信号完整性分析基础知识

信号完整性分析基础知识
信号完整性分析基础知识

安捷伦矢量信号分析基础(中文版)

安捷伦矢量信号分析基础应用指南

目录矢量信号分析 (3) VSA 测量优势 (4) VSA 测量概念和操作理论 (6) 数据窗口—泄漏和分辨率带宽 (12) 快速傅立叶变换 (FFT) 分析 (14) 时域显示 (16) 总结 (17) 矢量调制分析 (18) 简介 (18) 矢量调制和数字调制概况 (19) 数字射频通信系统概念 (23) VSA 数字调制分析概念和操作理论 (26) 灵活定制的或用户定义的解调 (27) 解调分析 (31) 测量概念 (32) 模拟调制分析 (36) 总结 (38) 其他资源 (39) 下载 89600B 软件并免费试用 14 天,与您的分析硬件结合使 用 ; 或通过选择软件工具栏上的File> Recall> Recall Demo> QPSK>,使用我们记录的演示信号进行测量。立即申请您的 免费试用许可: https://www.360docs.net/doc/645889514.html,/?nd/89600B_trial

矢量信号分析本应用指南是关于矢量信号分析(Vector Signal Aanlysis) 的入门读物。本 节将讨论 VSA 的测量概念和操作理论 ; 下一节将讨论矢量调制分析,特别是 数字调制分析。 模拟扫描调谐式频谱分析仪使用超外差技术覆盖广泛的频率范围 ; 从音 频、微波直到毫米波频率。快速傅立叶变换 (FFT) 分析仪使用数字信号处理 (DSP) 提供高分辨率的频谱和网络分析。如今宽带的矢量调制 ( 又称为复调制 或数字调制 ) 的时变信号从 FFT 分析和其他 D SP 技术上受益匪浅。VSA 提供快 速高分辨率的频谱测量、解调以及高级时域分析功能,特别适用于表征复杂 信号,如通信、视频、广播、雷达和软件无线电应用中的脉冲、瞬时或调制 信号。 图 1 显示了一个简化的 VSA 方框图。VSA 采用了与传统扫描分析截然不 同的测量方法 ; 融入 FFT 和数字信号处理算法的数字中频部分替代了模拟中频 部分。传统的扫描调谐式频谱分析是一个模拟系统 ; 而 VSA 基本上是一个使 用数字数据和数学算法来进行数据分析的数字系统。VSA 软件可以接收并分 析来自许多测量前端的数字化数据,使您的故障诊断可以贯穿整个系统框图。 图 1. 矢量信号分析过程要求输入信号是一个被数字化的模拟信号,然后使用 D SP 技术处理 并提供数据输出 ; FFT 算法计算出频域结果,解调算法计算出调制和码域结果。

信号与系统基础知识

第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信号的叠加,观察信号所包含的各频率分量的幅值和相位,得到信号的频谱特性。图1-2是从时域和频域观察一个周期矩形波信号的示意图,由此可以看到信号频域和时域的关系。系统的频域分析是观察系统对不同频率激励信号的响应,得到系统的频率响应特性。频域分析的重要优点包括:(1)对信号变化的快慢和系统的响应速度给出定量的描述。例如,当我们要用一个示波器观察一个信号时,需要了解信号的频谱特性和示波器的模拟带宽,当示波器的模拟带宽能够覆盖被测信号的频率范围时,可以保证测量的准确。(2)

《信号与系统分析基础》第3章习题解答

第三章习题解答 3.2 求下列方波形的傅里叶变换。 (a) 解: 110 2 ()()11()2 t j t t j t t j t t j t j a F j f t e dt e e dt j e t tS e j ωωωωωωω ωω-----=-=?= -==?? (b) 解: 20 00 2 2 ()1 1 1()[]1 (1) 1 (1) t j t t j t t t j t j t t t j t j t j t j t j t j t t F e dt e e dt tde j j j te e dt j e e e j e ωωωωωωωωωωωτ ω τωτω ω τω ωττω----------=-=?= =??-=-=+-= +-???? (c) 解: 1 31 1 2 2 11()()2 211 1 ()()22 1 1 ()cos 2 1 ()2 1()211 12() 2() 2 2 j t j t j t j t j t j t j t j t F t e dt e e e dt e e dt e e j j ωπ π ωππ ωωπ π ωωπ ωππ ωω-------+---+--=?=+?=+=- -+?? ? ()()()()22221 111 [][]2222 j j j j e e e e j j ππππ ωωωωππωω----++=?--?--+

