人教B版选修23高中数学11《基本计数原理》课时作业

合集下载

2019-2020学年高中数学(人教B版 选修2-3)教师用书:第1章 计数原理-章末分层突破

2019-2020学年高中数学(人教B版 选修2-3)教师用书:第1章 计数原理-章末分层突破

章末分层突破[自我校对]①分类加法计数原理②分步乘法计数原理③排列④排列数公式⑤组合数公式⑥组合数⑦二项展开式的通项⑧对称性⑨增减性两个计数原理的应用分类加法计数原理和分步乘法计数原理是本部分内容的基础,对应用题的考查,经常要对问题进行分类或者分步进而分析求解.(1)“分类”表现为其中任何一类均可独立完成所给事情.“分步”表现为必须把各步骤均完成,才能完成所给事情,所以准确理解两个原理的关键在于弄清分类加法计数原理强调完成一件事情的几类办法互不干扰,不论哪一类办法中的哪一种方法都能够独立完成事件.(2)分步乘法计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成事件,步与步之间互不影响,即前一步用什么方法不影响后一步采取什么方法.王华同学有课外参考书若干本,其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他欲带参考书到图书馆阅读.(1)若他从这些参考书中带一本去图书馆,有多少种不同的带法?(2)若带外语、数学、物理参考书各一本,有多少种不同的带法?(3)若从这些参考书中选2本不同学科的参考书带到图书馆,有多少种不同的带法?【精彩点拨】解决两个原理的应用问题,首先应明确所需完成的事情是什么,再分析每一种做法使这件事是否完成,从而区分加法原理和乘法原理.【规范解答】(1)完成的事情是带一本书,无论带外语书,还是数学书、物理书,事情都已完成,从而确定为应用分类加法计数原理,结果为5+4+3=12(种).(2)完成的事情是带3本不同学科的参考书,只有从外语、数学、物理书中各选1本后,才能完成这件事,因此应用分步乘法计数原理,结果为5×4×3=60(种).(3)选1本外语书和选1本数学书应用分步乘法计数原理,有5×4=20种选法;同样,选外语书、物理书各1本,有5×3=15种选法;选数学书、物理书各1本,有4×3=12种选法.即有三类情况,应用分类加法计数原理,结果为20+15+12=47(种).应用两个计数原理解决应用问题时主要考虑三方面的问题:(1)要做什么事;(2)如何去做这件事;(3)怎样才算把这件事完成了.并注意计数原则:分类用加法,分步用乘法.[再练一题]1.如图1-1为电路图,从A到B共有________条不同的线路可通电.图1-1【解析】先分三类.第一类,经过支路①有3种方法;第二类,经过支路②有1种方法;第三类,经过支路③有2×2=4(种)方法,所以总的线路条数N=3+1+4=8.【答案】8排列、组合的应用排列、组合应用题是高考的重点内容,常与实际问题结合命题,要认真审题,明确问题本质,利用排列、组合的知识解决.(1)某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲不到银川,乙不到西宁,共有多少种不同派遣方案?(2)在高三一班元旦晚会上,有6个演唱节目,4个舞蹈节目.①当4个舞蹈节目要排在一起时,有多少种不同的节目安排顺序?②当要求每2个舞蹈节目之间至少安排1个演唱节目时,有多少种不同的节目安排顺序?③若已定好节目单,后来情况有变,需加上诗朗诵和快板2个栏目,但不能改变原来节目的相对顺序,有多少种不同的节目演出顺序?【精彩点拨】按照“特殊元素先排法”分步进行,先特殊后一般.【规范解答】(1)因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案A48种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有A38种方法,所以共有3A38种方法;③若乙参加而甲不参加同理也有3A38种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余学生到另两个城市有A28种,共有7A28种方法.所以共有不同的派遣方法总数为A48+3A38+3A38+7A28=4 088种.(2)①第一步,先将4个舞蹈节目捆绑起来,看成1个节目,与6个演唱节目一起排,有A7=5 040种方法;第二步,再松绑,给4个节目排序,有A4=24种方法.根据分步乘法计数原理,一共有5 040×24=120 960种.②第一步,将6个演唱节目排成一列(如下图中的“□”),一共有A6=720种方法.×□×□×□×□×□×□×第二步,再将4个舞蹈节目排在一头一尾或两个节目中间(即图中“×”的位置),这样相当于7个“×”选4个来排,一共有A47=7×6×5×4=840种.根据分步乘法计数原理,一共有720×840=604 800种.③若所有节目没有顺序要求,全部排列,则有A12种排法,但原来的节目已定好顺序,需要消除,所以节目演出的方式有A1212A1010=A212=132种排法.解排列、组合应用题的解题策略1.特殊元素优先安排的策略.2.合理分类和准确分步的策略.3.排列、组合混合问题先选后排的策略.4.正难则反、等价转化的策略.5.相邻问题捆绑处理的策略.6.不相邻问题插空处理的策略.7.定序问题除序处理的策略.8.分排问题直排处理的策略.9.“小集团”排列问题中先整体后局部的策略.10.构造模型的策略.简单记成:合理分类,准确分步;特殊优先,一般在后;先取后排,间接排除;集团捆绑,间隔插空;抽象问题,构造模型;均分除序,定序除序.[再练一题]2.(1)一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是( )A.40B.74C.84D.200 (2)(2016·山西质检)A ,B ,C ,D ,E ,F 六人围坐在一张圆桌周围开会,A 是会议的中心发言人,必须坐最北面的椅子,B ,C 二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有( )A.60种B.48种C.30种D.24种【解析】 (1)分三类:第一类,前5个题目的3个,后4个题目的3个; 第二类,前5个题目的4个,后4个题目的2个;第三类,前5个题目的5个,后4个题目的1个.由分类加法计数原理得C 35C 34+C 45C 24+C 5C 14=74.(2)由题意知,不同的座次有A 2A 4=48种,故选B. 【答案】 (1)B (2)B二项式定理问题的处理方法和技巧对于二项式定理的考查常出现两类问题,一类是直接运用通项公式来求特定项.另一类,需要运用转化思想化归为二项式定理来处理问题.(1)若二项式⎝ ⎛⎭⎪⎫2x +a x 7的展开式中1x3的系数是84,则实数a =( )A.2B.54 C.1D.24(2)已知(1+x +x 2)⎝ ⎛⎭⎪⎫x +1x3n (n ∈N +)的展开式中没有常数项,且2≤n ≤8,则n =________.【导学号:62980030】(3)设(3x -1)6=a 6x 6+a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 6+a 4+a 2+a 0的值为________. 【精彩点拨】 (1)、(2)利用二项式定理的通项求待定项; (3)通过赋值法求系数和.【规范解答】 (1)二项式⎝ ⎛⎭⎪⎫2x +a x 7的展开式的通项公式为T r +1=C r 7(2x )7-r ⎝ ⎛⎭⎪⎫a x r=C r 727-r a r x 7-2r,令7-2r =-3,得r =5.故展开式中1x3的系数是C 5722a 5=84,解得a =1.(2)⎝ ⎛⎭⎪⎫x +1x3n 展开式的通项是T r +1=C r n x n -r ⎝ ⎛⎭⎪⎫1x3r =C r n x n -4r ,r =0,1,2,…,n , 由于(1+x +x 2)⎝⎛⎭⎪⎫x +1x3n 的展开式中没有常数项,所以C r n x n -4r ,x C r n x n -4r =C r n x n -4r +1和x 2C r n x n -4r =C r n x n -4r +2都不是常数,则n -4r ≠0,n -4r +1≠0,n -4r +2≠0,又因为2≤n ≤8,所以n ≠2,3,4,6,7,8,故取n =5.(3)令x =1,得a 6+a 5+a 4+a 3+a 2+a 1+a 0=26=64.令x =-1,得a 6-a 5+a 4-a 3+a 2-a 1+a 0=(-4)6=4 096. 两式相加,得2(a 6+a 4+a 2+a 0)=4 160, 所以a 6+a 4+a 2+a 0=2 080. 【答案】 (1)C (2)5 (3)2 0801.解决与二项展开式的项有关的问题时,通常利用通项公式.2.解决二项展开式项的系数(或和)问题常用赋值法.[再练一题]3.(1)在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A.45B.60C.120D.210(2)设a ∈Z ,且0≤a <13,若512 016+a 能被13整除,则a =( ) A.0 B.1 C.11D.12【解析】 (1)因为f (m ,n )=C m 6C n 4, 所以f (3,0)+f (2,1)+f (1,2)+f (0,3) =C 36C 04+C 26C 14+C 16C 24+C 06C 34=120.(2)512 016+a =(13×4-1)2 016+a ,被13整除余1+a ,结合选项可得a =12时,512 016+a 能被13整除.【答案】 (1)C (2)D排列、组合中的分组与分配问题n个不同元素按照条件分配给k个不同的对象称为分配问题,分定向分配与不定向分配两种问题;将n个不同元素按照某种条件分成k组,称为分组问题,分组问题有不平均分组、平均分组、部分平均分组三种情况.分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的,而后者即使2组元素个数相同,但因所属对象不同,仍然是可区分的.对于后者必须先分组再排列.按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本;(7)甲得1本,乙得1本,丙得4本.【精彩点拨】这是一个分配问题,解题的关键是搞清事件是否与顺序有关,对于平均分组问题更要注意顺序,避免计数的重复或遗漏.【规范解答】(1)无序不均匀分组问题.先选1本有C16种选法,再从余下的5本中选2本有C25种选法,最后余下3本全选有C3种选法.故共有C16C25C3=60(种).(2)有序不均匀分组问题.由于甲、乙、丙是不同的三人,在第(1)问基础上,还应考虑再分配,共有C16C25C3A3=360(种).(3)无序均匀分组问题.先分三步,则应是C26C24C2种方法,但是这里出现了重复.不妨记6本书为A、B、C、D、E、F,若第一步取了AB,第二步取了CD,第三步取了EF,记该种分法为(AB,CD,EF),则C26C24C2种分法中还有(AB,EF,CD),(AB,CD,EF),(CD,AB,EF),(CD,EF,AB),(EF,CD,AB),(EF,AB,CD),共A3种情况,而这A3种情况仅是AB,CD,EF的顺序不同,因此只能作为一种分法,故分配方式有C26C24C22A33=15(种).(4)有序均匀分组问题.在第(3)问基础上再分配给3个人,共有分配方式C26C24C22A33·A3=C26C24C2=90(种).(5)无序部分均匀分组问题.共有C46C12C11A22=15(种).(6)有序部分均匀分组问题.在第(5)问基础上再分配给3个人,共有分配方式C46C12C11A22·A3=90(种).(7)直接分配问题.甲选1本有C16种方法,乙从余下5本中选1本有C15种方法,余下4本留给丙有C4种方法.共有C16C15C4=30(种).均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型.解决此类问题的关键是正确判断分组是均匀分组还是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还要充分考虑到是否与顺序有关,有序分组要在无序分组的基础上乘以分组数的阶乘数.[再练一题]4.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有多少种?【解】取出的4张卡片所标数字之和等于10,共有3种情况:1 144,2 233,1 234.所取卡片是1 144的共有A4种排法.所取卡片是2 233的共有A44种排法.所取卡片是1 234,则其中卡片颜色可为无红色,1张红色,2张红色,3张红色,全是红色,共有排法A44+C14A44+C24A44+C34A44+A44=16A44种.所以共有18A44=432种.1. (x2+x+y)5的展开式中,x5y2的系数为( )A.10B.20C.30D.60【解析】法一:(x2+x+y)5=[(x2+x)+y]5,含y2的项为T3=C25(x2+x)3·y2.其中(x2+x)3中含x5的项为C13x4·x=C13x5.所以x5y2的系数为C25C13=30.故选C.法二:(x2+x+y)5为5个(x2+x+y)之积,其中有两个取y,两个取x2,一个取x即可,所以x5y2的系数为C25C23C13=30.故选C.【答案】 C2.如图1-2,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )图1-2A.24B.18C.12D.9【解析】从E到G需要分两步完成:先从E到F,再从F到G.从F到G的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F到G的最短路径共有3条.如图,从E到F的最短路径有两类:先从E到A,再从A到F,或先从E到B,再从B到F.因为从A到F或从B到F都与从F到G的路径形状相同,所以从A到F,从B到F最短路径的条数都是3,所以从E到F的最短路径有3+3=6(条).所以小明到老年公寓的最短路径条数为6×3=18.【答案】 B3.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2.”乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1.”丙说:“我的卡片上的数字之和不是5.”则甲的卡片上的数字是________.【解析】先确定丙的卡片上的数字,再确定乙的卡片上的数字,进而确定甲的卡片上的数字.法一:由题意得丙的卡片上的数字不是2和3.若丙的卡片上的数字是1和2,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和3,满足题意;若丙的卡片上的数字是1和3,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和2,不满足甲的说法.故甲的卡片上的数字是1和3.法二:因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.【答案】1和34. (2x +x )5的展开式中,x 3的系数是________.(用数字填写答案) 【解析】 (2x +x )5展开式的通项为T r +1= C r 5(2x )5-r (x )r =25-r ·C r 5·x 5-r2.令5-r2=3,得r =4.故x 3的系数为25-4·C 45=2C 45=10. 【答案】 10。

