红外基本原理介绍
红外通信的基本原理

红外通信的基本原理
红外通信是一种通过红外线传输数据的技术。
其基本原理是利用红外线的特性进行信息传输。
红外线是一种电磁波,波长较长,频率较低,能够在空气中传播,但穿透力较弱,只能传输短距离。
因此,红外通信通常用于近距离的数据传输,如遥控器、红外耳机等设备。
在红外通信中,数据通过光电器件进行编码和解码。
发射端首先将数据信号转换成红外光信号,然后通过红外发射器发送出去。
接收端的红外接收器接收到红外信号后,将其转换成电信号,再经过解码器解码成原始数据信号。
这样就实现了数据的传输。
红外通信的优点是传输速度快、稳定可靠,而且不受电磁干扰。
但是由于红外线传输距离有限,且需要直线传输,不能穿透障碍物,因此应用范围受到一定限制。
红外通信在各个领域都有广泛的应用。
在家电领域,遥控器就是应用红外通信的典型代表,通过红外信号控制电视、空调等设备。
在办公领域,红外通信也被广泛应用于无线键盘、鼠标等设备。
此外,红外通信还在无线耳机、安防监控等领域有着重要的作用。
随着科技的不断进步,红外通信技术也在不断发展。
近年来,随着红外通信芯片的不断完善和成本的降低,红外通信在各个领域的应用也将更加广泛。
同时,随着5G等新一代通信技术的推出,红外通信虽然在传输速度、距离等方面存在一定局限性,但仍然有着独
特的优势,将在特定场景下发挥重要作用。
总的来说,红外通信作为一种传统的无线通信技术,虽然在某些方面存在局限性,但在特定场景下仍然有着重要的应用前景。
随着技术的不断进步和发展,红外通信技术也将不断完善,为人们的生活带来更多便利和可能。
红外通信的基本原理

红外通信的基本原理红外通信作为一种无线通信技术,在现代社会的各个领域都有着广泛的应用。
其基本原理是利用红外线作为信息的传输媒介,通过发送端将信息编码成红外光信号,再由接收端解码还原成原始信息。
红外通信技术具有传输速度快、安全性高、干扰少等优点,因此在遥控器、红外对讲、红外测温等领域得到了广泛应用。
红外通信的基本原理是利用红外线这一特定波长的电磁波来传输信息。
红外线波长范围在可见光和微波之间,具有较强的穿透性,因此适合用于近距离通信。
红外线在光学、电子等领域有着重要的应用价值。
红外通信系统通常由发送端和接收端两部分组成。
发送端通过红外发射器将信息信号转换成红外光信号,发送到接收端。
接收端的红外接收器接收到红外光信号后,将其转换成电信号,经过解码处理后还原成原始信息。
整个过程实现了信息的传输和接收。
红外通信的基本原理是通过调制解调技术来实现信息的传输。
发送端通过调制器将要传输的信息信号转换成一定频率的红外光信号,再由解调器在接收端将接收到的红外光信号转换成原始信息信号。
这样就实现了信息的传输和接收。
在红外通信系统中,编码和解码是至关重要的环节。
发送端将信息信号通过编码器转换成特定的编码格式,再送入调制器进行调制。
接收端收到红外光信号后,首先经过解调器解调,再由解码器将编码格式转换成原始信息信号。
编码和解码的准确性直接影响到信息的传输质量。
红外通信技术在现代社会的各个领域都有着广泛的应用。
在家庭生活中,遥控器、红外对讲等设备都是基于红外通信技术工作的。
在工业领域,红外测温仪、红外监控系统等设备也是利用红外通信技术实现信息传输。
此外,在医疗、军事、航空航天等领域,红外通信技术也发挥着重要作用。
总的来说,红外通信的基本原理是利用红外线作为信息的传输媒介,通过编码、调制、解调、解码等技术实现信息的传输和接收。
红外通信技术具有传输速度快、安全性高、干扰少等优点,在现代社会得到了广泛的应用。
随着科技的不断进步,红外通信技术将会有更广阔的发展空间,为人类的生活带来更多便利和安全。