2222sin()sin()cos ()cos () cos 2222()()2222 ππππ ωωωωωωπωππππωωωω-+?++?-?=+== -+-- (d)解: 242 22()()22 22()()2 2 ()()()()2 2 2 2 ()sin 1()21()2112()2() sin[(22() 2() T j t T T j t j t j t T T j t j t T T T j t j t T T T T T T j j j j F t e dt e e e dt j e e dt j e e T e e e e j j j j ωωωωωωωωωωωωωωω--Ω-Ω--Ω--Ω+-Ω--Ω+--Ω--Ω-Ω+-Ω+=Ω?=-= --=-Ω-Ω+Ω---= + =?Ω-?Ω+???)]sin[()] 2()() T j j ωωωωΩ++Ω-Ω+ 3.3依据上题中a,b 的结果,利用傅里叶变换的性质,求题图3.3所示各信号的傅里叶变换. (a) 解:11111()()()f t f t f t =-- 11()f t 就是3.2中(a)的1()f t 如果1()()f t F ω?,则1()()f t F ω-?- 11111111122 2 ()()()()()sin()42 ( )[]sin( )sin ()2 2 2 2 j j a f t f t f t F F t S e e j j τ τ ω ω ωωωτ ωτ τωτ ωττωτ ω-∴=--?--=??-= ? = (b) 解:2()()()f t g t g t στ=+,而()( )2 a g t S τωτ τ? 2()(3)2()a a F S S ωσωω∴=+ 如利用3.2中(a)的结论来解,有: 211'()(3)(1)f t f t f t ττ=+++,其中,'2τστ==. 3211'()()()(3)2()j j a a F e F e F S S ωωττωωωσωω∴=?+?=+ (如()()f t F ω?,则0 0()()j t f t t e F ωω±?) 2()f t

DDR的基础知识

DDR的基础知识 1.电源 DDR的电源可以分为三类: 主电源VDD和VDDQ, 主电源的要求是VDDQ=VDD,VDDQ是给IO buffer供电的电源,VDD是给但是一般的使用中都是把VDDQ和VDD合成一个电源使用。有的芯片还有VDDL,是给DLL供电的,也和VDD使用同一电源即可。 电源设计时,需要考虑电压,电流是否满足要求,电源的上电顺序和电源的上电时间,单调性等。 电源电压的要求一般在±5%以内。 电流需要根据使用的不同芯片,及芯片个数等进行计算。由于DDR的电流一般都比较大,所以PCB设计时,如果有一个完整的电源平面铺到管脚上,是最理想的状态,并且在电源入口加大电容储能,每个管脚上加一个100nF~10nF的小电容滤波。 参考电源Vref, 参考电源Vref要求跟随VDDQ,并且Vref=VDDQ/2,所以可以使用电源芯片提供,也可以采用电阻分压的方式得到。由于Vref一般电流较小,在几个mA~几十mA的数量级,所以用电阻分压的方式,即节约成本,又能在布局上比较灵活,放置的离Vref管脚比较近,紧密的跟随VDDQ电压,所以建议使用此种方式。需要注意分压用的电阻在100~10K均可,需要使用1%精度的电阻。 Vref参考电压的每个管脚上需要加10nF的点容滤波,并且每个分压电阻上也并联一个电容较好。 用于匹配的电压VTT(TrackingTermination Voltage)