高二数学(选修2-3人教B版)-计数原理全章总结

高二数学(选修2-3人教B版)-计数原理全章总结
解:(1)第三项的二项式系数 C52 10 .
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和. 解:(2)由通项可知,展开式的第三项是
T3 C52 13 (2x)2 40x2
所以,第三项的系数为40.
例6、求 (1 2x)5的展开式的:
表示?
(a b)n (a b)(a b) (a b)
n个a b
Tr1 Cnr anr br
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
解:首先将A、B、C、D排成一排,共有 A44 种排法,每一种
排法都会产生五个“空”,在这五个“空”中任选一个,将E
放入,共有 C51 种方法;其次,E中的两个元素可以交换,有 A22
种方法.
所以,共有 A44 C51 A22 240 种不同的排法.
问题4 (a b)n 的展开式中的系数为什么可以用组合数的形式

Cm n1
ቤተ መጻሕፍቲ ባይዱ
Cmn
Cm1 n
)?
作业: 1.一个集合由8个元素组成,这个集合含有3个元素的子集有多 少个? 2.将6名应届大学毕业生分配到两个用人单位,每个单位至少 两人,一共有多少种不同的分配方案? 3.求 (9x 1 )18 展开式的常数项,并说明它是展开式的第几项.
3x
入,共有 A43 种排法. 所以,一共有A33 A43 144 种不同的排法.
例5、有6位同学站成一排,符合下列各题要求的不同排法有多 少种? (2)甲、乙相邻. 解:(2) 设除甲、乙之外的另外四个同学为A、B、C、D. 因为甲、乙要相邻,所以可以把甲、乙“绑”在一起看作一个 元素(记为E).

