模糊集的基本运算
模糊数学2运算分解定理

38
λ截集的性质1
性质1. 设A,B为论域X上的模糊集, λ∈[0,1],若A⊆B,则 Aλ⊆Bλ
证明: x ∈ Aλ ⇔ μA(x)≥λ A⊆B⇔∀x∈X, μB(x) ≥μA(x) ⇒μB(x)≥λ⇔ x ∈ Bλ
39
λ截集的性质2
性质2. 设A,B为论域X上的模糊集,
,当u A
0,当u A
46
1-5. 分解定理
47
三大定理
分解定理 表现定理 扩张原理
48
1-5 分解定理
分解定理是把模糊集合论的问题化 为经典集合论的问题来求解
模糊集合 水平截集
经典集合
49
分解定理Ⅰ
分解定理Ⅰ:设A为论域X上的模糊子 集, Aλ是A的λ截集,λ ∈[0,1],则 如下分解式成立:
[0,1]
A U H () [0,1]
54
分解定理Ⅲ的证明(2)
2)1 2 H (1) H (2 ) 证明:H (1) A1 A2 H (2 )
A1 A2是截集的性质
55
分解定理Ⅲ的证明(3)
3) A I H ( ) ( 0), A U H ( ) ( 1)
24
课内作业1-2
设X={a,b,c,d,e,f,g} A=0.5/b+0.4/c+1/d+0.7/f B=0.3/a+0.9/b+0.4/c+1/d+0.6/f+1/g C=1/a+0.3/b+0.6/c+0.2/d+1/f+0.6/g 求A∩B, A∪B, (A∪B)c ∩C, (A
故上式 [ ] [ 0] A(x)
模糊集合

精确集合
X 6
1
X 6
A 0
A 1
X 6
模糊集合
13
A ( x) 1
A ( x) [0 1]
1
6
13
2) 连续形式: 令X = R+ 为人类年龄的集合, 模糊集合 B = “年龄在50岁左右”则表示为:
B { x, B ( x ) | x X } 1 式中: B ( x) x 50 4 1 ( ) 10
112121xfxfxxf??它的定义比模糊凸的定义严格不符合凸函数条件1x2x语言变量5元组为特征?????????规则与各值含义有关的语法值名称的句法规则产生论域术语的集合变量的名称
基于模糊推理的智能控制
1)模糊集合与模糊推理
2)模糊推理系统
3)模糊控制系统
0. 模糊概念
天气冷热
雨的大小
风的强弱
Trig(x;20,60,80)
Trap(x;10,20,60,90)
g(x;50,20)
bell(x:20,4,50)
隶属函数的参数化:
以钟形函数为例, bell ( x; a, b, c) a,b,c,的几何意义如图所示。
1
1
x c 2b a
斜率=-b/2a
c-a
c
c+a
改变a,b,c,即可改变隶属函数的形状。
R(U ,V ) {( x, y, R ( x, y)) | ( x, y) U V } U ,V 是二个论域。
同 一 空 间
R ( x, y) [0,1]
y1 y2 y3 y4
x1 0.8 1.0 0.1 0.7 0 x2 0 0.8 0 x3 0.9 1.0 0.7 0.8
模糊集理论及其应用_第一章

11
1.2 模糊集合与隶属函数(1/5)
目录
由此可见,模糊集合 A 是一个抽象的概念, 其元素是不确定的, 我们只能通过隶属函数 A来认识和掌握 A .A(u)的数值的大小反映 了论域U 中的元素 u 对于模糊集合 A 的隶属 程度, A(u)的值越接近于1 ,表示u隶属于A 的程度越高;而μA(u)的值越接近于0,表示u 隶属于 A 的程度越低.特别地, 若A(u) =1,则认为u完全属于A ; 若A(u) =0,则认为u完全不属于A. 因此, 经典集合可看作是特殊的模糊集合. 换言之,模糊集合是经典集合的推广。
3
模糊数学的概念 处理现实对象的数学模型 确定性数学模型:确定性或固定性,对象间有必 然联系. 随机性数学模型:对象具有或然性或随机性 模糊性数学模型:对象及其关系均具有模糊性. 随机性与模糊性的区别 随机性:指事件出现某种结果的机会. 模糊性:指存在于现实中的不分明现象. 模糊数学:研究模糊现象的定量处理方法.
5
数学建模与模糊数学相关的问题
模糊数学—研究和处理模糊性现象的数学 (概念与其对立面之间没有一条明确的分 界线) 与模糊数学相关的问题(一)
模糊分类问题—已知若干个相互之间不分明的
模糊概念,需要判断某个确定事物用哪一个模 糊概念来反映更合理准确 模糊相似选择 —按某种性质对一组事物或对 象排序是一类常见的问题,但是用来比较的性 质具有边界不分明的模糊性
模糊集理论及其 应用
1
前言:什么是模糊数学
•模糊概念
秃子悖论: 天下所有的人都是秃子
设头发根数n n=1 显然
若n=k 为秃子 n=k+1 亦为秃子
模糊概念:从属于该概念到不属于该概念之间 无明显分界线 年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨、礼品。
关于二型模糊集的集合运算