VTT为匹配电阻上拉到的电源,VTT=VDDQ/2。DDR的设计中,根据拓扑结构的不同,有的设计使用不到VTT,如控制器带的DDR器件比较少的情况下。如果使用VTT,则VTT的电流要求是比较大的,所以需要走线使用铜皮铺过去。并且VTT要求电源即可以吸电流,又可以灌电流才可以。一般情况下可以使用专门为DDR设计的产生VTT的电源芯片来满足要求。 而且,每个拉到VTT的电阻旁一般放一个10Nf~100nF的电容,整个VTT电路上需要有uF级大电容进行储能。 一般情况下,DDR的数据线都是一驱一的拓扑结构,且DDR2和DDR3内部都有ODT做匹配,所以不需要拉到VTT做匹配即可得到较好的信号质量。而地址和控制信号线如果是多负载的情况下,会有一驱多,并且内部没有ODT,其拓扑结构为走T点的结构,所以常常需要使用VTT进行信号质量的匹配控制。 2. 时钟 DDR的时钟为差分走线,一般使用终端并联100欧姆的匹配方式,差分走线差分对控制阻抗为100ohm,单端线50ohm。需要注意的是,差分线也可以使用串联匹配,使用串联匹配的好处是可以控制差分信号的上升沿缓度,对EMI可能会有一定的作用。 3. 数据和DQS DQS信号相当于数据信号的参考时钟,它在走线时需要保持和CLK信号保持等长。DQS在DDR2以下为单端信号,DDR2可作为差分信号,也可做单端,做单端时需要将DQS-接地,而DDR3为差分信号,需要走线100ohm差分线。由于内部有ODT,所以DQS不需要终端并联100ohm电阻。每8bit数据信号对应一组DQS信号。 DQS信号在走线时需要与同组的DQS信号保持等长,控制单端50ohm的阻抗。在写数据时,DQ和DQS的中间对齐,在读数据时,DQ和DQS的边沿对齐。DQ信号多为一驱一,并且DDR2和DDR3有内部的ODT匹配,所以一般在进行串联匹配就可以了。

于博士信号完整性分析入门-初稿

于博士信号完整性分析入门 于争博士 https://www.360docs.net/doc/645889514.html, 整理:runnphoenix

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

第三章 信号分析基础

第三章 信号分析基础 3.1 信号空间 3.1.1 信号范数与赋范线性空间 信号)(t x (或)(n x )的范数定义为: })(max{)(∞<<∞-=∞t t x t x , (或 })(max{)(∞<<∞-=∞n n x n x ,) (3-1) dt t x t x ? ∞ ∞ -=)()(1 (或 ∑∞ -∞ == n n x n x )()(1) (3-2) 2 12 2 )() (?? ????=?∞ ∞-dt t x t x (或 2 122 )() (?? ? ???=∑∞ -∞=n n x n x ) (3-3) 以下简写为:p x 。 信号范数具有如下性质(其中,p=1,2,∞): 1)0≥p x ;0=p x ,当且仅当x 恒为零; (3-4) 2)p p x x ?=?λλ,λ为实数; (3-5) 3)p p p y x y x +≤+ (3-6) 【 证明 :略】 在时间域(+∞∞-,)范围,最大幅度有界的全体信号所构成的信号空间记为 }:{∞<=∞∞x x L (3-7) 绝对可积(或绝对可和)的全体信号所构成的信号空间记为 }:{11∞<=x x L (3-8) 平方可积(或平方可和)的全体信号所构成的信号空间记为 }:{22∞<=x x L (3-9) 根据泛函理论可知,L ∞、L 2和L 1都是赋范线性空间。 3.1.2 信号内积与内积空间 在赋范线性空间2L (或2l )中,定义二信号的内积 ?∞ ∞ -=dt t y t x t y t x )()()(),((2L 空间) (3-10) 或 ∑∞ -∞ == n n y n x n y n x )()()(),((2 l 空间) (3-11) 以下简写为:y x ,。 通过简单验证,可知内积y x ,满足: 1) y x y x ,,αα= (3-12) 2)z y z x z y x ,,,+=+ (3-13) 3)x y y x ,,= (3-14) 4)0,≥x x ,并且0,=x x 的充要条件是θ=x 。 (3-15) 因此,2L (2l )称为内积空间,并且具有完备性、可分性,是希尔伯特—Hilbert 空间。 特例,当y x =时,有 2 2,x x x = (3-16)

