炭黑的基本性质
n220炭黑标准

n220炭黑标准N220炭黑是一种广泛用于橡胶制品和其他高分子材料中的黑色填料。
其粒径较小,具有良好的分散性和较高的化学活性。
下面我们将详细介绍N220炭黑的标准。
一、定义和性质N220炭黑是一种高纯度、高分散性的炭黑,其平均粒径约为20nm (纳米),因此也被称为超细炭黑。
由于其粒径较小,比表面积较大,因此具有较高的化学活性和良好的分散性。
此外,N220炭黑还具有较高的导电性能和良好的遮盖力。
二、标准规范1.外观:N220炭黑应为黑色粉末,无结块现象。
2.平均粒径:N220炭黑的平均粒径应不大于20nm,粒径分布应符合规定要求。
3.吸碘值:N220炭黑的吸碘值应符合规定要求,表示其具有较高的化学活性。
4.挥发分:N220炭黑的挥发分应不大于1.5%,表示其具有较好的稳定性和加工性能。
5.灰分:N220炭黑的灰分应不大于0.5%,表示其纯度较高。
6.电阻率:N220炭黑的电阻率应不小于1013Ω·cm,表示其具有较好的导电性能。
7.含水量:N220炭黑的含水量应不大于0.5%,表示其具有良好的加工性能和稳定性。
8.筛余物:N220炭黑应通过规定孔径的筛子,表示其粒径分布符合要求。
三、应用领域1.橡胶制品:N220炭黑在橡胶制品中主要作为黑色填料使用,可提高制品的导电性能、耐磨性能和抗老化性能等。
同时,由于其良好的分散性和化学活性,可提高橡胶制品的加工性能和稳定性。
举例来说,汽车轮胎是橡胶制品中一个重要的应用领域。
在汽车轮胎的生产中,加入适量的N220炭黑可以显著提高轮胎的导电性能和抗磨损性能,同时还可以提高轮胎的加工性能和稳定性,从而提高轮胎的使用寿命和安全性。
此外,N220炭黑还可以用于生产其他橡胶制品,如胶管、胶带、胶鞋等。
在这些产品中,加入适量的N220炭黑可以提高产品的导电性能、耐磨性能和抗老化性能等。
2.高分子材料:除了在橡胶制品中的应用外,N220炭黑还可以用于其他高分子材料中,如塑料、涂料等。
炭黑简介演示

采用先进的自动化控制系统,实现生产过程的智 能化和数字化管理。
资源循环利用
加强炭黑生产过程中的废弃物回收和资源再利用 ,降低生产成本。
新应用领域的开发
高性能材料
将炭黑应用于高性能复合材料、先进陶瓷等领域,拓展其在高端 制造业的应用。
新能源领域
探索炭黑在太阳能电池、锂离子电池等新能源领域的应用,推动清 洁能源的发展。
工艺流程
原料经过高温裂解,产生 炭黑蒸气,再经过急冷和 凝结成炭黑颗粒。
产品特点
热裂法炭黑具有高色素、 高纯度等特点,适用于制 造高级橡胶、塑料等产品 。
03
炭黑的应用领域
轮胎
轮胎是炭黑应用的主要领域之一,炭黑可以提高轮胎的耐磨性和抗疲劳性,延长 轮胎的使用寿命。
炭黑在轮胎制造中还起到增强胎面硬度和降低轮胎滚动阻力的作用,从而提高轮 胎的燃油经济性和行驶稳定性。
炭黑简介演示
汇报人: 2024-01-08
目录
• 炭黑定义与性质 • 炭黑的生产工艺 • 炭黑的应用领域 • 炭黑的市场现状与前景 • 炭黑的环保问题与对策 • 未来炭黑技术的发展趋势
01
炭黑定义与性质
定义
01
炭黑是一种由烃类物质不完全燃 烧或热裂解形成的黑色固体微粒 ,通常用作橡胶、塑料等高分子 材料的补强剂和填充剂。
橡胶制品
橡胶制品是炭黑应用的另一个重要领域,包括汽车零部件、 电线电缆、密封件、胶管等。
炭黑在橡胶制品中起到补强、增塑、填充等作用,提高制品 的力学性能、耐热性、耐油性、耐腐蚀性和电气性能。
油墨和涂料
油墨和涂料中添加炭黑可以改变颜色和遮盖力,同时提高 油墨和涂料的耐磨性、耐候性和耐化学腐蚀性。
炭黑的特殊结构和性能使其在高端油墨和涂料领域具有广 泛的应用前景。
炭黑分子式

炭黑分子式炭黑分子式如下: ZH_2NaCO_4炭黑分子式如下: ZH_2NaCO_4,俗称黑色粉末或焦炭。
