(完整版)电力负荷预测综述
电力负荷预测研究文献综述

电力负荷预测研究文献综述电力负荷预测是指利用先进的计算机技术、数学模型和统计方法,对未来一段时间内的电力总负荷进行预测和规划。
电力负荷预测的准确性直接影响到电力市场的稳定与发展,因此,对于电力负荷预测的研究也日益引起人们的关注。
一、电力负荷预测的背景和意义电力是维持现代社会正常运转的重要资源,而电力负荷预测则是保证电力供需平衡、维持电力市场稳定的关键。
电力负荷预测除了对电力市场有着深远的影响外,还可在政府、企业和居民之间协调用电、降低用电峰谷差距、提高电网供电效率等方面减轻压力。
二、电力负荷预测研究现状近年来,国内外学者在电力负荷预测方面进行了大量的研究,主要在以下四个方面:1. 基于时间序列分析的电力负荷预测时间序列分析是一种基于时间序列数据的统计学方法,已被广泛应用于电力负荷预测。
这种方法可以分为平稳性分析、自回归模型、移动平均模型、ARIMA模型、GARCH模型等多个分支。
2. 基于人工神经网络的电力负荷预测人工神经网络是一种模仿人类神经系统建立的无监督神经网络模型,已被成功应用于电力负荷预测。
该模型可以进行非线性建模,模拟各种非线性因素对电力负荷的影响。
3. 基于物理模型的电力负荷预测物理模型是一种以电力系统的基本物理特性为基础的模型,主要包括负载特性、发电机特性和输电线路特性三个方面,目的是利用物理规律来对电力负荷进行预测。
4. 基于智能优化算法的电力负荷预测智能优化算法是一种基于进化计算理论、人工智能(AI)和机器学习等多学科知识的新型算法。
目前,包括遗传算法、模拟退火、粒子群算法等多种智能算法已被应用于电力负荷预测中。
三、电力负荷预测存在的问题和展望目前,电力负荷预测模型仍存在一些问题,包括模型的结构和参数设计、样本数据质量和数量、监控参数及变量设计等方面的不足。
针对这些问题,未来的研究主要可从大数据处理、机器学习、深度学习、人工智能等方面入手,精确的电力负荷预测模型将成为未来电力市场具有竞争力的关键。
电力系统负荷预测研究综述与发展方向的探讨

电力系统负荷预测研究综述与发展方向的探讨电力系统负荷预测是指根据历史负荷数据和其他相关信息,对未来一段时间内的负荷情况进行估计和预测的一项重要任务。
负荷预测在电力系统运行、调度、规划和市场交易等方面有着广泛的应用。
本文对电力系统负荷预测的研究现状进行了综述,并探讨了未来的发展方向。
电力系统负荷预测方法主要分为经验方法和建模方法两大类。
经验方法包括传统的时间序列分析方法、回归分析方法、平滑方法等。
这些方法简单易用,但通常需要大量的历史数据,并且对负荷的变化规律和影响因素的理解较为有限。
建模方法则采用数学模型来描述负荷的变化规律,并利用历史数据进行参数估计和模型拟合。
常见的建模方法包括基于回归分析的模型、时间序列模型、神经网络模型、支持向量机模型等。
这些方法在一定程度上克服了经验方法的局限性,能够较好地预测负荷的变化趋势和波动特征。
目前,电力系统负荷预测的研究重点主要集中在以下几个方面。
首先是提高负荷预测准确性。
准确预测电力系统负荷是保证电网安全稳定运行和优化调度的基础。
如何提高负荷预测的准确性一直是研究的关键问题。
可以通过引入更多的影响因素,如天气数据、经济指标等,建立更加准确的预测模型。