信号与系统基础知识

第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不

信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一 ——关于眼图测量(上) 汪进进美国力科公司深圳代表处 内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。全分为上、下两篇。上篇包括一、二部分。下篇包括三、四部分。 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基 于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基 于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是 可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”, 看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然 没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰 对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元 定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两 只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码

于博士信号完整性分析入门(修改)

于博士信号完整性分析入门 于争 博士 https://www.360docs.net/doc/645889514.html, for more information,please refer to https://www.360docs.net/doc/645889514.html, 电设计网欢迎您

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

随机信号分析基础作业题

第一章 1、有朋自远方来,她乘火车、轮船、汽车或飞机的概率分别是0.3,0.2,0.1和0.4。如果她乘火车、轮船或者汽车来,迟到的概率分别是0.25,0.4和0.1,但她乘飞机来则不会迟到。如果她迟到了,问她最可能搭乘的是哪种交通工具? 解:()0.3P A =()0.2P B =()0.1P C =()0.4 P D = E -迟到,由已知可得 (|)0.25(|)0.4(|)0.1(|)0 P E A P E B P E C P E D ==== 全概率公式: ()()()()(P E P E A P E B P E C P E D =+++ 贝叶斯公式: ()(|)()0.075 (|)0.455()()0.165(|)()0.08 (|)0.485 ()0.165 (|)()0.01 (|)0.06 ()0.165(|)() (|)0 ()P EA P E A P A P A E P E P E P E B P B P B E P E P E C P C P C E P E P E D P D P D E P E ?= ===?===?===?== 综上:坐轮船 3、设随机变量X 服从瑞利分布,其概率密度函数为2 2 22,0 ()0,0X x x X x e x f x x σσ-??>=?? ,求期望()E X 和方差()D X 。 考察: 已知()x f x ,如何求()E X 和()D X ? 2 2222 2()()()[()]()()()()()()()x x E X x f x dx D X E X m X m f x dx D X E X E X E X x f x dx ∞ -∞ ∞ -∞ ∞ -∞ =?=-=-=-?=???? 6、已知随机变量X 与Y ,有1,3, ()4,()16,0XY EX EY D X D Y ρ=====, 令3,2,U X Y V X Y =+=-试求EU 、EV 、()D U 、()D V 和(,)Cov U V 。 考察随机变量函数的数字特征