(易错题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)(2)

(易错题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)(2)

一、选择题1.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( ) A .0.05 B .0.1C .0.15D .0.22.甲乙两人投篮,投中的概率分别为0.6,0.7.若两人各投2次,则两人投中次数相等的概率为( ) A .0.2484B .0.25C .0.90D .0.39243.西大附中为了增强学生对传统文化的继承和发扬,组织了一场类似《诗词大会》的PK 赛,A 、B 两队各由4名选手组成,每局两队各派一名选手PK ,除第三局胜者得2分外,其余各胜者均得1分,每局的负者得0分.假设每局比赛A 队选手获胜的概率均为23,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为( ) A .2027B .5281C .1627D .794.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭5.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.下列命题中真命题是( )(1)在18的二项式展开式中,共有4项有理项;(2)若事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =,则事件A 、B 是相互独立事件;(3)根据最近10天某医院新增疑似病例数据,“总体均值为2,总体方差为3”,可以推测“最近10天,该医院每天新增疑似病例不超过7人”. A .(1)(2) B .(1)(3)C .(2)(3)D .(1)(2)(3)7.设102x <<,随机变量ξ的分布列如下:ξ0 1 2P0.50.5x -x则当x 在10,2⎛⎫ ⎪⎝⎭内增大时( )A .()E ξ减小,()D ξ减小B .()E ξ增大,()D ξ增大C .()E ξ增大,()D ξ减小D .()E ξ减小,()D ξ增大8.先后抛掷三次一枚质地均匀的硬币,落在水平桌面上, 设事件A 为“第一次正面向上”,事件B 为“后两次均反面向上”,则概率(|)P B A =( ) A .12B .13C .14D .389.有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则P (X <2)等于 A .715B .815C .1415D .110.随机变量X 的分布列如下表,且E (X )=2,则D (2X -3)=( )A .2B .3C .4D .511.某工厂生产的零件外直径(单位:cm )服从正态分布()10,0.04N ,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.75cm 和9.35cm ,则可认为( )A .上午生产情况异常,下午生产情况正常B .上午生产情况正常,下午生产情况异常C .上、下午生产情况均正常D .上、下午生产情况均异常12.小明的妈妈为小明煮了 5 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件‘‘"A 取到的两个为同一种馅,事件‘‘"B =取到的两个都是豆沙馅,则()P B A =∣ ( )A .14B .34C .110D .310二、填空题13.随着电商的兴起,物流快递的工作越来越重要了,早在周代,我国便已出现快递制度,据《周礼·秋官》记载,周王朝的官职中设置了主管邮驿,物流的官员“行夫”,其职责要求是“虽道有难,而不时必达”.现某机构对国内排名前五的5家快递公司的某项指标进行了3轮测试(每轮测试的客观条件视为相同),每轮测试结束后都要根据该轮测试的成绩对这5家快递公司进行排名,那么跟测试之前的排名比较,这3轮测试中恰好有2轮测试结果都出现2家公司排名不变的概率为_________.14.3月5日为“学雷锋纪念日”,某校将举行“弘扬雷锋精神做全面发展一代新人”知识竞赛,某班现从6名女生和3名男生中选出5名学生参赛,要求每人回答一个问题,答对得2分,答错得0分,已知6名女生中有2人不会答所有题目,只能得0分,其余4人可得2分,3名男生每人得2分的概率均为12,现选择2名女生和3名男生,每人答一题,则该班所选队员得分之和为6分的概率__________.15.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有6个乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X表示这6位乘客在第20层下电梯的人数,则(4)P X==________.16.若随机变量3~34X B⎛⎫⎪⎝⎭,, 则方差()D x=____________.17.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机抽取1个小球,记抽取到红球的个数为X,则随机变量X的均值EX=_____.18.小李练习射击,每次击中目标的概率均为13,若用ξ表示小李射击5次击中目标的次数,则ξ的均值E(ξ)与方差D(ξ)的值分别是____.19.运动员参加射击比赛,每人射击4次(每次射一发),比赛规定:全不中得0分,只中一弹得15分,中两弹得40分,中三弹得65分,中四弹得100分.已知某一运动员每一次射击的命中率为35,则他的得分期望为_____.20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以利用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用,设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为13,若甲、乙两人分别向该出版社投稿1篇,两人的稿件是否被录用相互独立,则两人中恰有1人的稿件被录用的概率为__________.三、解答题21.《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,即“行让行人”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让行人”行为的统计数据:月份x1 2 3 4 5 6 不“礼让斑马线"驾驶员人数y120105100859080(1)请根据表中所给前5个月的数据,求不“礼让行人”的驾驶员人数y 与月份x 之间的回归直线方程ˆˆˆy bx a =+;(2)若该十字路口某月不“礼让行人”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让行人”情况达到“理想状态”.试判断6月份该十字路口“礼让行人”情况是否达到“理想状态”?(3)自罚单日起15天内需完成罚款缴纳,记录5月不“礼让行人”驾驶员缴纳罚款的情况,缴纳日距罚单日天数记为X ,若X 服从正态分布()~8,9X N ,求该月没能在 14天内缴纳人数. 参考公式:()()()112211ˆˆˆ,nni i i ii i nniii i x x y yx y nxybay bx x x xnx====---===---∑∑∑∑()()()0.6826,220.9544,330.9974P Z P Z P Z μσμσμσμσμσμσ-<<+=-<<+=-<<+=22.某运动会将在深圳举行,组委会招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm ),身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率;(2)若从身高180cm 以上(包括180cm )的志愿者中选出男、女各一人,设这2人身高相差cm ξ(0ξ≥),求ξ的分布列和数学期望(均值).23.某大型电器企业,为了解组装车间职工的生活情况,从中随机抽取了100名职工进行测试,得到频数分布表如下: 日组装个数 [)155,165[)165,175[)175,185[)185,195[)195,205[]205,215人数6123430108(1)现从参与测试的日组装个数少于175的职工中任意选取3人,求至少有1人日组装个数少于165的概率;(2)由频数分布表可以认为,此次测试得到的日组装个数Z 服从正态分布(),169N μ,μ近似为这100人得分的平均值(同一组数据用该组区间的中点值作为代表).(i )若组装车间有20000名职工,求日组装个数超过198的职工人数;(ii )为鼓励职工提高技能,企业决定对日组装个数超过185的职工日工资增加50元,若在组装车间所有职工中任意选取3人,求这三人增加的日工资总额的期望.附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=.24.某高三年级学生为了庆祝教师节,同学们为老师制作了一大批同一种规格的手工艺品,这种工艺品有A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响,若A 项技术指标达标的概率为3,4B 项技术指标达标的概率为89,按质量检验规定:两项技术指标都达标的工艺品为合格品.(1)求一个工艺品经过检测至少一项技术指标达标的概率;(2)任意依次抽取该工艺品4个,设ξ表示其中合格品的个数,求ξ的分布列. 25.近期,某超市针对一款饮料推出刷脸支付活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用刷脸支付.该超市统计了活动刚推出一周内每一天使用刷脸支付的人次,用x 表示活动推出的天数,y 表示每天使用刷脸支付的人次,统计数据如下表所示:(1)在推广期内,与y c d =⋅(均为大于零的常数)哪一个适宜作为刷脸支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由); (2)根据(1)的判断结果及表1中的数据,求y 关于x 的回归方程,并预测活动推出第8天使用刷脸支付的人次;(3)已知一瓶该饮料的售价为2元,顾客的支付方式有三种:现金支付、扫码支付和刷脸支付,其中有10%使用现金支付,使用现金支付的顾客无优惠;有40%使用扫码支付,使用扫码支付享受8折优惠;有50%使用刷脸支付,根据统计结果得知,使用刷脸支付的顾客,享受7折优惠的概率为16,享受8折优惠的概率为13,享受9折优惠的概率为12.