结合机器学习算法和大数据技术,对数据进行深入挖掘和分析,进一步提高预测精度。
其次是提高负荷预测的实时性。
随着电力市场的发展和电力系统运行的复杂性增加,对负荷的实时预测能力要求越来越高。
如何利用实时数据进行负荷预测,减少预测与实际值之间的误差,成为研究的重点之一。
可以通过建立动态更新的预测模型,结合实时监测数据,进行实时调整和优化。
还可以结合其他方法,如模糊综合评估方法、灰色系统理论等,进行多尺度预测和综合分析。
这样能够更好地反映不同尺度下负荷的变化规律,提高预测精度和可靠性。
另一个方向是研究负荷预测与电力市场交易的关系。
电力市场的开放和竞争给负荷预测带来了新的挑战和机遇。
负荷预测结果直接影响着电力市场的供求平衡和市场交易的决策。
电力系统中的负荷预测方法综述与展望

电力系统中的负荷预测方法综述与展望1. 引言电力系统的负荷预测是对未来一段时间内负荷需求的估计,对电力生产和供应的规划和调度起到至关重要的作用。
准确的负荷预测可以帮助电力公司合理安排发电计划,提高运行效率,降低成本,同时也对电力系统的稳定运行和供需平衡起到关键作用。
因此,负荷预测的准确性和精度一直是电力行业的重要关注点。
2. 传统的负荷预测方法2.1 统计方法统计方法是最常用的负荷预测方法之一,其基本思想是通过对历史负荷数据进行分析、拟合和预测。
常见的统计方法包括回归分析、时间序列分析和指数平滑法。
这些方法适用于长期和短期负荷预测,具有简单、易操作、计算速度快等特点。
然而,由于统计方法没有考虑负荷数据之间的相互关系和复杂的非线性因素,导致其预测精度较低,在面对突发事件或季节性变化时不够准确。
2.2 物理方法物理方法基于电力系统的运行机理和负荷分布规律,通过建立数学模型来预测负荷需求。
常见的物理方法包括灰色系统理论、神经网络方法和支持向量机。
这些方法可以考虑负荷数据之间的关联性和非线性因素,提高了预测精度。
然而,物理方法需要准确地描述电力系统的物理特性和运行机理,对数据要求较高,计算复杂度较大。
3. 基于机器学习的负荷预测方法近年来,随着机器学习技术的快速发展,基于机器学习的负荷预测方法逐渐受到关注。
机器学习方法通过对大量历史负荷数据的学习和训练,可以从数据中提取出负荷需求的规律和特征,进而进行准确的负荷预测。
常见的基于机器学习的负荷预测方法包括决策树、随机森林、支持向量回归和深度学习等。
3.1 决策树决策树是一种基于树状结构的机器学习方法,根据特征值将数据集划分为不同的类别。
对于负荷预测问题,可以将历史负荷数据作为输入特征,负荷需求作为输出类别,构建负荷预测模型。
决策树方法具有简单、易理解、易实现的特点,但在处理大量数据和复杂关系时预测效果较差。
3.2 随机森林随机森林是一种基于集成学习的机器学习方法,通过构建多个决策树模型并进行集成,提高了预测的准确性和鲁棒性。
《2024年电力系统负荷预测研究综述与发展方向的探讨》范文

《电力系统负荷预测研究综述与发展方向的探讨》篇一一、引言随着社会经济的快速发展和人民生活水平的不断提高,电力需求持续增长,电力系统的稳定运行和负荷预测显得尤为重要。
电力系统负荷预测是电力行业的重要研究领域,对于保障电力系统的安全、经济、可靠运行具有重大意义。
本文将对电力系统负荷预测的研究进行综述,并探讨其发展方向。
二、电力系统负荷预测研究综述1. 负荷预测方法电力系统负荷预测方法主要包括传统统计方法、机器学习方法、人工智能方法等。