红外传感器的基本原理

红外传感器的基本原理
红外传感器的基本原理:
①红外辐射属于电磁波谱一部分波长范围覆盖0.75至1000微米之间自然界中所有温度高于绝对零度物体都会发出红外线;
②红外传感器设计原理基于对这一不可见光谱段能量检测与转换利用半导体材料光电效应将接收到红外辐射转变为电信号输出;
③典型应用领域包括温度测量非接触式开关气体分析安防监控等领域通过感知环境中红外辐射变化实现自动化智能化控制;
④热释电型红外传感器依靠温度变化产生电动势工作时需保持器件自身温度恒定当外界红外辐射引起局部温升时产生电流;
⑤光电导型器件如硫化铅锑化铟等材料在红外光照射下导电率发生变化由此导致电路中电流或电压波动用于检测辐射强度;
⑥光伏型红外探测器内部形成PN结当入射红外光子能量大于等于禁带宽度时激发电子跃迁产生光生载流子形成短路电流;
⑦热敏电阻热电偶等基于温度敏感元件在受到红外辐射加热后电阻值或热电动势发生变化原理制成适用于低成本场合;
⑧集成电路形式将敏感元件信号处理放大电路集成于一体简化外部连接提高稳定性常见于消费电子产品中;
⑨应用实例中红外测温枪通过接收人体发射红外辐射计算出表面温度无需接触即可快速筛查发热个体适用于公共卫生防疫;
⑩红外遥控器与接收模块组合实现远距离无线控制家电设备利用编码调制技术发送指令序列由接收端解码执行对应操作;
⑪工业生产线上在线检测装置利用红外传感器监测产品表面温度变化判断固化程度调整工艺参数提高产品质量一致性;
⑫安防系统中被动红外探测器安装于门窗等易入侵位置监测是否有移动热源进入设定警戒区触发报警提醒注意安全。
红外线的基本原理

红外线的基本原理1. 红外线的定义红外线(Infrared Rays)是指波长长于可见光波长的电磁辐射,它的波长介于无线电波和可见光之间,常用于无线通信、热成像、遥感和物体检测等领域。
2. 红外线的产生红外线的产生主要有以下几种方式: 1. 热辐射:所有物体在绝对零度(-273.15℃)以上都会发出红外辐射,其强度与物体的温度成正比。
2. 能量转换:通过电流或电压的作用,将电能转化为红外辐射。
3. 光学转换:通过激光或LED发射特定频率的光,再通过材料的吸收、反射或透过等,转换为红外辐射。
4. 化学反应:某些特定的化学反应会产生红外辐射。
3. 红外线的特性红外线具有以下特性: 1. 穿透性:红外线在空气、玻璃、塑料等透明媒介中的传播能力较强。
2. 能量性:红外线的能量低于可见光,但高于无线电波,可被物体吸收并转化为热能。
3. 方向性:红外线的传播遵循直线传播原理,不具备强烈的散射现象。
4. 干扰性:红外线受到气象条件、灰尘、烟雾等因素的干扰较大。
4. 红外线的分类红外线按照波长可分为以下几个类别: 1. 远红外线:波长大于25微米,主要用于遥感探测、红外热像仪等领域。
2. 中红外线:波长介于2.5-25微米之间,主要用于红外热像仪、热成像设备、红外线测温等领域。
3. 近红外线:波长介于0.75-2.5微米之间,主要用于红外线通信、红外遥控、红外测距等领域。
5. 红外线的探测原理红外线的探测原理主要有以下几种: 1. 热电效应:当被红外线照射的物体温度不同于探测器的环境温度时,通过红外线的能量转换成探测器上的温升,产生微弱的热电流信号,经放大后可用于检测和测量。
2. 光电效应:红外线照射到半导体材料上时,光子的能量被半导体材料的电子吸收,使电子获得足够的能量跃迁到导带,导致半导体的电导率改变,进而产生电信号。
3. 光吸收:红外辐射被物体吸收后,物体的温度会发生变化,通过测量物体的热辐射能量的变化,来判断物体的温度变化。
红外光谱的基本原理

红外光谱的基本原理红外光谱是一种分析技术,通过测量物质在红外辐射下的吸收和散射来确定物质的结构和组成。