根据所给数据估计购买一瓶该饮料的平均花费.参考数据:其中1i i v g y =,7117i i v v ==∑参考公式:对于一组数据1122,),,(,)n n x v x v ,其回归直线ˆˆˆv a bx=+的斜率和截距的最小二乘估计公式分别为:1221ˆ,ni i i nii x v nxvbxnx==-=-∑∑ˆˆa v bx=-. 26.2020年1月10日,引发新冠肺炎疫情的COVID -9病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为12,假设每次接种后当天是否出现抗体与上次接种无关. (1)求一个接种周期内出现抗体次数k 的分布列;(2)已知每天接种一次花费100元,现有以下两种试验方案:①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为X 元;②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为Y 元. 比较随机变量X 和Y 的数学期望的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】1(80120)(80)(120)0.12P X P X P X -<<≤=≥== ,选B.2.D解析:D 【分析】根据题意,两人投中次数相等:两人两次都未投中,两人各投中一次,和两人两次都投中,进而根据相互独立事件概率乘法公式和互斥事件概率加法公式,得到答案. 【详解】由题意,甲、乙两人投篮,投中的概率分别为0.6,0.7,则甲、乙两人各投2次: 两人两次都未投中的概率:()()22010.610.70.0144P =-⨯-=;两人各投中一次的概率:()()111220.610.60.710.70.2016P C C =⨯⨯-⨯⨯⨯-=;两人两次都投中的概率:2220.60.70.1764P =⨯=.所以,两人投中次数相等的概率为:0120.3924P P P P =++=. 故选:D. 【点睛】本题主要考查相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于基础题.3.A解析:A 【分析】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.利用独立重复试验的概率公式可求得所求事件的概率. 【详解】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.所以,比赛结束时A 队的得分高于B 队的得分的概率为43232432212122033333327P C C ⎛⎫⎛⎫⎛⎫=+⋅⋅+⋅⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查概率的求解,考查独立重复试验概率的求解,考查计算能力,属于中等题.4.C解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==. 故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.5.C解析:C【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件.故选:C 【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.6.D解析:D 【分析】对三个命题分别判断真假,即可得出结论. 【详解】对于(1),18的二项展开式的通项为1815163621818rrrr rC x x C x ---⎛⎫⎛⎫⋅⋅=⋅ ⎪ ⎪⎝⎭⎝⎭, 当0r =、6、12、18时,为有理项,共有4个有理项,故(1)正确; 对于(2),事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =, 所以()()()0.150.600.09P AB P A P B =⨯==,满足A 、B 为相互独立事件,故(2)正确;对于(3),当总体平均数是2,若有一个数据超过7,则方差就接近于3, 所以,总体均值为2,总体方差为3时,没有数据超过7,故(3)正确. 故选:D. 【点睛】本题考查命题真假的判断,考查分析法与基本运算能力,考查分析问题和解决问题的能力,属于中等题.7.B解析:B 【分析】分别计算()E ξ和()D ξ的表达式,再判断单调性. 【详解】()00.51(0.5)20.5E x x x ξ=⨯+⨯-+=+,当x 在10,2⎛⎫⎪⎝⎭内增大时, ()E ξ增大()222210.5(0.50)(0.5)(0.51)(0.52)24D x x x x x x x ξ=⨯+-+-⨯+-++-=-++ ()25(1)4D x ξ=--+,当x 在10,2⎛⎫⎪⎝⎭内增大时, ()D ξ增大 故答案选B 【点睛】本题考查了()E ξ和()D ξ的计算,函数的单调性,属于综合题型.8.C解析:C 【分析】由先后抛掷三次一枚质地均匀的硬币,得出事件A “第一次正面向上”,共有4种不同的结果,再由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果,即可求解. 【详解】由题意,先后抛掷三次一枚质地均匀的硬币,共有2228⨯⨯=种不同的结果, 其中事件A “第一次正面向上”,共有4种不同的结果,又由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果,所以()()1(|)4P AB P B A P A ==,故选C. 【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,准确得出事件A 和事件A B 所含基本事件的个数是解答的关键,着重考查了运算能力,属于基础题.9.C解析:C 【分析】根据超几何分布的概率公式计算各种可能的概率,得出结果 【详解】由题意,知X 取0,1,2,X 服从超几何分布, 它取每个值的概率都符合等可能事件的概率公式,即P(X =0)=27210715C C =,P(X =1)=1173210715C C C =⋅,P(X =2)=23210115C C =, 于是P(X<2)=P(X =0)+P(X =1)=7714151515+= 故选C 【点睛】本题主要考查了运用超几何分布求概率,分别求出满足题意的情况,然后相加,属于中档题.10.C解析:C 【解析】1111632p =--=,111()0223623E X a a =⨯+⨯+⨯=⇒=∴222111()(02)(22)(32)1623D X =-⨯+-⨯+-⨯=∴2(23)2()4D X D X -==点晴:本题考查的是离散型随机变量的期望,方差和分布列中各个概率之间的关系.先根据概率之和为1,求出p 的值,再根据数学期望公式,求出a 的值,再根据方差公式求出D (X ),继而求出D (2X-3).解决此类问题的关键是熟练掌握离散型随机变量的分布列与数学期望.11.B解析:B 【解析】分析:根据3σ原则判断.详解:因为服从正态分布()10,0.04N ,所以10,0.2(100.23,100.23)(9.4,10.6)x μσ==∴∈-⨯+⨯= 所以上午生产情况正常,下午生产情况异常, 选B.点睛:利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.12.B解析:B 【详解】由题意,P (A )=222310C C +=410,P (AB )=2310C =310, ∴P (B|A )=()AB A)P P (=34, 故选B .二、填空题13.【分析】根据题意求出家快递公司进行排名与测试之前的排名比较出现家公司排名不变的概率根据题意满足二项分布根据二项分布概率计算即可【详解】解:首先在一轮测试中家快递公司进行排名与测试之前的排名比较出现家解析:572【分析】根据题意求出5家快递公司进行排名与测试之前的排名比较出现2家公司排名不变的概率,根据题意满足二项分布,根据二项分布概率计算即可. 【详解】解:首先,在一轮测试中5家快递公司进行排名与测试之前的排名比较出现2家公司排名不变的概率为255522011206C A ⨯==, 其次,3轮测试每次发生上述情形的概率均为16P =, 故3轮测试中恰好有2轮测试结果都出现2家公司排名不变的概率为223155()6672C ⨯⨯=. 故答案为:572. 【点睛】独立重复试验与二项分布问题的常见类型及解题策略:(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率;(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.14.【分析】首先对事件进行分类分成女生0分男生6分或女生2分男生4分或女生4分男生2分女生的概率可以按照超几何概率求解男生按照独立重复求解概率【详解】依题意设该班所选队员得分之和为6分记为事件A 则可分为 解析:43120【分析】首先对事件进行分类,分成女生0分,男生6分,或女生2分,男生4分,或女生4分,男生2分,女生的概率可以按照超几何概率求解,男生按照独立重复求解概率. 【详解】依题意设该班所选队员得分之和为6分记为事件A ,则可分为下列三类:女生得0分男生得6分,设为事件1A ;女生得2分男生得4分,设为事件2A ;女生得4分男生得2分,设为事件3A ,则:()32321326112120C P A C C ⎛⎫=⨯= ⎪⎝⎭, ()211224232611241221205C C P A C C ⎛⎫⎛⎫=⨯== ⎪ ⎪⎝⎭⎝⎭,()22143326111832212020C P A C C ⎛⎫⎛⎫=⨯== ⎪⎪⎝⎭⎝⎭, ()()()()12343120P A P A P A P A =++=. 故答案为:43120【点睛】本题考查概率的应用问题,重点考查分类讨论,转化与化归的思想,熟练掌握概率类型,属于中档题型.本题的关键是对事件分类.15.【分析】根据次独立重复试验的概率公式进行求解即可【详解】解:考查一位乘客是否在第20层下电梯为一次试验这是次独立重复试验故即有123456故答案为:【点睛】本题主要考查次独立重复试验的概率的计算根据 解析:20243【分析】根据n 次独立重复试验的概率公式进行求解即可. 