传统统计方法如时间序列分析、回归分析等,通过分析历史数据,建立数学模型进行预测。
机器学习方法如支持向量机、随机森林等,通过学习历史数据中的规律,实现负荷预测。
近年来,人工智能方法如深度学习、神经网络等在负荷预测中得到了广泛应用,取得了较好的预测效果。
2. 负荷预测模型负荷预测模型主要包括确定性模型和概率性模型。
确定性模型如线性回归模型、灰色预测模型等,通过建立数学关系,预测未来负荷值。
概率性模型如马尔科夫链、贝叶斯网络等,通过分析历史数据的概率分布,预测未来负荷的概率分布。
3. 负荷预测的应用电力系统负荷预测广泛应用于电力调度、电力规划、电力市场等方面。
在电力调度中,负荷预测能够帮助调度人员合理安排发电计划,保障电力系统的稳定运行。
在电力规划中,负荷预测能够帮助规划人员制定合理的电网建设规划,提高电力系统的供电能力。
在电力市场中,负荷预测能够帮助电力企业制定合理的电价策略,提高经济效益。
三、电力系统负荷预测的发展方向1. 数据驱动的负荷预测随着大数据、云计算等技术的发展,数据驱动的负荷预测将成为未来的发展趋势。
通过收集和分析海量数据,挖掘数据中的规律和趋势,提高负荷预测的准确性和可靠性。
同时,数据驱动的负荷预测还能够考虑更多因素,如天气、政策、经济等,提高预测的全面性和准确性。
2. 深度学习在负荷预测中的应用深度学习在电力系统负荷预测中具有广阔的应用前景。
通过建立深度学习模型,学习历史数据中的非线性关系和复杂模式,提高负荷预测的精度和稳定性。
综述电力系统负荷预测

间 。电力系统负荷预测对 电力系统 的负荷做 出事先的估计 , 它 对于 电力系统的运行 、 控制 以及 设计和研 究都十分重要 。而我 国 目前 正在推行 的电力市场对 负荷预测工 作提 出 了更 高的要 求 。在 电力市场条件下 , 不仅制 定发电计划 与短期负荷 预测有 密切 的关系 , 其它诸如: 时电价 的制定 , 实 用户与输 电部 门的长
短期 负荷预测有着密切 的关系 。同时电力市场条件下 , 一些新
的 因素 也给 负荷 预 测 工 作 造 成 了一 定 的 困难 , 比如 负 荷 对 实 时
电价 的响应 。电价 随时间和 电网运行状态 的改变而变化 , 用户 相应地对 电价作 出响应 , 从而产生负荷的涨落 。随着我 国电力 市场 的进一 步发 展, 短期负荷预测在 电力系统的经济运行方面
专 版 电 力建设
综 述 电力 系统 负荷 预 测
邓 国平
( 门 电业 局 ) 厦
摘 要: 综述 了电力系统负荷预测的定义及其 主要 目标 , 并的深入开展, 要求负荷预测更具实时性、 更准确 , 而迄今为止, 还没有 一种适用于不 同条件的通用方法 。因此, 关键在于如何根据预 测地区的负荷特 性及 负荷构成来选择综合哪几种预测方法 。 关键词 : 电力系统 ; 负荷预测 ; 电力市场
的 影 响会 表 现 得 更加 明显 。 因此 , 传 统 的负 荷 预 测 提 出 了更 对 高 的要 求 ,在 线 的动 态 负荷 预 测 成 为近 年 来 人 们 研 究 的重 点 , 与 此 相 关 的新 技 术 、 方 法 都 有 很 大 的发 展 。 新
2 国 内外研 究 动态
决 的主 要 问题 。
24 时间序 列预测 技术 .