红外光谱的基本原理可以归结为分子的振动和转动。
红外光谱涉及的能量范围一般在3000 cm-1到10 cm-1之间,这个范围对应着分子的振动、转动和一些电子运动的能级。
因为红外辐射的能量与分子的振动和转动的能级相匹配,所以红外光可以被分子中一部分原子吸收,从而发生光谱吸收。
分子的振动可以分为伸缩振动、弯曲振动和转动振动。
伸缩振动是分子中原子之间的相对运动,弯曲振动则是两个或多个原子之间改变绝对角度的运动。
转动振动涉及到分子整体发生旋转的运动。
红外光谱的实验装置一般包括光源、样品室、光谱计和检测器。
光源产生红外光束,被样品室内的样品吸收、散射或透射。
样品室是一个封闭的容器,内部设置好样品和红外透明的窗口。
光谱计通过光束分离装置将入射光分成不同波长,然后通过检测器来测量相应的信号强度。
红外光谱图上的峰对应着样品中特定的化学键或分子基团。
不同的化学键和基团对红外光的吸收有不同的谱特征,参考指纹区域的红外光谱峰可以提供物质的识别和组成信息。
红外光谱分析主要包括定性分析和定量分析。
定性分析通过比较样品的红外光谱峰和已知物质的峰值数据库,确定样品中有哪些化学键或基团。
定量分析则是通过对吸收峰强度进行定量计算,得到样品中特定成分的浓度。
红外光谱广泛应用于有机化学、分析化学、材料科学等领域。
例如,在药物研发中,红外光谱可以用于分析药物的结构和纯度;在环境监测中,红外光谱可以用于分析大气中的污染物;在食品科学中,红外光谱可以用于分析食品的成分和质量等。
总之,红外光谱是一种非常有用的分析技术,可以通过测量物质在红外辐射下的吸收和散射,得到物质的结构和组成信息,以及一些物理和化学特性的定量和定性分析。
通过了解红外光谱的基本原理,我们可以更好地理解和应用这一技术。
红外线的基本原理

红外线的基本原理一、引言红外线是一种波长较长的电磁波,其波长范围为0.75μm~1000μm。
红外线广泛应用于军事、医疗、工业等领域,成为现代科技发展的重要组成部分。
本文将介绍红外线的基本原理。
二、电磁波的基本概念电磁波是由电场和磁场交替变化形成的一种能量传输方式。
根据频率不同,电磁波可分为无线电波、微波、红外线、可见光、紫外线、X 射线和γ射线等七类。
三、红外线的产生1. 热辐射:所有物体都会向周围环境发射能量,其中包括红外辐射。
2. 光学器件:如半导体激光器等。
3. 电子器件:如发光二极管等。
四、红外线的特性1. 红外线穿透力强,可以穿过普通材料如玻璃和塑料。
2. 红外线散布性好,可以被反射和折射。
3. 红外线对于人眼不可见。
4. 红外线可以被物体吸收,因此可以用来探测物体的温度。
五、红外线的应用1. 军事:红外线成像系统可用于夜视仪等设备。
2. 医疗:红外线成像技术可用于诊断疾病和治疗。
3. 工业:红外线传感器可用于检测温度和湿度等参数。
4. 家电:如遥控器、智能家居等。
六、红外线的探测原理1. 热辐射法:利用物体发射的红外辐射来检测其表面温度。
2. 热成像法:利用物体发射的红外辐射来绘制出其表面温度分布图像。
3. 通过反射和折射来检测物体的位置和形状。
七、红外线传感器1. 热电偶传感器:利用热电偶原理将物体发出的红外辐射转换为电信号进行检测。
2. 热释电传感器:利用材料在受到红外辐射时产生电荷变化的原理进行检测。
3. 光学传感器:通过反射或折射来检测物体的位置和形状。
八、结语红外线是一种重要的电磁波,其应用广泛。
掌握红外线的基本原理和探测方法对于科技工作者具有重要意义。
红外线测温枪工作原理

红外线测温枪工作原理红外线测温枪是一种利用红外线技术进行非接触式温度测量的仪器。
它通过测量物体发出的红外辐射,来确定物体的表面温度。