【详解】解:考查一位乘客是否在第20层下电梯为一次试验,这是6次独立重复试验, 故1~6,3X B ⎛⎫ ⎪⎝⎭.即有6612()()()33k kk P X k C -==⨯,0k =,1,2,3,4,5,6.42641220(4)()()33243P X C ∴==⨯=.故答案为:20243【点睛】本题主要考查n 次独立重复试验的概率的计算,根据题意确实是6次独立重复试验,是解决本题的关键,属于中档题.16.【分析】利用方差公式即可得出答案【详解】结合方差【点睛】本题考查了方差计算公式记住即可 解析:916【分析】利用方差公式()D x npq =,即可得出答案. 【详解】结合方差()31934416D x npq ==⋅⋅=. 【点睛】本题考查了方差计算公式,记住()D x npq =,即可.17.【分析】结合题意分别计算对应的概率计算期望即可【详解】列表:X 0 1 2 P 所以【点睛】本道题考查了数学期望计算方法结合题意即可属于中等难度的题解析:56【分析】结合题意,分别计算0,1,2x =对应的概率,计算期望,即可. 【详解】()112511665018C C P x C C ===,()111452116611118C C C P x C C +===,()11411166129C C P x C C === 列表:所以012181896EX =⨯+⨯+⨯= 【点睛】本道题考查了数学期望计算方法,结合题意,即可,属于中等难度的题.18.【解析】试题分析:的可能取值是012345 0 1 2 3 4 5 考点:期望方差的计算解析:510 , 39【解析】试题分析:ξ的可能取值是0,1,2,3,4,5,012345.考点:期望、方差的计算.19.552【解析】分析:由次独立重复试验的概率公式计算出射中01234次的概率得到得分的分布列再由期望公式得期望详解:设该运动员中弹数为ξ得分数为η则P(ξ=4)==01296P(ξ=3)==03456解析:552.【解析】分析:由n次独立重复试验的概率公式计算出射中0,1,2,3,4次的概率得到得分的分布列,再由期望公式得期望.详解:设该运动员中弹数为ξ,得分数为η,则P(ξ=4)=435⎛⎫⎪⎝⎭=0.129 6,P(ξ=3)=33432C?·55⎛⎫⎪⎝⎭=0.345 6,P(ξ=2)=222432C?·55⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=0.345 6,P(ξ=1)=31432C?·55⎛⎫⎪⎝⎭=0.153 6,P(ξ=0)=425⎛⎫⎪⎝⎭=0.025 6.由题意可知P (η)=P (ξ),所以E (η)=100×0.129 6+65×0.345 6+40×0.345 6+15×0.153 6+0×0.025 6=51.552.点睛:本题考查随机变量的分布列与期望.解题时关键是理解射击时命中n 次就是n 次独立重复试验,由此可由概率公式计算出概率,从而可得得分的分布列,由分布列的期望公式计算出期望.20.【分析】计算出每人的稿件能被录用的概率然后利用独立重复试验的概率公式可求得结果【详解】记事件甲的稿件被录用则因此甲乙两人分别向该出版社投稿篇则两人中恰有人的稿件被录用的概率为故答案为:【点睛】思路点 解析:3572【分析】计算出每人的稿件能被录用的概率,然后利用独立重复试验的概率公式可求得结果. 【详解】记事件:A 甲的稿件被录用,则()2212111522312P A C ⎛⎫⎛⎫=+⋅⋅= ⎪ ⎪⎝⎭⎝⎭,因此,甲、乙两人分别向该出版社投稿1篇,则两人中恰有1人的稿件被录用的概率为125735121272P C =⋅⋅=. 故答案为:3572. 【点睛】思路点睛:独立重复试验概率求法的三个步骤:(1)判断:依据n 次独立重复试验的特征,判断所给试验是否为独立重复试验; (2)分拆:判断所求事件是否需要分拆;(3)计算:就每个事件依据n 次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算.三、解答题21.(1)ˆ8124yx =-+;(2)达到“理想状态”;(3)2. 【分析】(1)请根据表中数据计算x 、y ,求出回归系数,写出回归直线方程;(2)利用回归方程计算6x =时ˆy的值,比较即可得出结论; (3)根据正态分布的性质,结合()2140.9544P X <<=即可得答案. 【详解】(1)请根据表中所给前5个月的数据,计算1(12345)35x =⨯++++=, 1(1201051008590)1005y =⨯++++=;12222221()()(2)20(1)5001(15)2(10)ˆ8(2)(1)012()nii i nii xx y y bxx ==---⨯+-⨯+⨯+⨯-+⨯-===--+-+++-∑∑,ˆˆ100(8)3124ay bx =-=--⨯=; y ∴与x 之间的回归直线方程ˆ8124y x =-+;(2)由(1)知ˆ8124yx =-+,当6x =时,ˆ8612476y =-⨯+=; 且807645-=<,6∴月份该十字路口“礼让斑马线”情况达到“理想状态”;(3)因为X 服从正态分布()~8,9X N , 所以()2140.9544P X <<=, 该月没能在14天内缴纳人数为10.95449022-⨯=, 【点睛】方法点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,nnii ii i x y x x y ==∑∑的值;③计算回归系数,a b ;④写出回归直线方程为ˆy bx a=+. 22.(1)710p =;(2)分布列见解析,()116E ξ= 【分析】(1)根据分层抽样的比例关系得到人数,再计算概率得到答案.(2)ξ的可能取值为0,1,2,3,4,计算概率得到分布列,再计算数列期望得到答案. 【详解】(1)根据茎叶图:“高个子”有12个,“非高个子”有18个, 故抽取的“高个子”为125230⨯=个,抽取的“非高个子”有3个. 至少有一人是“高个子”的概率为232537111010C p C =-=-=. (2)身高180cm 以上(包括180cm )的志愿者中选出男,女各有3人和2人, 故ξ的可能取值为0,1,2,3,4, 故()1113206p ξ==⨯=,()11111321323p ξ=⨯+⨯==, ()1113226p ξ==⨯=, ()1113236p ξ==⨯=,()1113246p ξ==⨯=.故分布列为:故()01234636666E ξ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查了分层抽样,概率的计算,分布列,数学期望,意在考查学生的计算能力和综合应用能力. 23.(1)149204(2)(i )3173人(ii )75 【分析】(1)利用对立事件公式结合古典概型求解(2)(i )先求平均数185μ=,结合σ公式求得()10.68271980.158652P X ->==,再求人数;(ii )先由正态分布得日组装个数为185以上的概率为0.5.设三人中日组装个数超过185个的人数为ξ,增加的日工资总额为η,得到ξ服从二项分布,由50ηξ=求得期望【详解】(1)设至少有1人日组装个数少于165为事件A ,则()3123181491204C P A C =-=,(2)1606170121803419030200102108185100X ⨯+⨯+⨯+⨯+⨯+⨯==(个)又2169σ=,所以13σ=,所以185μ=,13σ=, 所以198μσ+=.(i )()10.68271980.158652P X ->==, 所以日组装个数超过198个的人数为0.15865200003173⨯=(人)(ii )由正态分布得,日组装个数为185以上的概率为0.5.设这三人中日组装个数超过185个的人数为ξ,这三人增加的日工资总额为η,则50ηξ=,且()~3,0.5B ξ,所以()30.5 1.5E ξ=⨯=,所以()()5075E E ηξ==. 【点睛】本题考查古典概型,考查正态分布的概率,考查二项分布,考查转化化归能力,其中确定人数与工资总额的函数关系是关键,是中档题 24.(1)3536;(2)见解析 【分析】(1)结合对立事件的概率关系可求出至少一项技术指标达标的概率; (2)由题意知,2~4,3B ξ⎛⎫⎪⎝⎭,从而可求出()0P ξ=,(1)P ξ=,()2P ξ=,()3P ξ=,()4P ξ=的值,从而可求出分布列.【详解】(1)设:M 一个工艺品经过检测至少一项技术指标达标,则38()1-11493635P M ⎛⎫⎛⎫=-⨯-= ⎪ ⎪⎝⎭⎝⎭;(2)依题意知2~4,3B ξ⎛⎫ ⎪⎝⎭,则411(0)381P ξ⎛⎫=== ⎪⎝⎭,1314218(1)3381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()222421823327P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()334213233381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()42164381P ξ⎛⎫=== ⎪⎝⎭分布列为:本题考查了独立事件的概率,考查了离散型随机变量的分布列求解.本题关键是求出ξ每种可能取值下的概率.求离散型随机变量的分布列时,第一步写出变量的可能取值,第二步求出每种取值下的概率,第三步写出分布列.25.(1)x y c d =⋅适宜(2)23.210320y =⨯=,活动推出第8天使用刷脸支付的人次为320(3)平均花费为251150(元) 【分析】(1)直接根据统计数据表判断,x y c d =⋅适宜;(2)把x y c d =⋅,两边同时取常用对数,1gy 11gc gd x =+⋅,则lg y 与x 两者线性相关,根据已知条件求出lg y 关与x 的线性回归方程,进而转化为y 关与x 的线性回归方程;(3)记购买一瓶该饮料的花费为Z (元),则Z 的取值可能为:2,1.8,1.6,1.4,求出Z 的分布,进而求出Z 的期望. 【详解】(1)直接根据统计数据表判断,x y c d =⋅适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型;。