(完整版)电力负荷预测综述

(完整版)电力负荷预测综述电力工程信号处理课程报告电力负荷预测方法分析院系:能源与动力工程学院专业:电力系统及其自动化指导老师王瑞霞老师学号: 115108000887姓名:于杏日期: 2016.01.17目录1. 绪论 (2)1.1电力负荷预测研究意义 (3)1.2国内外研究现状 (3)2. 电力负荷预测 (3)2.1 电力负荷的研究背景 (4)2.2 电力负荷的构成及特点 (4)2.3 电力负荷的一般步骤 (4)2.4 电力负荷预测方法 (5)2.4.1 回归模型预测法 (5)2.4.2 时间序列预测方法 (5)2.4.3 人工神经网络法 (6)2.4.4 灰色预测法 (6)2.4.5 专家系统法 (6)2.4.6 模糊数学法 (7)2.4.7 小波分析法 (7)2.5电力负荷预测方法分析与比较 (8)3.总结 (8)参考文献 (9)摘要电力负荷预测对电力系统规划和运行极其重要。
准确的负荷预测是实现规划方案科学性和正确性的保证,也是保证电网可靠供电,优质运行的一项前瞻性工作。
本文先对介绍电力负荷预测的意义和发展概况,然后着重列举了回归模型预测法、模糊数学预测法、小波分析法等七种预测方法,并分别指出了优缺点,在此基础上分析了他们的不同及适用情况。
以便于在选择出更为合适的电力预测方法的基础上,得到更为理想的预测结果。
关键词:电力负荷,电力系统,方法AbstractPower load forecasting of power system planning and operation is extremely important. The accuracy of the load forecasting ensures the planning scheme to be scientific .It is also a prospective work to guarantee the reliability and economic operation of power.This article introduces the meaning and the developing situation of power load forecasting firstly, and then emphatically enumerates seven kinds of forecast methods, such as the regression model prediction method, fuzzy prediction method, the wavelet analysis method,etc. At the end,the article points out the advantages and disadvantages respectively, on the basis of the analysis of their different and applicable conditions.The article is useful in choosing a more appropriate power prediction methd, on the basis of which, better prediction results are obtained.Keywords: power load, the power system,method1. 绪论1.1.电力负荷预测研究意义在电力系统计划与运行管理中,负荷预测是对发电、输电和电能分配等合理安排的必要前提。
电力系统负荷预测研究综述与发展方向的探讨

电力系统负荷预测研究综述与发展方向的探讨电力系统负荷预测是电力系统经济运行和调度的重要环节,其准确性直接影响着电力系统的安全稳定运行。
随着电力系统的发展和现代化,负荷预测技术也在不断革新和发展。
本文将对电力系统负荷预测的研究现状进行综述,并探讨其未来的发展方向。
一、负荷预测研究现状1. 传统负荷预测方法传统的负荷预测方法主要包括时间序列分析、回归分析和专家系统等。
时间序列分析是最常用的方法之一,通过对历史负荷数据进行分析得出未来的负荷趋势。
回归分析则是通过建立与负荷相关的指标来预测未来负荷。
专家系统则是利用专家知识和经验来进行负荷预测。
这些方法在一定程度上能够满足负荷预测的需求,但受限于模型的复杂性和准确性。
随着数据挖掘和机器学习技术的发展,基于统计模型的负荷预测方法逐渐成为主流。
这些方法包括支持向量机、神经网络、随机森林等。
这些方法能够通过对历史数据的学习和建模来进行负荷预测,能够适应不同的负荷变化规律和复杂性。