DDR3基本知识

DDR3基本知识 一、DDR3简介 DDR3(double-data-rate three synchronous dynamic random access memory)是应用在计算机及电子产品领域的一种高带宽并行数据总线。DDR3在DDR2的基础上继承发展而来,其数据传输速度为DDR2的两倍。同时,DDR3标准可以使单颗内存芯片的容量更为扩大,达到512Mb至8Gb,从而使采用DDR3芯片的内存条容量扩大到最高16GB。此外,DDR3的工作电压降低为1.5V,比采用1.8V的DDR2省电30%左右。说到底,这些指标上的提升在技术上最大的支撑来自于芯片制造工艺的提升,90nm甚至更先进的45nm制造工艺使得同样功能的MOS管可以制造的更小,从而带来更快、更密、更省电的技术提升。 DDR3的发展实在不能说是顺利,虽然在2005年就已经有最初的标准发布并于2007年应用于Intel P35 “Bearlake”芯片组上,但并没有像业界预想的那样很快替代DDR2,这中间还经历了对SDRAM业界影响深远的金融危机,不但使DDR3占领市场的速度更加减慢,还使DDR3在技术上一度走在世界领先地位的内存大厂奇梦达倒闭,实在是让人惋惜。虽然如此,DDR3现今是并行SDRAM家族中速度最快的成熟标准,JEDEC标准规定的DDR3最高速度可达1600MT/s(注,1MT/s即为每秒钟一百万次传输)。不仅如此,内存厂商还可以生产速度高于JEDEC标准的DDR3产品,如速度为2000MT/s的DDR3产品,甚至有报道称其最高速度可高达2500MT/s。 二、DDR存储器特性 1) 时钟的上升和下降沿同时传输数据 DDR存储器的主要优势就是能够同时在时钟循环的上升和下降沿提取 数据,从而把给定时钟频率的数据速率提高1倍。例如,在DDR200器件中,数据传输频率为200 MHz,而总线速度则为100 MHz。 2) 工作电压低 DDR1、DDR2和DDR3存储器的电压分别为2.5、1.8和1.5V,因此与采用3.3V的正常SDRAM芯片组相比,它们在电源管理中产生的热量更少,效率更高。 3) 延时小 延时性是DDR存储器的另一特性。存储器延时性可通过一系列数字体现,如用于DDR1的2-3-2-6-T1、3-4-4-8或2-2-2-5。这些数字表明存储器进行某一操作所需的时钟脉冲数,数字越小,存储越快。 这些数字代表的操作如下:CL- tRCD – tRP – tRAS – CMD。要理解它们,您必须牢记存储器被内部组织为一个矩阵,数据保存在行和列的交叉点。 ?CL:列地址选通脉冲(CAS)延迟,是从处理器发出数据内存请求到存储

信号完整性分析基础系列之二十四

信号完整性分析基础系列之二十四——关于抖动(上) 美国力科公司深圳代表处汪进进 写在前面的话 抖动话题是示波器测量的最高境界,也是最风云变换的一个话题,这是因为抖动是示波器测量的诸多功能中最和“数学”相关的。玩数学似乎是需要一定境界的。 “力科示波器是怎么测量抖动的?”,“这台示波器抖动测量准不准?”,“时钟抖动和数据抖动测量方法为什么不一样?”,“总体抖动和峰峰值抖动有什么区别? ”,“余辉方法测量抖动不是最方便吗?”,“抖动和眼图,浴盆曲线之间是什么?”,…… 关于抖动的问题层出不穷。这么多年来,在完成了“关于触发(上)、(下)”和“关于眼图(上)、(下)”,“关于S参数(上)(下)”等三篇拙作后,我一直希望有一篇“关于抖动”的文章问世,但每每下笔又忐忑而止,怕有谬误遗毒。今天,当我鼓起勇气来写关于抖动的时候,我需要特别说明,这是未定稿,恳请斧正。 抖动和波形余辉的关系 有一种比较传统的测量抖动的方法,就是利用余辉来查看信号边沿的变化,然后再用光标测量变化的大小(如图1所示),后来更进了一步,可以利用示波器的“余辉直方图”和相关参数自动测量出余辉的变化范围,这样测量的结果就被称为“抖动”。这个方法是在示波器还没有“测量统计”功能之前的方法,但在90年代初力科发明了测量统计功能之后,这个方法就逐渐被淘汰了。 图1 传统的抖动测量方法 这种传统的方法有下面这些缺点:(1)总会引入触发抖动,因此测量的结果很不准确。(2)只能测量某种参数的抖动,譬如触发上升沿,测量下降沿的余辉变化,反应了宽度的抖动,触发上升沿,测量相邻的上升沿的余辉变化,反应了周期的抖动。显然还有很多类型的抖动特别是最重要的TIE抖动无法测量出来。(3)抖动产生的因果关系的信息也无从得知。 定义抖动的四个维度 和抖动相关的名词非常多:时钟抖动,数据抖动; 周期抖动,TIE抖动,相位抖动,cycle-cycle抖动; 峰峰值抖动(pk-pk jitter),有效值抖动(rms jitter);总体抖动(Tj),随机抖动(Rj),固有抖动(Dj);周期性抖动,DCD抖动,ISI抖动,数据相关性抖动; 定时抖动,基于误码率的抖动; 水平线以上的抖动和水平线以下的抖动…… 这些名词反应了定义抖动的不同维度。 回到“什么是抖动”的定义吧。其实抖动的定义一直没有统一,这可能也是因为需要表达清楚这个概念的维度比较多的原因。目前引用得比较多的定义是: Jitter is defined as the short-term variations of a digital signal’s significant instants from their ideal positions in time. 就是说抖动是信号在电平转换时,其边沿与理想位置之间的偏移量。如图2所示,红色的是表示理想信号,实际信号的边沿和红色信号边沿之间的偏差就是抖动。什么是“理想位置”,“理想位置”是怎么得到的?这是被问到后最不好回答的问题。