高中数学 第1章 计数原理 1.3 二项式定理 1.3.1 二项式定理 新人教B版选修2-3

高中数学 第1章 计数原理 1.3 二项式定理 1.3.1 二项式定理 新人教B版选修2-3

(2)化简(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).
解 原式=C05(x-1)5+C15(x-1)4+C25(x-1)3+C35(x-1)2 +C45(x-1)+C55-1
=[(x-1)+1]5-1=x5-1.
规律方法 运用二项式定理展开二项式,要记准展开式的 通项公式,对于较复杂的二项式,有时先化简再展开更简 捷;要搞清楚二项展开式中的项以及该项的系数与二项式 系数的区别.逆用二项式定理可将多项式化简,对于这类问 题的求解,要熟悉公式的特点、项数、各项幂指数的规律 以及各项的系数.
要点二 二项展开式通项的应用 例2 若 ( x+ 1 )n展开式中前三项系数成等差数列,求:
4 2x (1)展开式中含x的一次项; 解 由已知可得 C0n+C2n·212=2C1n·12, 即n2-9n+8=0, 解得n=8,或n=1(舍去).
Tr+1=Cr8(
x)8-r·(
1
4
)r=Cr8·2-r·x 4-34r,

C
2 2n+1
×142n

1×52



C22nn+1×14×52n-C22nn+ +11×52n+1+52n+1

14(142n

C
1 2n+1
×142n

1×5

C
22n+1×142n

2×52



C22nn+1×52n).
上式是14的倍数,能被14整除,所以34n+2+52n+1能被14整除 .
10-2r 令 3 =2,得
r=12(10-6)=2.
故 x2 项的系数为 C210(-3)2=405.

人教B版高中数学选择性必修第二册精品课件 第3章 排列、组合与二项式定理 3.1.1 基本计数原理

人教B版高中数学选择性必修第二册精品课件 第3章 排列、组合与二项式定理 3.1.1 基本计数原理

规律方法 应用两个计数原理解题的策略 对于两个计数原理的综合应用问题,一般是先分类再分步.分类时要设计好 标准,设计好分类方案,防止重复和遗漏;分步时要注意步与步之间的连续 性,同时应合理设计步骤的顺序,使各步互不干扰.也可以根据题意合理地 画出示意图或者列出表格,使问题的实质直观地显现出来,从而便于我们 解题.
变式探究 本例中条件不变,求个位数字小于十位数字且为偶数的两位数 的个数.
解 当个位数字是8时,十位数字取9,只有1个. 当个位数字是6时,十位数字可取7,8,9,共3个. 当个位数字是4时,十位数字可取5,6,7,8,9,共5个. 同理可知,当个位数字是2时,共7个. 当个位数字是0时,共9个. 由分类加法计数原理知,符合条件的个数为1+3+5+7+9=25.
过关自诊 1.从甲地到乙地,一天中有5个班次的火车、12个班次的客车、3个班次的 飞机,还有6个班次的轮船.某人某天要从甲地到乙地,则他不同出行方式的 选法种数是( A ) A.26 B.60 C.18 D.1 080 解析 由分类加法计数原理知有5+12+3+6=26种不同的选法.故选A.
2.[北师大版教材习题改编]在平面直角坐标系中,确定若干个点,点的横坐 标取自集合P={1,2,3},点的纵坐标取自集合Q={1,4,5,6},这样的点共有
探究点二 利用分步乘法计数原理解题
【例2】 现要排一份5天的值班表,每天有1人值班,共有5人,每人都可以值 多天班或不值班,但相邻两天不准由同一人值班,问此值班表有多少种不同 的排法? 解 先排第一天,可排5人中任意一人,有5种排法; 再排第二天,此时不能排第一天已排的人,有4种排法; 再排第三天,此时不能排第二天已排的人,有4种排法; 同理第四、五天均有4种排法.