呈不规则颗粒或块状,纯净的为白色或灰白色,含杂质时为黑色,具有特殊气味。
密度1。
4g/cm,熔点1770。
C,沸点3600C,化学性质稳定,难与酸起作用。
在常温下对空气稳定,在高温下稍有挥发,成分稳定,热解后能回收焦油。
炭黑为塑料工业所必需的原料,也可作为橡胶、油漆、油墨、造纸等工业的原料。
炭黑分为高、中、低黏度三种产品,其使用方法和用途各有不同。
高黏度炭黑适于制造深色轮胎;中黏度炭黑可制造浅色轮胎,在浅色橡胶制品中一般用做白色补强剂;低黏度炭黑大多用于浅色橡胶制品,并常制成彩色制品,可以增加制品花纹的清晰度,但着色后容易泛黄。
此外还有半补强炭黑,主要用于浅色橡胶制品中做为补强剂。
用炭黑作为填料制造的炭黑制品,耐候性好,补强性能优良,价格便宜,是应用最广泛的一种。
生产方法: 1、油相法:在炼油厂中用溶剂精制或加氢法制取2、气相法:在氮气保护下,用水蒸汽或氧气转化法3、热解法:以生产橡胶促进剂时,再加压高温裂解而得。
高黏度炭黑又叫特种炭黑。
由石油裂解而得,也可用煤干馏炭化或热解制得。
炭黑在橡胶中的作用除了补强作用外,还赋予制品优良的耐高温、电绝缘性能及抗辐射性能。
炭黑还具有阻燃作用,它是橡胶制品不可缺少的重要添加剂之一。
是由炭和氢组成的一种黑色粉末。
又名“电石”、“纯炭黑”。
它是很早就用作颜料的,据说在古罗马时代就曾用作红色颜料,是碳元素的一种同素异形体。
19世纪初叶,人们才开始将它应用到橡胶工业中去。
我国在19世纪末20世纪初开始用煤焦油中制造高炉炭黑,首先在天津炼油厂中建厂生产。
此外还有以油焦、沥青焦为原料经蒸馏而制得的酚油焦,由一般植物油制得的硬脂焦及裂解残渣制得的炭焦等。
碳黑色泽深黑,具有良好的光泽,不易结块,吸油量低,有较强的补强性,不易着火。
它主要用作橡胶补强剂、轮胎的软化剂和抗拉强剂、填充剂、以及炭黑色素和炭黑用蜡等。
导电炭黑在电池上的应用

导电炭黑在电池上的应用导电炭黑是一种具有良好导电性和导热性质的碳材料,广泛应用于电池领域。
本文将介绍导电炭黑的基本性质,详细探讨其在各类电池中的应用及所带来的性能优势,以及对电池性能的影响。
一、导电炭黑的基本性质导电炭黑是一种微米级的碳颗粒,具有良好的导电性、导热性和化学稳定性。
其结构特点使其成为电池领域中一种重要的添加剂。
导电炭黑主要来源于天然炭黑、碳纳米管等碳材料,通过特殊处理得到,其表面通常会进行改性以提高其导电性。
二、导电炭黑在锂离子电池中的应用电极材料改良导电炭黑可以作为电极材料的添加剂,改善电极的导电性和电导率。
在锂离子电池中,导电炭黑的加入可提高电极材料的导电性,有助于提高电池的放电性能和循环寿命。
提高电池导电网络导电炭黑作为电极材料的一部分,可以形成导电网络,有助于提高电极材料的整体导电性,减小电阻,从而提高电池的充放电效率。
三、导电炭黑在超级电容器中的应用提高电极材料的导电性超级电容器的性能与电极材料的导电性密切相关。
导电炭黑作为电极材料的添加剂,可以提高电极材料的导电性,从而提高超级电容器的能量密度和功率密度。
增加电极的表面积导电炭黑的添加可以增加电极的表面积,提高电极与电解质之间的接触面积,从而增强电荷分布和储存能力,提高超级电容器的电荷存储能力。
四、导电炭黑在燃料电池中的应用提高电极材料的导电性和催化性能导电炭黑在燃料电池中可以作为电极材料的添加剂,提高电极材料的导电性和催化性能。
这有助于提高燃料电池的效率和稳定性。
促进电化学反应导电炭黑的导电性和催化性质能够促进燃料电池中的电化学反应,提高反应速率,从而提高燃料电池的输出功率。
五、导电炭黑在其他电池中的应用除了上述电池类型,导电炭黑还在其他电池中发挥着重要作用,如镍氢电池、锰酸锂电池等。