红外线测温枪广泛应用于医疗、工业、建筑、电力等领域,具有快速、准确、安全等优点。
下面将详细介绍红外线测温枪的工作原理。
一、红外辐射的基本原理1.1 热辐射所有温度高于绝对零度的物体都会发出热辐射。
它是由物体内部的分子震动或原子运动产生的电磁辐射。
这种辐射的频率和强度与物体的温度密切相关。
1.2 热辐射的特点热辐射是一种波长范围很广的电磁波,其波长范围通常从红外到可见光再到紫外。
随着温度的升高,物体发出的辐射强度也相应增加,并且波长变短,频率增加。
1.3 红外辐射红外辐射是指波长在0.78μm(微米)到1000μm之间的电磁波。
人眼无法看到红外辐射,但通过红外线测温枪等仪器可以检测和测量红外辐射的强度,从而得出物体的表面温度。
二、红外线测温枪的工作原理2.1 红外传感器红外线测温枪的核心部件是红外传感器。
红外传感器可以将物体发出的红外辐射转化为电信号,然后经过处理得出物体的表面温度。
红外传感器通常由红外检测器、光学透镜、辐射波带通滤光片、信号处理电路等组成。
2.2 工作原理当红外线测温枪指向待测物体时,红外传感器接收到被测物体发出的红外辐射,并将其转换为电信号。
然后经过信号处理电路的放大、滤波和补偿处理,得到一个准确的温度值。
最终这个温度值会显示在仪器的显示屏上。
2.3 参考温度源红外线测温枪在测量过程中需要设置一个参考温度源。
这个参考温度源通常是一个黑色的物体,其表面具有较高的辐射率。
红外线测温枪将其视为一个黑体,以便校准和补偿测量结果,确保测量的准确性。
2.4 仪器校准为了确保测量的准确性,红外线测温枪需要经过定期的校准。
校准的目的是验证仪器的测量准确性,同时调整仪器的参数以适应不同的环境和测量对象。
通常校准过程包括零点校准和距离校准等。
三、应用领域红外线测温枪具有广泛的应用领域。
红外光谱工作原理

红外光谱工作原理一、简介红外光谱技术是一种通过测量物质对红外光的吸收来研究物质分子结构的分析方法。
由于它能够提供关于分子化学键的丰富信息,因此被广泛应用于化学、生物学、医学和环境科学等领域。
二、基本原理红外光谱的原理基于分子振动和转动能级跃迁。
当特定波长的红外光照射到物质上时,如果光子的能量与分子振动或转动能级差相匹配,那么该光子将被吸收。
通过测量不同波长下的吸收情况,我们可以获得分子的振动和转动信息,进一步推断出分子结构。
在红外光谱中,波长范围在 2.5~25μm(对应频率为4000~400cm-1)的红外光被称为"红外线",是研究的主要区域。
由于不同化学键或基团在该区域有不同的吸收特征,因此可以用来鉴别不同的化学物质。
三、红外光谱的特点1.特征性:每种分子都有自己独特的红外光谱,类似于人的指纹,因此可以通过红外光谱来确定物质的分子组成。
2.敏感性:红外光谱对于某些特定的化学键非常敏感,例如C-H、O-H和N-H等,因此可以用于检测痕量物质的存在。
3.无损分析:红外光谱是一种非破坏性分析方法,样品在分析过程中不会被破坏或消耗,可以用于后续的其它分析。
4.局限性:对于一些极性分子或大分子,其红外吸收可能较弱,导致其红外光谱的分辨率较低。
此外,由于水的强红外吸收,水溶液中的样品在红外光谱分析中可能会受到限制。
四、红外光谱的应用1.物质鉴定:利用红外光谱的特征性,可以用于鉴定未知物质的化学组成。
只需将未知物的红外光谱与已知化合物的红外光谱进行比对,即可确定未知物的分子结构。
2.化学反应监控:在化学反应过程中,通过实时监测反应物和产物的红外光谱变化,可以了解反应进程和反应机理。
这对于化学合成和化学反应动力学研究具有重要意义。
3.生物样品分析:由于生物分子如蛋白质、核酸等具有丰富的红外活性基团,红外光谱技术可以用于研究生物分子的结构和功能。