高二数学(选修2-3人教B版)-基本计数原理

高二数学(选修2-3人教B版)-基本计数原理

原理初悟
2019年北京“世园会”举世瞩目,李华同学一家打
算去参观“世园会”,在计划出行的方案中有自驾出行,
乘坐“世园会”公交专线出行.自驾去“世园会”有2条
路线可以选择,乘坐“世园会”公交专线出行有4条路
线可以选择,请问李华一家去参观“世园会”共有多少
种出行方案?
2+4=6(种)
例1、书架的第1层放有4本不同的计算机书,第2层放有3
根据分类加法计数原理从甲地到丁地共有6+8=14
种不同的走法.
甲地
乙地
丙地
丁地
先分类、再分步
练习:某学校的一天的课程表要求如下,每天上午有4节课,
下午有2节课,安排5门不同的课程,其中安排某一门课两
节连在一起上,那么一天不同的课程表安排方案有多少种?
节数 课程
1
2
3
4
5
6
练习:某学校的一天的课程表要求如下,每天上午有4节课,
法……在第n类办法中,有 mn 种不同的方法,
则完成这件事共有N m1 m2 +mn 种不同的方法.
分步乘法计数原理:完成一件事,需要分成n个步骤,做
第1步有 m1 种不同的方法,做第2步有 m2 种不同的方
法……做第n步有 mn 种不同的方法,则完成这
件事共有 N m1 m2 mn 种不同的方法.
出公园.只考虑游玩路线的选择,该游客有多少种不同的走
法?
西门
景点A
东门
3×2=6(种)
情境创设
a1
西门
a1
1
a2
a3
b1
景点A
b2
a2
2
1
东门

新教材 人教B版高中数学选择性必修第二册 3.1.1 基本计数原理 精品教学课件

新教材 人教B版高中数学选择性必修第二册 3.1.1 基本计数原理 精品教学课件

(变条件)若各位上的数字不允许重复,那么这个拨号盘可以组成 多少个四位数的号码?
[解] 按从左到右的顺序拨号可以分四步完成: 第一步,有 10 种拨号方式,即 m1=10; 第二步,有 9 种拨号方式,即 m2=9; 第三步,有 8 种拨号方式,即 m3=8; 第四步,有 7 种拨号方式,即 m4=7. 根据分步乘法计数原理,共可以组成 N=10×9×8×7=5 040(个)四位数的号码.
3.1.1 基本计数原理
第1课时 基本计数原理 第2课时 基本计数原理的应用 P41
1.分类加法计数原理 完成一件事,如果有 n 类办法 且:第一类办法中有 m1 种不同的 方法,第二类办法中有 m2 种不同的方法……第 n 类办法中有 mn 种不 同的方法,那么完成这件事共有 N=m1+m2+…+mn种不同的方法.
后结果,只需一种方法就 不能完成这件事,只有各步都完
可完成这件事
成了,才能完成这件事
各步之间是关联的、独立的,
各类办法之间是互斥的、
区别二
“关联”确保不遗漏,“独立”
并列的、独立的
确保不重复
联系
这两个原理都是用来计算做一件事情的不同方法数
1.思考辨析(正确的打“√”,错误的打“×”)
(1)在分类加法计数原理中,两类不同方案中的方法可以相同.
2.现有 4 件不同款式的上衣和 3 条不同颜色的长裤,如果一条
长裤与一件上衣配成一套,则不同的配法种数为( )
A.7
B.12
C.64
D.81
B [先从 4 件上衣中任取一件共 4 种选法,再从 3 条长裤中任选 一条共 3 种选法,由分步乘法计数原理,上衣与长裤配成一套共 4×3 =12(种)不同配法.故选 B.]

高中数学选修2-3计数原理练习一

高中数学选修2-3计数原理练习一

高二理科数学《计数原理》一堂练一一、选择题、填空题:每小题5分,满分60分.1.若5(1)ax -的展开式中3x 的系数是80,则实数a 的值为( )A.2-B.D.22.从1到10这10个数中,任意选取4个数,其中第二大的数是7的情况共有( )A. 18种B.30种 C .45种 D. 84种3.设a 为函数)(cos 3sin R x x x y ∈+=的最大值,则二项式6)1(x x a -的展开式中含2x 项的系数是( )A.192B.182C.192-D.182-4.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4,5,6这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有( )A.120个B.80个C.40个D. 20个5.若2012(1)n n n x a a x a x a x +=++++ (n N *∈)且1221a a +=,则展开式的各项中系数的最大值为( )A.15B.20C.56D.706.某单位要邀请10位教师中的6人参加一个研讨会,其中甲、乙两位教师不能同时参加,则邀请的不同方法有( )A.84种B.98种C.112种D.140种7.令1)1(++n n x a 为的展开式中含1-n x 项的系数,则数列}1{n a 的前n 项和为( ) A.2)3(+n n B.2)1(+n n C.1+n n D.12+n n 8.若国际研究小组由来自3个国家的20人组成,其中A 国10人,B 国6人,C 国4人,按分层抽样法从中选10人组成联络小组,则不同的选法有( )种A.10206AB.53210646A A AC.53210646C C C D.5321064C C C 9.61(2)2x x-的展开式的常数项是 .(用数字作答) 10.设a为()sin x x x R ∈的最大值,则二项式6(展开式中含2x 项的系数是 .11.如果1()n x x+展开式中,第四项与第六项的系数相等,则n = ,展开式中的常数项的值等于 .12.已知4433221022)1(x a x a x a x a a x x ++++=+-,则4321a a a a +++=______;=1a _________.班级 姓名 座号 得分二、解答题:(1)3分,(2)3分,(3)4分,(4)10分,满分20分.13.杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【成才之路】2015-2016学年高中数学 1、1基本计数原理课时作业新人教B版选修2-3一、选择题1。

从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )A。

8种 B.12种C。

16种D。

20种[答案] B[解析]在正方体ABCD-A1B1C1D1中,选取3个面有2个不相邻,则必选相对的2个面,所以分3类。

若选ABCD和A1B1C1D1两个面,另一个面可以是ABB1A1,BCC1B1,CDD1C1和ADD1A1中的一个,有4种.同理选另外相对的2个面也有4种。

所以共有4×3=12(种)。

2。

有一排5个信号的显示窗,每个窗可亮红灯、绿灯或者不亮灯,则共可以发出的不同信号有( )种A。

25B。

52C.35D。

53[答案] C3。

将5名大学毕业生全部分配给3所不同的学校,不同的分配方案有()A。

8 B。

15C。

125 D.243[答案] D4。

用0、1、…、9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C。

261 D.279[答案] B[解析]用0,1,…,9十个数字,可以组成的三位数的个数为9×10×10=900,其中三位数字全不相同的为9×9×8=648,所以可以组成有重复数字的三位数的个数为900-648=252、5.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作点的坐标,则在直角坐标系中,第一、第二象限不同点的个数为()A。