其在这些电池中的应用也主要体现在提高导电性、改善电极材料性能等方面。
六、导电炭黑的未来发展趋势随着电池技术的不断进步和新型电池的涌现,导电炭黑作为一种重要的添加剂将继续发挥其优势。
《炭黑补强机理》课件

炭黑在橡胶中的分 散
影响橡胶性能:炭黑分散不均匀会导致橡胶性能下降 影响加工性能:炭黑分散不均匀会导致橡胶加工困难 影响使用寿命:炭黑分散不均匀会导致橡胶使用寿命缩短 影响环保性能:炭黑分散不均匀会导致橡胶环保性能下降
炭黑在橡胶中的分散状态:炭黑在橡胶中的分散状态直接影响其补强效果
导电性:炭黑可以提高橡胶的导电性
提高橡胶的 耐磨性
增强橡胶的 抗老化性
改善橡胶的 抗撕裂性
提高橡胶的 导电性
硬质炭黑:提高橡胶的硬度和耐磨 性
半硬质炭黑:综合硬质和软质炭黑 的优点,提高橡胶的综合性能
添加标题
添加标题
添加标题
添加标题
软质炭黑:提高橡胶的弹性和抗撕 裂性
特种炭黑:具有特殊的补强效果, 如导电性、磁性等
炭黑分散的影响因素:炭黑的粒径、表面活性、橡胶的粘度、温度等
炭黑分散的方法:机械搅拌、超声波分散、高速剪切等
炭黑分散的效果评价:通过观察炭黑在橡胶中的分散状态,以及测试橡胶的力学性 能等指标来评价炭黑分散的效果
提高炭黑表面活性:通过表面处理提高炭黑表面活性,使其更容易分散在橡胶中
控制炭黑粒径:选择合适的炭黑粒径,使其更容易分散在橡胶中 提高橡胶流动性:提高橡胶流动性,使其更容易与炭黑混合 加入分散剂:加入适当的分散剂,提高炭黑在橡胶中的分散效果
密度:相对密度为1.82.1
电导率:低电导率
光学性质:黑色,不透 明,有光泽
炭黑是一种无定形碳,具有高度分 散性和多孔性
石墨层之间通过范德华力相互连接, 形成三维网络结构
添加标题
添加标题
添加标题
添加标题
炭黑的晶体结构主要由石墨层和碳 原子组成
炭黑的理化性质

炭黑的理化性质
炭黑是一种结构精密、表面平滑、密度大的黑色粉末,是石墨的一种形态,它是由高温下碳烟灰经高温热处理而成,可以有效地吸收光,因此在涂料、橡胶、塑料等行业经常使用它。
炭黑的理化性质是它的最大特点,它在不同的温度下有不同的物理性质,比如在室温下,可以表现出优异的黑色色度,而在高温下,炭黑的密度增加,其光学性能也会有所改善;在低温下,炭黑的密度减少,但它的光学性能却不会受到影响。
另外,炭黑还具有优异的耐热性,其热稳定性可以达到800℃以上,而且它的抗氧化性也很强,可以有效防止外界的
氧化作用,并且它的抗拉伸强度也很高,可以有效抵抗外界的压力。
最后,炭黑还具有优异的电学性能,它的电阻率比其他热塑性材料要低得多,可以有效抵抗高压电场的作用,而且它具有良好的隔热性,可以有效降低外界的热量传递,是一种非常理想的隔热材料。
总之,炭黑是一种理想的热塑性材料,具有优异的理化性质,在涂料、橡胶、塑料等行业中经常使用,可以提高制品的性能,发挥重要作用。
炭黑化学成分

炭黑化学成分
炭黑是一种黑色粉末,广泛用于橡胶、塑料、油墨、涂料等行业。
其主要成分是碳和少量杂质,包括氧、氢、氮、硫等元素。
炭黑的化学成分对其性质和应用具有重要影响。
1. 碳含量
炭黑的主要成分是碳,其碳含量通常在90%以上。
碳的含量越高,炭黑的表面积和吸附能力越大,对橡胶和塑料的增强作用也越强。
因此,高碳炭黑被广泛应用于高性能橡胶和塑料制品的生产中。
2. 表面化学性质
炭黑的表面化学性质主要与其表面官能团有关。
炭黑表面存在大量的羟基、羰基、羧基等官能团,因此具有良好的亲水性和亲油性。
这种表面官能团对炭黑的分散性、增强作用和润滑作用等性质产生重要影响。
3. 杂质含量
炭黑中的杂质主要包括氧、氢、氮、硫等元素。
这些杂质的含量对炭黑的性质和应用也有一定影响。
例如,氧的含量越高,炭黑的表面亲水性越强,但对橡胶的增强作用有一定负面影响。
因此,在炭黑的生产过程中需要控制杂质含量,以满足不同领域的需求。