例如,蛋白质二级结构的研究、DNA序列分析等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自然界中的一切物体,只要它的温度高于绝对温度(-273℃)就存在分子和原子无规则的运动,其表面就不断地辐射红外线。
红外线是一种电磁波,它的波长范围为0.78 ~ 1000um,不为人眼所见。
红外成像设备就是探测这种物体表面辐射的不为人眼所见的红外线的设备。
它反映物体表面的红外辐射场,即温度场。
注意:红外成像设备只能反映物体表面的温度场。
对于电力设备,红外检测与故障诊断的基本原理就是通过探测被诊断设备表面的红外辐射信号,从而获得设备的热状态特征,并根据这种热状态及适当的判据,作出设备有无故障及故障属性、出现位置和严重程度的诊断判别。
为了深入理解电力设备故障的红外诊断原理,更好的检测设备故障,下面将初步讨论一下电力设备热状态与其产生的红外辐射信号之间的关系和规律、影响因素和DL500E的工作原理。
一.红外辐射的发射及其规律
(一)黑体的红外辐射规律
所谓黑体,简单讲就是在任何情况下对一切波长的入射辐射吸收率都等于1的物体,也就是说全吸收。
显然,因为自然界中实际存在的任何物体对不同波长的入射辐射都有一定的反射(吸收率不等于1),所以,黑体只是人们抽象出来的一种理想化的物体模型。
但黑体热辐射的基本规律是红外研究及应用的基础,它揭示了黑体发射的红外热辐射随温度及波长变化的定量关系。
下面,我着重介绍其中的三个基本定律。
1.辐射的光谱分布规律-普朗克辐射定律
一个绝对温度为T(K)的黑体,单位表面积在波长λ附近单位波长间隔内向整个半球空间发射的辐射功率(简称为光谱辐射度)Mλb (T)与波长λ、温度T满足下列关系:
Mλb (T)=C1λ-5[EXP(C2/λT)-1]-1
式中C1-第一辐射常数,C1=2πhc2=3.7415×108w·m-2·um4
C2-第二辐射常数,C2=hc/k=1.43879×104um·k
普朗克辐射定律是所有定量计算红外辐射的基础,介绍起来比较抽象,这里就不仔细讲了。
2.辐射功率随温度的变化规律-斯蒂芬-玻耳兹曼定律
斯蒂芬-玻耳兹曼定律描述的是黑体单位表面积向整个半球空间发射的所有波长的总辐射功率Mb(T)(简称为全辐射度)随其温度的变化规律。
因此,该定律为普朗克辐射定律对波长积分得到:
Mb(T)=∫0∞Mλb(T)dλ=σT4
式中σ=π4C1/(15C24)=5.6697×10-8w/(m2·k4),称为斯蒂芬-玻耳兹曼常数。
斯蒂芬-玻耳兹曼定律表明,凡是温度高于开氏零度的物体都会自发地向外发射红外热辐射,而且,黑体单位表面积发射的总辐射功率与开氏温度的四次方成正比。
而且,只要当温度有较小变化时,就将会引起物体发射的辐射功率很大变化。
那么,我们可以想象一下,如果能探测到黑体的单位表面积发射的总辐射功率,不是就能确定黑体的温度了吗?因此,斯蒂芬-玻耳兹曼定律是所有红外测温的基础。
3.辐射的空间分部规律-朗伯余弦定律
所谓朗伯余弦定律,就是黑体在任意方向上的辐射强度与观测方向相对于辐射表面法线夹角的余弦成正比,如图所示
Iθ=I0COSθ
此定律表明,黑体在辐射表面法线方向的辐射最强。
因此,实际做红外检测时。
应尽可能选择在被测表面法线方向进行,如果在与法线成θ角方向检测,则接收到的红外辐射信号将减弱成法线方向最大值的COSθ倍。
(二)实际物体的红外辐射规律
1.基尔霍夫定律
物体的辐射出射度M(T)和吸收本领α的比值M/α与物体的性质无关,等于同一温度下黑体的辐射出射度M0(T)。
其表明,吸收本领大的物体,其发射本领大,如果该物体不能发射某一波长的辐射能,也决不能吸收此波长的辐射能。
2.发射率