基于统计模型的负荷预测方法在预测精度和实用性上有了显著提升,成为当前电力系统负荷预测的主流方法。
3. 基于深度学习的负荷预测方法近年来,随着深度学习技术的发展,基于深度学习的负荷预测方法也逐渐受到关注。
深度学习技术能够通过对大量数据的学习和训练来提高模型的预测能力,具有适应复杂系统和非线性关系的优势。
基于深度学习的负荷预测方法在一些领域已经取得了较好的效果,并成为未来的发展趋势之一。
二、负荷预测的发展方向1. 数据驱动的方法未来的负荷预测方法将更加趋向于数据驱动,即通过大数据和机器学习技术来进行负荷预测。
这将需要更多的历史负荷数据和高效的数据处理技术,以适应电力系统的动态性和复杂性。
数据驱动的方法能够更准确地捕捉负荷的变化规律,提高预测的准确性和实用性。
2. 智能化技术的应用未来的负荷预测方法还将更加趋向于多源数据融合,即通过整合不同类型和来源的数据来进行负荷预测。
这将包括历史负荷数据、天气数据、经济数据等,通过多源数据的融合来提高负荷预测的准确性和稳定性。
电力系统负荷预测研究综述与发展方向的探讨

电力系统负荷预测研究综述与发展方向的探讨随着电力系统的快速发展和电力市场的不断完善,负荷预测在电力系统调度、能源规划和市场交易等方面发挥着重要的作用。
本文对电力系统负荷预测的研究进行综述,并探讨其未来的发展方向。
负荷预测是指对未来一段时间内的负荷进行估计和预测,以便电力系统能够有针对性地调度和运行。
过去,负荷预测主要依靠经验方法和统计方法进行,如时间序列分析、回归分析和指数平滑等。
随着计算机技术的发展和数据采集能力的提高,应用机器学习和人工智能等方法进行负荷预测变得越来越普遍。
在机器学习方法中,最常用的是基于神经网络的负荷预测模型。
通过神经网络对历史数据进行训练,可以学习到历史负荷与各种影响因素(如温度、天气、节假日等)之间的复杂关系,并用于预测未来的负荷。
还有基于支持向量机、逻辑回归、决策树等算法的负荷预测模型,这些模型不仅在精度上有所提高,而且计算速度也更快。
除了传统的机器学习方法,近年来,深度学习在负荷预测中的应用也逐渐受到关注。
深度学习是一种基于人工神经网络的机器学习方法,可以通过多层次的网络结构来学习负荷与影响因素之间更加复杂的关系。
卷积神经网络可以处理时间序列数据中的时序特征,长短期记忆网络可以捕捉序列数据中的长期依赖关系。
这些深度学习模型在负荷预测中取得了较好的效果,但同时也面临着模型复杂度高、训练时间长等问题。
除了模型选择,数据预处理也对预测精度有重要影响。
传统的负荷预测模型通常只考虑历史负荷数据,而忽略了其他外部因素的影响。
实际上,温度、天气、经济指标等因素对负荷的影响是至关重要的。
如何合理地选择和处理外部因素对负荷预测的精度具有重要影响。
随着电力系统的智能化和数据采集技术的发展,越来越多的数据可用于负荷预测。
电力系统中的传感器数据、用户用电数据和社交媒体数据等都可以作为预测模型的输入变量。
未来的发展方向之一是如何利用大数据和数据挖掘技术来提高负荷预测的精度和可靠性。
另一个发展方向是多时间尺度的负荷预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力工程信号处理课程报告电力负荷预测方法分析院系:能源与动力工程学院专业:电力系统及其自动化指导老师王瑞霞老师学号: *************名:**日期: 2016.01.17目录1. 绪论 (2)1.1电力负荷预测研究意义 (3)1.2国内外研究现状 (3)2. 电力负荷预测 (3)2.1 电力负荷的研究背景 (4)2.2 电力负荷的构成及特点 (4)2.3 电力负荷的一般步骤 (4)2.4 电力负荷预测方法 (5)2.4.1 回归模型预测法 (5)2.4.2 时间序列预测方法 (5)2.4.3 人工神经网络法 (6)2.4.4 灰色预测法 (6)2.4.5 专家系统法 (6)2.4.6 模糊数学法 (7)2.4.7 小波分析法 (7)2.5电力负荷预测方法分析与比较 (8)3.总结 (8)参考文献 (9)摘要电力负荷预测对电力系统规划和运行极其重要。
准确的负荷预测是实现规划方案科学性和正确性的保证,也是保证电网可靠供电,优质运行的一项前瞻性工作。
本文先对介绍电力负荷预测的意义和发展概况,然后着重列举了回归模型预测法、模糊数学预测法、小波分析法等七种预测方法,并分别指出了优缺点,在此基础上分析了他们的不同及适用情况。
以便于在选择出更为合适的电力预测方法的基础上,得到更为理想的预测结果。