关于二型模糊集的集合运算
二型模糊集是指在模糊集合中,每个元素具有两个隶属度函数。
不同于一型模糊集只有一个隶属度函数。
二型模糊集的集合运算是指将两个二型模糊集进行运算得到一个新的二型模糊集。
二型模糊集的运算与一型模糊集的运算类似,包括并集、交集、差集以及补集等。
但由于二型模糊集的元素具有两个隶属度函数,其运算过程中需要注意对两个隶属度函数的操作方法。
首先,二型模糊集的并集运算,可以通过将两个二型模糊集的隶属度函数进行最大化得到,即将每个元素的两个隶属度函数中的最大值作为新的隶属度函数值。
其次,二型模糊集的交集运算,可以通过将两个二型模糊集的隶属度函数进行最小化得到,即将每个元素的两个隶属度函数中的最小值作为新的隶属度函数值。
其次,二型模糊集的差集运算,可以通过将前一个二型模糊集的隶属度函数中的值减去后一个二型模糊集对应元素的隶属度函数中的值得到,即将每个元素的第一个隶属度函数值减去第二个隶属度函数值作为新的隶属度函数值。
最后,二型模糊集的补集运算,可以通过将每个元素的两个隶属度函数的值进行倒置得到,即将第一个隶属度函数值变为1与0的差值,将第二个隶属度函数值变为1与0的差值。
综上所述,二型模糊集的集合运算需要对每个元素的两个隶属度函数进行不同的操作方法,并在运算过程中注意保持其模糊性质。
这种模糊推理方法在实际应用中有较广泛的应用,例如在控制系统、决策分析等领域。
模糊集合及其运算

40
31 0.78 110 85 0.75
50
39 0.78 120 95 0.79
60
47 0.78 129 101 0.78
70
53 0.76
由表 1可见,隶属频率随试验次数 n 的增加而呈现
稳定性,稳定值为 0.78,故有 [青年人] (27) = 0.78。
模糊统计与概率统计的区别: 模糊统计:变动的圆盖住不动的点 概率统计:变动的点落在不动的圆内
(2)随着n的增大,频率呈现稳定,此稳定值即为
u 0 对A的隶属度:
* u A 的次数 0 A ( u )lim 0 n n
例 取年龄作论域 X,通过模糊试验确定 x0= 27(岁)
对模糊集“青年人” A 的隶属度。
张南伦曾对 129 名学生进行了调查试验,要求
每个被调查者按自己的理解确定“年青人” (即 A)
0.1 0.2 0.2 B A 0.3 0.3 0.3 0.4 0.5 0.5
(3)模糊矩阵的转置
T ( a ) , 定义:设 A 称 A (aji )nm为A的 ij m n
转置矩阵。 (4)模糊矩阵的 截矩阵 定义:设 A 对任意的 称 [ 0 , 1 ], ( a ) , ij m n
1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1
A0 .5
0 0 0 0 0 1 1 0 1 1
A0 .8
三、隶属函数的确定 1、模糊统计法
模糊统计试验的四个要素:
(1)论域U; (2)U中的一个固定元素 u 0 ;
* A (3)U中的一个随机运动集合 ;
~
A 称为 A 隶属函 确定了一个U上的模糊子集 A 。映射 ~ ~ ~
模糊集理论及应用讲解