信号分析基础The Fundamentals of Signal Analysis

The Fundamentals of Signal Analysis Application Note 243

Table of Contents Chapter 1Introduction4 Chapter 2The Time, Frequency and Modal Domains:5 Chapter 3Understanding Dynamic Signal Analysis25 Chapter 4Using Dynamic Signal Analyzers49 Appendix A The Fourier Transform: A Mathematical Background63 Appendix B Bibliography66 Index67

Chapter 1 Introduction The analysis of electrical signals is a fundamental problem for many engineers and scientists. Even if the immediate problem is not electrical, the basic param-eters of interest are often changed into electrical signals by means of transducers. Common transducers include accelerometers and load cells in mechanical work, EEG electrodes and blood pressure probes in biology and medicine, and pH and conductivity probes in chemistry. The rewards for trans-forming physical parameters to electrical signals are great, as many instruments are available for the analysis of electrical sig-nals in the time, frequency and modal domains. The powerful measurement and analysis capa-bilities of these instruments can lead to rapid understanding of the system under study. This note is a primer for those who are unfamiliar with the advantages of analysis in the frequency and modal domains and with the class of analyzers we call Dynamic Signal Analyzers. In Chapter 2 we develop the con-cepts of the time, frequency and modal domains and show why these different ways of looking at a problem often lend their own unique insights. We then intro-duce classes of instrumentation available for analysis in these domains. Because of the tutorial nature of this note, we will not attempt to show detailed solutions for the multitude of measurement prob- lems which can be solved by Dynamic Signal Analysis. Instead, we will concentrate on the fea- tures of Dynamic Signal Analysis, how these features are used in a wide range of applications and the benefits to be gained from using Dynamic Signal Analysis. Those who desire more details on specific applications should look to Appendix B. It contains abstracts of Hewlett-Packard Application Notes on a wide range of related subjects. These can be obtained free of charge from your local HP field engineer or representative. In Chapter 3 we develop the properties of one of these classes of analyzers, Dynamic Signal Analyzers. These instruments are particularly appropriate for the analysis of signals in the range of a few millihertz to about a hundred kilohertz. Chapter 4 shows the benefits of Dynamic Signal Analysis in a wide range of measurement situations. The powerful analysis tools of Dynamic Signal Analysis are introduced as needed in each measurement situation. This note avoids the use of rigor- ous mathematics and instead depends on heuristic arguments. We have found in over a decade of teaching this material that such arguments lead to a better under- standing of the basic processes involved in the various domains and in Dynamic Signal Analysis. Equally important, this heuristic instruction leads to better instru- ment operators who can intelli- gently use these analyzers to solve complicated measurement problems with accuracy and ease*. *A more rigorous mathematical justification for the arguments developed in the main text can be found in Appendix A.