关键词:电力负荷,电力系统,方法AbstractPower load forecasting of power system planning and operation is extremely important. The accuracy of the load forecasting ensures the planning scheme to be scientific .It is also a prospective work to guarantee the reliability and economic operation of power.This article introduces the meaning and the developing situation of power load forecasting firstly, and then emphatically enumerates seven kinds of forecast methods, such as the regression model prediction method, fuzzy prediction method, the wavelet analysis method,etc. At the end,the article points out the advantages and disadvantages respectively, on the basis of the analysis of their different and applicable conditions.The article is useful in choosing a more appropriate power prediction methd, on the basis of which, better prediction results are obtained.Keywords: power load, the power system,method1. 绪论1.1.电力负荷预测研究意义在电力系统计划与运行管理中,负荷预测是对发电、输电和电能分配等合理安排的必要前提。
提高负荷预测水平,有利于计划用电管理,有利于合理安排电网运行方式和机组检修计划,有利于节煤、节油和降低发电成本,有利于制定合理的电源建设规划,有利于提高电力系统的经济效益和社会效益,对电力系统的安全经济运行与国民经济的发展具有非常重要的影响。
1.1.国内外研究现状长期以来,人们对电力系统负荷预测,特别是短期负荷预测进行了大量的研究,提出了许多有效的方法。
国外进行了大量理论研究,达到了较高的水平,部分已经投入实际应用,国内已有了比较系统的研究。
近些年,随着科学技术的迅速发展,预测理论技术也取得了长足的进展,新的预测方法,尤其是人工智能与模式识别领域的新方法层出不穷,为电力负荷预测问题的研究提供了有力的工具。
今后更具实际意义的是采用组合预测算法,充分利用算法的互补性,进一步提高预测精度并使其更加实用。
2. 电力负荷预测2.1电力负荷预测背景随着国际金融危机负面影响进一步的消退,国际经济形势也将进一步好转,为我国电力行业的深化改革和经济的平稳发展提供契机,有利于电力投资的扩大和基础设施建设的进行。
根据2013年宏观经济形势的分析,综合考虑,应用电力供需研究实验相关模型方法,预计2015年全国全社会用量将达到4.62万亿-4.91万亿kWh,比2014年增长10.4%-14.3%,增速较往年稍有提高。
从宏观角度看,目前我国电力供需保持在一个相对持平局面,但是局部地区由于用电高峰期存在供需偏紧的情况,如华东区域。
为了应对电力高峰时期给输配电造成压力,需要有计划的对下一个用电量和电力负荷进行合理及尽量准确的预测。
2.2 电力负荷的构成及特点构成:用电分类是说明国民经济各部门的用电情况和变化规律的,它是反映电气化的发展水平和趋势的指标,用于分析研究经济增长与电力生产增长、社会产品增长与电力消耗量增长的相互关系,是负荷预测和电力分配的依据。
我国用电分类从1986年起按“国民经济行业用电分类”。
电力系统负荷一般可以分为城市民用负荷、商业负荷、农村负荷、工业负荷以及其他负荷等。
特点:由于电力工业负荷与一般的产业不同,其产品即电能无法大量存储,电力的生产和消费必须在同一瞬间进行,电站建设耗资大,建设周期长,电能对于国民经济各个行业和人民生活的重要性,尤其是在一个相当时期内的供需矛盾,这一切使电力负荷预测工作尤显重要。
这就要求我们对于电力负荷的特点有一定的了解,才能针对负荷的特性而采用恰当的预测方法,得到符合精度要求的负荷预测值,更好地为电力系统的发展和运行提供依据。