4. 结晶度
炭黑的结晶度是指其碳原子排列的程度。
高结晶度的炭黑表面平整、粒径均匀,对橡胶的增强作用更加显著;而低结晶度的炭黑则具有更好的分散性和润滑作用。
因此,在生产中需要根据不同的应用需求来选择结晶度适宜的炭黑。
炭黑的化学成分对其性质和应用有重要影响。
在不同领域的应用中,需要根据其化学成分的特点来选择适宜的炭黑,以达到最佳的增强、填充、润滑等效果。
炭黑导热系数

炭黑导热系数
【实用版】
目录
1.炭黑的定义和性质
2.炭黑的导热系数
3.影响炭黑导热系数的因素
4.炭黑在工业中的应用
5.我国炭黑产业的发展现状
正文
1.炭黑的定义和性质
炭黑,顾名思义,是一种黑色的炭素材料。
它是通过高温热解或部分氧化的方法制得的,具有高比表面积、良好的吸附性能和化学稳定性等特性。
炭黑广泛应用于轮胎、涂料、油墨、塑料等行业,是这些行业中不可或缺的原材料。
2.炭黑的导热系数
炭黑的导热系数是指炭黑在单位时间、单位厚度和单位温度差条件下,所传递的热量。
炭黑的导热系数受其微观结构、粒子大小、形状和表面性质等因素影响。
一般来说,炭黑的导热系数越高,其应用性能越优秀。
3.影响炭黑导热系数的因素
首先,炭黑的微观结构对其导热系数有重要影响。
例如,高孔容、多孔的内部结构可以提高炭黑的导热性能。
其次,炭黑的粒子大小和形状也会影响其导热系数。
通常情况下,粒径较小、形状较规整的炭黑具有较高的导热系数。
最后,炭黑的表面性质,如表面官能团和化学键等,也会对导热系数产生影响。
4.炭黑在工业中的应用
炭黑在工业中的应用非常广泛,尤其在轮胎、涂料、油墨和塑料等行业中具有举足轻重的地位。
炭黑在这些行业中的应用主要依赖于其优良的物理和化学性能,如高比表面积、良好的吸附性、优异的耐磨性和耐高温性能等。
5.我国炭黑产业的发展现状
我国是全球最大的炭黑生产和消费国之一。
近年来,我国炭黑产业在政策支持和市场需求的推动下取得了长足的发展。
然而,在产能过剩、环保压力加大的背景下,我国炭黑产业也面临着一些挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CB-MJW-GEN.ppt
比表面积的测定
CONFIDENTIAL
比表面积的测定
透射电镜法 (TEM)
原理: 原理: 基于已知放大倍数的电镜照片测定几千(一般两千)个粒子的尺寸而计算初级 粒子的平均粒径及其分佈。再由粒径计算比表面积。 优点: 优点:系直接测定粒径大小及其分布的唯一方法。
聚结体
CB-MJW-GEN.ppt
CB-MJW-GEN.ppt
细粒子物质的基本性能及其测定
比表面积
(初级粒子) 表面微孔性) (初级粒子, 透射电子显微镜 气体吸附 氮吸附(BET)法 统计层厚度(STSA)法 溶液吸附 碘吸附法 CTAB吸附法 潤湿热 表面孔性测定法 着色强度
CB-MJW-GEN.ppt
结构
(形态) 透射电子显微镜 DBP吸收值 离心法 压缩体积法 压汞法 光散射法
炭黑的形态
低结构大粒子炭黑 Low structure, large particle size High structure, large particle size 髙结构大粒子炭黑
Low structure, small particle size 低结构细粒子炭黑
High structure, small particle size 髙结构细粒子炭黑
CB-MJW-GEN.ppt
比表面积的测定
氮吸附 (BET) 法