信号完整性分析基础之八——抖动的频域分析

在上两篇文章中,我们分别介绍了直方图(统计域分析)和抖动追踪(时域分析)在抖动分析中的应用。从抖动的直方图和抖动追踪波形上我们可以得到抖动的主要构成成分以及抖动参数的变化趋势。如需对抖动的构成做进一步的分析,还需要从频域角度去进一步分析抖动的跟踪波形。 抖动的频谱即是对抖动追踪(jitter track)波形做FFT运算。如下图1所示 为一个时钟周期测量参数的追踪、频谱分析步骤及效果,在抖动频谱图上可以清楚的看出某两个频率值点抖动比较大: 图1 抖动频谱 黄色为实际采集到的时钟波形(C1通道) P1测量C1通道时钟信号的时钟周期 F7函数对P1测量参数进行跟踪 F6对F7进行FFT分析 下图2所示为一典型的串行信号抖动追踪频谱图,从图中可看出各种抖动成分;DDj和Pj为窄带频谱(三角形谱或者谱线)但是DDj和Pj的区别是由于DDj是和码型相关的,其频率fDDJ一般会是数据位率的整数倍,如果Pj的频率fPJ正好等于fDDJ,那么从抖动的频谱图里面是很难将DDj和Pj精确的分开的,所以通常在抖动分解的过程中一般通过时域平均的方法来分解DDj;BUj主要由于串扰等因素引起的,一般分为两种,一种是窄带,但幅度较高,很显然这类BUJ也是很难和PJ区分开的,除非我们知道引起BUJ的源头,知道其频率,所以说我们在抖动测试时得到的PJ一般会包含这类BUJ(所以通常情况下对这类BUJ不加区分,直接算做PJ,而将BUJ分类为PJ和OBUJ,在之前的抖动分类文章中有提及);另外一类是宽带的BUJ(很多时候也叫OBUJ,other bounded uncorrelated jitter),幅度很小,基本会埋没到RJ中去,这类抖动很容易被误算作RJ,目前使用在示波器上的抖动分解软件只有Lecroy最近推出的SDAII(基于NQ-SCALE抖动分解理论)能够较好的将这类抖动从Rj中剥离出来;RJ是 宽带频谱,幅度很小。

信号链基础知识之几个关键的基本概念

信号链基础知识之几个关键的基本概念 一直有人说“一年数字,十年模拟。”。大致意思我猜是说:数字技术相对而言比较简单易懂,而模拟技术是非常深奥难以掌握的。我觉得即便这句话并非“空穴来风”,模拟电子技术也不可能离开那些非常基础的东西而成为美丽、高不可攀的“空中楼阁”。所以说,模拟电子技术的“深不可测”并不应该成为我们畏惧它的原因,相反,我们应该尽量把基础知识打扎实,迎难而上,去体会“模拟技术是一种艺术”! (1)输入失调电压(Input offset voltage——Vio): 定义:Vio是使输出电压为零时在运放输入端所加的一个补偿电压。 实际上,由于运放的输入级电路参数不可能绝对对称,所以当输入电压为零时,输出电压并不为零。内部两个差分晶体管的微小差异,通过A倍放大后,即可产生一个不容忽视的输出电压。下图是由输入偏移电压产生的一种极端情况(这个图已把问题说得简单、明了,我就不多说了), 由此可见,输入偏移电压有时可能使得运放输出级的工作状态进入非线性区。So,要想使运放工作在线性区的话,我们就不得不事先对运放进行调零的操作了!——进行人为地输入一个补偿电压。如下图所示:

(2)输入失调电流(Input Offset Current——Iio): 碎碎念:对于FET运算放大器来说,由于其输入电阻是“出了名”的极大,以致该类运放的输入失调电流一般是极小的,不至于在运放的输入端产生额外严重的补偿电压。However,反观双极性运算放大器,其输入失调电流在多处情况下是令人无法忍受的,一个有效的处理办法是:尽量使得运放的同相与反相两端保持良好的对称状态,以减小输入失调电流。 (3)负反馈(Negative Feedback): 由于运放一般具有极大的开环电压增益,所以两个输入端即便是只有很小的电压差,运放的输出级也有可能轻易到达饱和区域。由此,运放几乎只能用于比较器应用了。但是,当引入负反馈后,运放就变成一种非常有用的器件了。引入负反馈能够给放大器的性能带来多方面的改善,比如可以稳定放大倍数、改变输入电阻和输出电阻、展宽频带、减小非线性失真等,考虑到博文的篇幅,留待后文再针对这些情况作专门的分析和讨论。

相关文档
最新文档