从长时间观察,电力负荷具有周期性的特点,而求负荷变化是连续的,一般不会出现大的跃变;同时,电力负荷对季节、温度、天气等是敏感的,不同的季节,不同地区的气候以及温度的变化都会对负荷造成明显的影响。
以上均是传统的负荷特点,随着电力市场的深入,电力负荷会有新的特点出现,这就需要不断补充对新形势下的电力负荷的认识。
2.3电力负荷预测的一般步骤科学的输配电电力负荷预测需要遵循以下几个步骤:a.预测目标和预测内容的确定;b.预测模型的选择与建立;c.预测结果的分析;d.对预测结果进行评价。
2.4 电力负荷预测方法2.4.1回归模型预测法回归分析法是利用数理统计原理,对大量的统计数据进行数学处理,并确定用电量或用电负荷与某些自变量例如人口、国民经济产值等之间的相关关系,建立一个相关性较好的数学模式即回归方程,并加以外推,用来预测今后的用电量。
根据变量的个数,回归分析可以分为一元回归分析和多元回归分析。
在回归分析中,自变量是随机变量,因变量是非随机变量,由给定的多组自变量和因变量资料,研究各自变量和因变量之间的关系,形成回归方程。
根据自变量和因变量之间的函数形式,回归方程又可分为线性回归方程和非线性回归方程。
在负荷预测问题中,必须预先人为给定回归线类型,若给定的不合适将直接影响预测精度。
同时对不同的系统由于负荷特点不尽相同,也很难建立起具有通用性的负荷预测模型。
回归分析有两个难点:一是回归变量的选取,应选取主要因素而忽略次要因素;二是变量因素的量化涉及到计量经济学的范畴,过于麻烦。
2.4.2时间序列预测法时间序列预测法是应用较早、最为广泛、发展比较成熟的一种方法 o它把负荷数据看作是一个按季节、按周、按天以及按小时周期性变化的时间序列,根据负荷的历史资料,建立一个数学模型来描述电力负荷这个随机变量变化过程的统计规律性,在数学模型的基础上确立负荷预测的数学表达式,对未来的负荷进行预测。
在时间序列法中常采用的技术有:卡尔曼滤波、状态估计、Box-Jenkins模型、自回归动平均模型等。
其中,处理随机时间序列问题的最有效的方法是Box-Jenkins的时间序列法。
虽然时间序列法比回归法更适用于短期负荷预测,但这种经典方法建模过程比较复杂,因此限制了这种模型在实际短期负荷预测中的有效使用。
该方法对历史数据准确性要求高,坏数据对预测影响很大,因此对坏数据处理要求严格;在天气和温度变化不大的时候,该模型容易取得比较满意的结果;当天气变化较大或遇到节假日等情况,这种方法存在较大的预测误差,而且预测步数越长,预测精度越差。
目前解决非线性问题和复杂系统问题比较有效的方法是采用人工智能技术,这方面主要包括人工神经网络、模糊逻辑与专家系统等。
2.4.3人工神经网络法神经网络(ANN,ArtificialNeuralNetwork)预测技术可以模仿人脑的智能化处理,对大量非结构性、非精确性规律具有自适应功能,具有信息记忆、自主学习、知识推理和优化计算的特点。
人工神经网络技术的主要优点在于它不需要任何负荷模型,并具有很好的函数逼近能力,较好地解决了天气和温度等因素与负荷的对应关系,通过学习能够反映输入、输出之间复杂的非线性关系。
与传统预测方法相比,这种方法具有其不可比拟的优点。
但其缺点是训练过程比较消耗时间,并且不能保证一定收敛,同时神经网络的结构确定、输入变量的恰当选取、隐含层数目及其节点数的多少等问题都要在实践中进行摸索。
2.4.4灰色预测法灰色系统理论将一切随机变化量看作是在一定范围内变化的灰色量,常用累加生成和累减生成的方法,将杂乱无章的原始数据整理成规律性较强的生成数据序列,形成灰色模型(GreyModel,简称GM)的微分方程。
应用灰色理论进行负荷预测,具有样本少、计算简单、精度高和实用性好的优点;缺点是当数据离散程度较大时,由于数据灰度较大预测精度会较差,所以应用于电力系统中长期负荷预测中,仅仅是最近的几个数据精度较高,其它较远的数据只反映趋势值和规划值。
从理论上讲,灰色预测模型可以适用于任何非线性变化的负荷指标预测,但由于灰色预测模型是呈指数(增长或者递减)变化的模型,其预测精度与被预测对象的变化规律密切相关,当原始数据波动情况如上下连续波动、指数波动、倍数波动时,预测的精度就较差。
2.4.5专家系统法专家系统(Expert System, ES)是基于知识工程原理来构造和设计的系统,它拥有领域内专家的知识和经验,通过启发式知识的推理做出智能决策。
负荷受许多因素的影响,虽然借助预测人员的丰富经验与判断能力是有益的,如在节假日,重大社会活动和突发事件的情况下,专家启发知识可起到重要的作用,但是专家系统分析本身就是一个耗时的过程,并且某些复杂的因素(如天气因素),即使知道其对负荷的影响,但要准确定量地确定他们对负荷地区的影响也是很难的。