实验表明,实际物体的辐射度除了依赖于温度和波长外,还与构成该物体的材料性质及表面状态等因素有关。
这里,我们引入一个随材料性质及表面状态变化的辐射系数,则就可把黑体的基本定律应用于实际物体。
这个辐射系数,就是常说的发射率,或称之为比辐射率,其定义为实际物体与同温度黑体辐射性能之比。
这里,我们不考虑波长的影响,只研究物体在某一温度下的全发射率:
ε(T) = M(T)/M0(T)
则斯蒂芬-玻耳兹曼定律应用于实际物体可表示为:
M(T) =ε(T).σT4
(三)发射率及其对设备状态信息监测的影响
物体对于给定的入射辐射必然存在着吸收、反射和透射,而且吸收率α,反射率ρ和透射率τ之和必然等于1:
α+ρ+τ=1
而且,其反射和透射部分不变。
因此,在热平衡条件下,被物体吸收的辐射能量必然转化为该物体向外发射的辐射能量。
由此可断定,在热平衡条件下,物体的吸收率必然等于该物体在同温度下的发射率:
α(T)=ε(T)
其实由基尔霍夫定律,我们也可以推断出以上公式:
M(T)/ α(T)=M0(T)
ε(T) =α(T)
ε(T) = M(T)/M0(T)
则对于一个不透明的物体ε(T) =1-ρ(T)
根据上式,我们不难定性地理解影响发射率大小的下列因素:
1.不同材料性质的影响
不同性质的材料因对辐射的吸收或反射性能各异,因此它们的发射性能也应不同。
一般当温度低于300K时,金属氧化物的发射率一般大于0.8。
2.表面状态的影响
任何实际物体表面都不是绝对光滑的,总会表现为不同的表面粗糙度。
因此,这种不同的表面形态,将对反射率造成影响,从而影响发射率的数值。
这种影响的大小同时取决于材料的种类。
例如,对于非金属电介质材料,发射率受表面粗糙度影响较小或无关。
但是,对于金属材料而言,表面粗糙度将对发射率产生较大影响。
如熟铁,当表面状况为毛面,温度为300K 时,发射率为0.94;当表面状况为抛光,温度为310K时,发射率就仅为0.28。
另外,应该强调,除了表面粗糙度以外,一些人为因素,如施加润滑油及其他沉积物(如涂料等),都会明显地影响物体的发射率。
因此,我们在检测时,应该首先明确被测物体的发射率。
在一般情况下,我们不了解发射率,那么只有用相间比较法来判别故障。
而对于电力设备,其发射率一般在0.85-0.95之间。
3.温度影响
温度对不同性质物体的影响是不同的,很难做出定量的分析,
只有在检测过程中注意。
(四)物体之间的辐射传递的影响
上面我们曾经讨论过物体对于给定的入射辐射必然存在着吸收、反射,而当达到热平衡后,其吸收的辐射能必然转化为向外发射的辐射能。
因此,当我们在一个变电站中,检测任意一个目标时,所检测出来的温度,必然还存在着附近其它物体的影响。
因此,我们在检测时,要注意检测的方向和时间,使其它物体的影响降到最小。
(五)大气衰减的影响
大气对物体的辐射有吸收、散射、折射等物理过程,对物体的辐射强度会有衰减作用,我们称之为消光。
大气的消光作用与波长相关,有明显的选择性。
红外在大气中有三个波段区间能基本完全透过,我们称之为大气窗口,分为近红外(0.76 ~ 1.1um),中红外(3 ~ 5um),远红外(8 ~ 14)。
对于电力设备,其大部分的温度较低,集中在300K ~ 600K(27℃ ~327℃)左右,在这一温度区间内,根据红外基本定律可以推导出,设备发射的红外辐射信号,在远红外8 ~ 14um 区间内所占的百分比最大,并且辐射对比度也最大。
因此,大部分电力系统的红外检测仪器工作在8 ~ 14um的波长之内。
不过,请注意,即使工作在大气窗口内,大气对红外辐射还是有消光作用。
尤其,水蒸气对红外辐射的影响最大。
因此,在检测时,最好在湿度小于85%以下,距离则越近越好。