为避免由电镜测量法造成的粒子融结所形成的误差,最容易的方法是吸附法。对 于聚合物来讲,任何测是量表面积的方法需要满足以下两个要求: 吸附量必须与细粒子物质的比表面积成正比而与其表面化学无关。 吸附必须区分细粒子物质表面上可能存在的微孔。对其些微孔來讲聚合 敲物分子太大而不能进入,孔中的面积是无效的。 经典的氮吸附法可以分满足第一个要求。其他可以用的惰性被吸附剂有氩气 和正丁烷。但氮的历史长,积累的经验也多,所以广为使用。 BET氮吸附法并不能区分细粒子物质表面上的微孔。由于其分子直径小于5埃 ,它可以进入微孔内,所以得到的比表面积代表细粒子物质的总比表面积, 其中包括微孔内的表面积。严重的表面微孔的产生,将使BET比表面积增加。
4.35 是 1 cm3 液态氮形成单分子层所占据的面积。 氮吸附比表面积系总表面积。但它不包括微孔直径小于0.5纳米中的面积。 16.2 x 10-20 是一个氮分子占据的面积(以 m2 计)。
CB-MJW-GEN.ppt
比表面积的测定
氮吸附统计层厚度法 - 光滑表面
Q
Q = f(P) Q = St t = 0.088(P/Po)2 + 0.645(P/Po) + 0.298 (nm)
40 20 0
100 50
米其林胎翻修 Before first retreading (Michelin tire(欧洲) in Europe* 前里程
N234 50 50份 N234, phr
Gum 纯胶硫化胶
0 1940
Year 1950 1960 1970 1980 1990 2000
* F. Aufauvre, Intern. Polymer Sci. & Technol., 26, No. 9, T/20 (1999).
由于纳米材料尺寸小在某些 情况下会产生量子效应,但 其主要特征是表面积比较 大,处于表面上的原子数目 的百分比显著增加,而表面 分子或原子与物质内部的不 同。因此将宏观物体细分成 超微颗粒(纳米级)后,它 将显示出许多奇异的特性, 即它的光学、热学、电学、 磁学、力学或化学特性和大 块固体时相比将有显著不同。 人民日报表(海外版),2005
主曲线
P
P0
Q
t = 0.088(P/Po)2 + 0.645(P/Po) + 0.298 (nm) t = 7.3280/[0.2140 - log (P/Po)] (nm)
CB-MJW-GEN.ppt
比表面积的测定
氮吸附统计层厚度法 - 有孔表面
Q3 Q2 Q1
P1
Q3 Q2 Q1
P2
P3
t1 t2 t3
几种炭黑的对比究
初级粒子直径分布 - TEM
0.24 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0
Relative Frequency 相对频率
炭黑 CCC CD 2056 炭黑 CR-1 Ravenna V 1380
Ecorax 167 炭黑 D Ravenna V 1436 炭黑 CR-2
炭黑的基本性质
The Basic Properties of Carbon Black 王梦蛟
CONFIDENTIAL
细粒子填料的表征
比表面积 - 容量因子
初级粒子大小及其分布 表面粗糙度 -表面孔性
结构 - 聚结体的不规则性 - 几何因子
聚结体的形状及其分布 不对称性 疏密度 聚结体的大小及其分布
CB-MJW-GEN.ppt
细粒子物质的基本性能
比表面积 - 容量因子
初级粒子大小及其分布 表面粗糙度 -表面孔性
结构 - 聚结体的不规则性 - 几何因子
聚结体的形状及其分布 不对称性 疏密度 聚结体的大小及其分布
表面活性 - 强度因子
表面化学 -化学反应性 表面物理化学 表面能 表面吸附特性
CB-MJW-GEN.ppt
表面活性
表面化学 挥发分 pH 值 化学分析法 表面物理化学 结合胶 潤湿热 吸附热 接触角 反相色谱
炭黑的表征
用于炭黑表征的分析方法
