端在土中嵌
固,板桩墙后侧除主动土压力EA外,在板桩 下端嵌固点下还产生被动土压力EP2。假定EP2 作用在桩底b点处。与悬臂式板桩墙计算相同, 板桩的入土深度可按计算值适当增加10~ 20%。板桩墙的前侧作用被动土压力EP1。由 于板桩入土较深,板桩墙的稳定性安全度由 桩的入土深度保证,故被动土压力EP1不再考 虑安全系数。由于板桩下端的嵌固点位置不
知道,因此,不能用静力平衡条件直接求解 板桩的入土深度t。在图2-20中给出了板桩受
力后的挠曲形状,在板桩下部有一挠曲反弯 点c,在c点以上板桩有最大正弯矩,c点以下 产生最大负弯矩,挠曲反弯点c相当于弯矩零 点,弯矩分布图如图2-20所示。
图2-20
太沙基给出了在均匀砂土中,当土表面无超载,墙后
板桩墙受力后挠曲变形,上下两个支承点均允许自由转 动,墙后侧产生主动土压力EA。由于板桩下端允许自由转动 ,故墙后下端不产生被动土压力。墙前侧由于板桩向前挤压 故产生被动土压力EP。由于板桩下端入土较浅,板桩墙的稳 定安全度,可以用墙前被动土压力EP除以安全系数K保证。 此种情况下的板桩墙受力图式如同简支梁(图2-19b),按 照板桩上所受土压力计算出的每延米板桩跨间的弯矩如图219c所示,并以Mmax值设计板桩的厚度。
✓ 计算板桩墙截面内力,验算板桩墙材料强度, 确定板桩截面尺寸;
✓ 板桩支撑(锚撑)的计算; ✓ 基坑稳定性验算; ✓ 水下混凝土封底计算。
一、侧向压力计算
作用于板桩墙的外力主要来自坑壁土压力和水 压力,或坑顶其它荷载(如挖、运土机械等)所引 起的侧向压力。
由于它大多是临时结构物,因此常采用比较粗略 的近似计算,即不考虑板桩墙的实际变形,仍沿用古 典土压力理论计算作用于板桩墙上的土压力。一般用 朗金理论来计算不同深度z处每延米宽度内的主、被 动土压力强度pa、pp(kPa):
下端的支承情况又与板桩埋入土中的深度大小 有关,一般分为两种支承情况;
➢第一种是简支支承,如图2-19a。这类板桩埋入 土中较浅,桩板下端允许产生自由转动;
➢第二种是固定端支承,如图2-20a。若板桩下端 埋入土中较深,可以认为板桩下端在土中嵌固。
1.板桩下端简支支承时的土压力分布(图2-19a)
Kp
tan
2
45
30 2
3
若令板桩入土深度为t,取1延米长的板桩墙,
计算墙上作用力对桩端b点的力矩平衡条件b 0, 得:

1 2
tK p
1 K
t
t 3
1
2
h3
推出:
1 6
t
3
K
p
1 K
1
6
h t 3
Ka
将数字代入上式得:
1 19t3 3 1 1 19 1.8 t 3 0.333
图2-14 悬臂式板桩墙的计算
一般近似地假定土压力的分布图形如图2-14所示:
墙身前侧是被动土压力(bcd),其合力为Ep1 ,并考虑有 一定的安全系数K(一般取K=2);
在墙身后方为主动土压力(abe),合力为 EA。 另外在桩下端还作用有被动土压力Ep2 ,由于作用位置不易 确定,计算时假定作用在桩端b点。考虑到的实际作用位置应 在桩端以上一段距离,因此,在最后求得板桩的入土深度t后, 再适当增加10~20%。
例题2-1 计算图2-15所示悬臂式板桩墙需要的入土深度 t及桩身最大弯矩值。
已知桩周土为砂砾, 19 kN/m3,基坑开挖深度 h=1.8m。安全系数K=2。
图2-15 例题2-1图
解:1)入土深度求解:
当 30 时,
朗金主动土压力系数
Ka
tan2
45
30 2
0.333
朗金被动土压力系数
三、单支撑(锚碇式)板桩墙的计算
当基坑开挖高度较大时,不能采用悬臂式板桩墙,此时可 在板桩顶部附近设置支撑或锚碇拉杆,成为单支撑板桩墙,如 图2-19所示。
图2-19 单支撑板桩墙的计算
单支撑板桩墙的计算,可以把它作为有两个支 承点的竖直梁。一个支点是板桩上端的支撑杆或锚 碇拉杆;另一个是板桩下端埋入基坑底下的土。
朗金理论计算不同深度z处每延米宽度内的 主、被动土压力强度pa、pp(kPa):
主动土压力强度
pa
z tan 2 45
2
zK
a
(2-3)
被动土压力强度
pp
z tan 2 45
2
zK p
对于粘性土,式(2-3)中的内摩擦角用等 代内摩擦角e代入,其值可参照表2-2取用。
如有地下水或地面水时,还应根据土的透水性质和施 工方法来考虑计算静水压力对板桩的作用。
➢ 当土层为透水性土时,则在计算土压力时,土重取 浮重度,并考虑全部静水压力;
➢ 当水下土层为不透水的粘性土层,且打板桩时不会 使打桩后的土松动而使水进入土中时,计算土压力不考虑 水的浮力取饱和重度,而土面以上水深作为均布的超载作 用考虑。
二、悬臂式板桩墙的计算
图2-14所示的悬臂式板桩墙,因板桩不设支撑, 故墙身位移较大,通常可用于挡土高度不大的临时性 支撑结构。
1 2
K
p
1 K
t
2 0
1 2
K
a
h
t0
2
将数字代入上式得:
1 2
19 3
1 2
t
2 0
1 2
19 0.3331.8 t0
2
解得 t0 1.49m
可求得每延米板桩墙的最大弯矩 M max为:
M
max
1 6
19
0.333(1.8
1.49)3
1 6
19 3
1 2
1.493
=21.6kN·m
6
26
解得: t 2.76m
板桩的实际入土深度较计算值增加20%,则可 求得板桩的总长度L为:
L h 1.2t 1.81.22.76 5.12m
2)最大弯矩值求解
若板桩的最大弯矩截面在基坑底深度 面的剪力应等于零,即
t0
处,该截
1
2
K pt0
1 K
t0
1
2
Ka
h t0 h t0
推出:
板桩墙受力特点
主要承受土压力和水压力,因此,板桩墙本身 也是挡土墙,但又非一般刚性挡墙,它在承受水 平压力时是弹性变形较大的柔性结构; 它的受力条件与板桩墙的支撑方式、支撑的构 造、板桩和支撑的施工方法以及板桩入土深度密 切相关,需要进行专门的设计计算。
板桩墙计算内容应包括:
✓ 板桩墙侧向压力计算; ✓ 确定板桩插入土中深度的计算,以确保板桩墙 有足够的稳定性;
相关文档
最新文档