18 B.16C.14 D。

10[答案] C[解析]可分为两类。

以集合M中的元素做横坐标,N中的元素做纵坐标,集合M中取一个元素的方法有3处,要使点在第一、第二象限内,则集合N中只能取5、6两个元素中的一个有2种。

根据分步计数原理有3×2=6(个).以集合N的元素做横坐标,M的元素做纵坐标,集合N中任取一元素的方法有4种,要使点在第一、第二象限内,则集合M中只能取1、3两个元素中的一个有2种,根据分步计数原理,有4×2=8(个).综合上面两类,利用分类计数原理,共有6+8=14(个)。

故选C、6.(2015·潍坊高二检测)某公共汽车上有10名乘客,要求在沿途的5个车站全部下完,乘客下车的可能方式有()A。

510种B。

105种C。

50种 D.以上都不对[答案] A[解析]任何一个乘客可以在任一车站下车,且相互独立,所以每一个乘客下车的方法都有5种,由分步计数原理知N=510、故选A、7。

已知x∈{2,3,7},y∈{-31,-24,4},则x·y可表示不同的值的个数是() A。

1+1=2 B。

1+1+1=3C.2×3=6D.3×3=9[答案] D[解析]由分步计数原理N=3×3=9(种)。

故选D、二、填空题8.已知a∈{3,4,5},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同圆的个数为____________个。

[答案]24[解析]确定圆的方程可分三步:确定a有3种方法,确定b有4种方法,确定r有2种方法,由分步计数原理知N=3×4×2=24(个)。

9.用数字1,2,3组成三位数.(1)假如数字可以重复,共可组成____________个三位数;(2)其中数字不重复的三位数共有____________个;(3)其中必须有重复数字的有____________个.[答案](1)27 (2)6 (3)21[解析](1)排成数字允许重复的三位数,个位、十位、百位都有3种排法,∴N=33=27(个).(2)当数字不重复时,百位排法有3种,十位排法有两种,个位只有一种排法,∴N=3×2×1=6(个)(也可先排个位或十位).(3)当三数必须有重复数字时分成两类:三个数字相同,有3种,只有两个数字相同,有3×3×2=18(个),∴N=3+18=21(个)。

三、解答题10.某文艺小组有20人,每人至少会唱歌或跳舞中的一种,其中14人会唱歌,10人会跳舞。

从中选出会唱歌与会跳舞的各1人,有多少种不同选法?[解析]只会唱歌的有10人,只会跳舞的有6人,既会唱歌又会跳舞的有4人.这样就可以分成四类完成:第一类:从只会唱歌和只会跳舞的人中各选1人,用分步乘法计数原理得10×6=60(种);第二类:从只会唱歌和既会唱歌又会跳舞的人中各选1人,用分步乘法计数原理得10×4=40(种);第三类:从只会跳舞和既会唱歌又会跳舞的人中各选1人,用分步乘法计数原理得6×4=24(种);第四类:从既会唱歌又会跳舞的人中选2人,有6种方法。

根据分类加法计数原理,得出会唱歌与会跳舞的各选1人的选法共有60+40+24+6=130(种)。

一、选择题1.已知函数y=ax2+bx+c,其中a、b、c∈{0,1,2,3,4},则不同的二次函数的个数共有( )A。

125 B。

15C.100 D。

10[答案] C[解析]由二次函数的定义知a≠0、∴选a的方法有4种.选b与c的方法都有5种.只有a、b、c都确定后,二次函数才确定。

故由乘法原理知共有二次函数4×5×5=100个.故选C、2.满足a、b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B。

13C.12 D。

10[答案] B[解析]①当a=0时,2x+b=0总有实数根,∴(a,b)的取值有4个.②当a≠0时,需Δ=4-4ab≥0,∴ab≤1、a=-1时,b的取值有4个,a=1时,b的取值有3个,a=2时,b的取值有2个.∴(a,b)的取法有9个.综合①②知,(a,b)的取法有4+9=13个。

3.某电话局的电话号码为168×××××,若后面的五位数字是由6或8组成的,则这样的电话号码一共有()A.20个B.25个C。

32个D。

60个[答案] C[解析]五位数字是由6或8组成的,可分五步完成,每一步都有两种方法,根据分步乘法计数原理,共有25=32个。

二、填空题4.大小不等的两个正方体玩具,分别在各面上标有数字1,2,3,4,5,6,则向上的面标着的两个数字之积不小于20的积的结果有____________种.[答案] 5[解析]第1个正方体向上的面标有的数字必大于等于4、如果是3,则3与第二个正方体面上标有数字最大者6的积3×6=18<20,4×5=5×4=20,4×6=6×4=24,5×5=25,5×6=6×5=30,6×6=36,以上积的结果为20,24,25,30,36共五种。

5.在一块并排10垄的田地中,选择2垄分别种植A,B两种作物,每种作物种植一垄,为有利于作物生长,要求A,B两种作物的间隔不小于6垄,则不同的选垄方法有________种.[答案]12[解析]第一类:第1垄种植作物A,B作物种植在第8,9,10垄中的任一垄,有3种选法;第二类:第2垄种植A作物,B作物种植在第9,10垄中的任一垄,有2种选法;第三类:第3垄种植A作物,B作物种植在第10垄中,有1种选法;第四类:第8垄种植A作物,B作物种植在第1垄,有1种选法;第五类:第9垄种植A作物,B作物种植在第1,2垄中的任一垄,有2种选法;第六类:第10垄种植A作物,B作物种植在第1,2,3垄中的任一垄,有3种选法.由分类加法计数原理,共有3+2+1+1+2+3=12种不同的方法。

三、解答题6。

若x,y∈N+,且x+y≤6,试求有序自然数对(x,y)的个数.[解析]按x的取值进行分类,x=1时,y=1,2,…,5,共构成5个有序自然数对。

x =2时,y=1,2,…,4,共构成4个有序自然数对.……x=5时,y=1共构成1个有序自然数对,根据分类加法计数原理,共有N=5+4+3+2+1=15个有序自然数对.7。

设椭圆错误!+错误!=1的焦点在y轴上,其中a∈{1,2,3,4,5},b∈{1,2,3,4,5,6,7},求满足上述条件的椭圆的个数.[解析]因为椭圆的焦点在y轴上,所以b>a、则当a=1时,b可取2,3,4,5,6,7,有6种取法;当a=2时,b可取3,4,5,6,7,有5种取法;当a=3时,b可取4,5,6,7,有4种取法;当a=4时,b可取5,6,7,有3种取法;当a=5时,b可取6,7,有2种取法.故共有6+5+4+3+2=20个满足条件的椭圆.8。

(2015·锦州期中)某单位职工义务献血,在体检合格的人中,O型血的共有28人,A 型血的共有7人,B型血的共有9人,AB型血的有3人。

(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?[解析]从O型血的人中选1人有28种不同的选法。

从A型血的人中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选择哪种血型的哪一个人,这件“任选1人去献血”的事情都能完成,所以由分类加法计数原理,共有28+7+9+3=47种不同的选法。

(2)要从四种血型的人中各选1人,即要在每种血型的人中依次选出1人后,这件“各选1人去献血”的事情才完成,所以用分步乘法计数原理,共有28×7×9×3=5292种不同的选法。

相关文档
最新文档