ASTM D 3849 (TEM Imagine - Particle size/structure) ASTM D 6556 (Nitrogen adsorption, NSA and STSA) ASTM D 3765 (CTAB - Surface area) ASTM D 1510 (I2No - Surface area/surface chemistry) ASTM D 2414 (DBP - Structure) ASTM D 3493 (CDBP - Structure) ASTM D 6086 (Compressed void volume) ASTM D 3265 (Tinting strength)
CB-MJW-GEN.ppt
细粒子填料的应用特性
炭黑及气相法二氧化硅对橡胶的补强
未交联体系 粘度 挤出特性 硫化特性 交联材料 硬度和定伸应力 扯断强度和伸长率 抗撕裂强度 动态性能 耐磨性能 摩擦性能
炭黑在非橡胶制品中的应用
导电特性 着色特性 紫外光吸收性能
CB-MJW-GEN.ppt
纳米材料的特点
CB-MJW-GEN.ppt
炭黑的基本结构
聚结体 Aggregate Primary particle 初级粒子
O O HO C
O OH
O
O
C OH O OH
OH
HO O
Functional groups 表面化学官能团
Graphitic crystallite 石墨化微晶
CB-MJW-GEN.ppt
碘吸附法
I2 adsorption, mg/g
碘吸附值,
在碘和碘化钾溶液中碘的浓度 I2 concentration in solotion (I2+IK)
对炉黑来讲,碘吸附遵从 Langmuir 吸附公式-即单分子层吸附。 吸碘值用 mg/g 表示,它不是真正的表面积。 碘溶液的吸附平衡浓度不在吸附等温线的平坦区,而是调整到其对无孔 和非氧化炉黑来讲与氮吸附比表面积有较好的相关性。
根据吸附量与吸附压力的关系可 以用BET公式计算出完成单分子 层吸附时的氮吸附量Vm,并可计 算出氮与被测物体之间在吸附温 度下的相互作用,即常数C。
CB-MJW-GEN.ppt
S1 S0
S2
S3
S
比表面积的测定
氮吸附 (BET) 法
第一层被吸附分子与固体表面之间的相互作用能为E1 (即吸附热); 第二层与第一层被吸附分子以及此后每层分子与前层分子之间的相互作能为EL (即 氮的液化热)。 在公式推导中引入一个常数 C,它与第一层分子的吸附能亦即固体表面特性有关。 它与第一层分子的吸附能亦即固体表面特性有关。
i S4 4 } EL 3 }E 2 } EL 1} L
y a1 K ( E1 − EL ) / RT C≡ = e x b1
S1 S0
S2
S3
E1
S
CB-MJW-GEN.ppt
比表面积的测定
氮吸附 (BET) 法-ASTM D 6556 - 02
N2SA (m2/g) = Vm X 4.35/W
t = 0.7010*[7.3280/(0.2140-log(P/Po))]
Q
t=Q/S Q=St
Q4
Q3 Q2 Q1
P1
P
P2
Q4 Q3 Q2 Q1
t1 t2
t
t3 t4
CB-MJW-GEN.ppt
P3
P 4
比表面积的测定
氮吸附统计层厚度法 – 主曲线
Q
t
t = Q/S Q = St Q = f(P) t = f(Q) = f'(P)
用于炭黑的某些常用名词
颗粒 (Pellet) – 由大量聚结体组成之颠粒。
聚集体 (Agglomerate)– 有许多聚结体组成,它代表未 分散的细粒子物质。
聚结体 (Aggregate) – 在炭黑中或在填充混合物中最 小的不可分割的单元,系由初始粒子融合而成。
结构 (Structure) – 聚结体的大小及分布以及聚结体内 的空隙体积。聚结体越大,其形状越不规则,内部空 空隙体积 隙体积越多,炭黑的结构也越髙。 低结构 髙结构