经典集合与特征函数
4、隶属度 特征函数CA(u)在u=u0处的值CA(U0)称为u0对A的隶属度。
模糊集合与隶属函数
1、隶属函数
[0 设U是论域,μA是将任何u∈U映射为 ,1]上某个值的函数,
即:
:U→[ μA
0,1的一个隶属函数。
?0.4 0.5 0.1?
例
R1 ? ??0.2 0.6 0.2??
??0.5 0.3 0.2??
?0.2 0.8? R2 ? ??0.4 0.6??
??0.6 0.4??
?0.4 0.5? R ? R1 ?R2 ? ??0.4 0.6??
λ水平截集
解: (1)λ水平截集 A1={ u3 } A0.6={ u2,u3,u4 } A0.5={ u2,u3,u4,u5 } A0.3={ u1,u2,u3,u4,u5 } (2)核、支集 KerA={ u3 } SuppA={ u1,u2,u3,u4,u5 }
模糊数
模糊数 如果实数域上的模糊集A的隶属函数μA (u)在R上连续,且具有如下性 质:
2、模糊集
设A={ μA (u) | u∈U } ,则称A为论域U上的一个模糊集。 3、隶属度
μA (u)称为u对模糊集A的隶属度。
模糊集合与隶属函数
模糊集合完全由其隶属函数确定,即一个模糊集合与其隶属函数是等 价的。
可以看出 对于模糊集A,当U中的元素u的隶属度全为0时,则A就是个空 集; 当全为1时,A就是全集U; 当仅取0和1时,A就是普通子集。
UR V R的论域为U×V。 特别地,当U=V时,R称为U上的二元模糊关系;若R的论域为n个集合
的直积U1×U2×…×Un,则称R为n元模糊关系。
二、模糊计算

§2.3 模糊集合的运算 2.3.1 模糊集合的基本运算 一、模糊集合并、交、补运算定义2.3.1 模糊集合的包含、相等设A ~、B ~为论域X 上的两个模糊集合,对于X 中每一个元素x ,都有)()(~~x x BAμμ≥,则称A ~包含B ~,记作B A ~~⊇。
如果B A ~~⊇,且A B ~~⊇,则说A ~与B ~相等,记作B A ~~=。
由于模糊集合是通过隶属函数来表征的,模糊集合相等也可用隶属函数来定义。
若对于X 上的所有元素x ,都有)()(~~x x BAμμ=,模糊集合A ~与B ~相等。
定义2.3.2 模糊空集设A ~为论域X 上的模糊集合,对于X 中每一个元素x ,都有0)(~=x Aμ,则称A ~为模糊空集,记作φ=A ~。
定义2.3.3 模糊集合并、交、补基本运算设A ~、B ~为论域X 上的两个模糊集合,令B A ~~ 、B A ~~ 、C A ~分别表示模糊集合A ~与B ~的并集、交集、补集,对应的隶属函数分别为B A~~ μ、B A ~~ μ、C A~μ,对于X 的任一元素x ,定义: )(V )()(B ~A ~B ~A~x x x μμμ∆ (2.3.1) )()()(B ~A~B ~A~x x x μμμΛ∆ (2.3.2)补算子 (2.3.3) 式中“V ”表示取大运算,“Λ”表示取小运算,称其为Zadeh 算子。
在此定义下,两个模糊集合的并、交实质是在做下面的运算①)](,)(max[B ~A ~B ~A~x x μμμ= 并算子 (2.3.4) )](,)(min[B ~A~B ~A~x x μμμ= 交算子 (2.3.5) 为了加深对模糊集合并、交、补基本运算的理解,现在给出模糊集合A ~和B ~,见图2.3.1(a)。
其中A ~为高斯分布,B ~为三角分布,二者的并、交运算结果如图2.3.1(b)的图2.3.1(c)所示,当然模糊集合的并、交运算可以推广到任意个模糊集合。
模糊集合论及其应用

模糊集合论及其应用模糊集合论是一种重要的数学工具,它能够处理现实世界中的模糊、不确定和不精确的信息,具有广泛的应用前景。
本文首先介绍模糊集合论的基本概念和运算,然后探讨其在决策分析、控制理论、人工智能等领域的应用,并最后展望其未来发展方向。
一、模糊集合论的基本概念和运算1.1 模糊集合的定义在传统的集合论中,一个元素只能属于集合或不属于集合,不存在中间状态。
而在模糊集合论中,一个元素可以同时属于多个集合,并且对于不同的元素,其属于集合的程度也不同。
因此,模糊集合论将集合的概念进行了扩展,使其能够更好地描述现实世界中的不确定性和模糊性。
设X为一个非空的集合,称为全集,一个模糊集A是一个从X到[0,1]的函数,即:$$A(x):Xrightarrow[0,1]$$其中,A(x)表示元素x属于模糊集A的隶属度,取值范围为[0,1]。
当A(x)=1时,表示x完全属于A;当A(x)=0时,表示x完全不属于A;当0<A(x)<1时,表示x部分属于A。
1.2 模糊集合的运算模糊集合的运算包括模糊集合的交、并、补和乘积等。
模糊集合的交:对于两个模糊集合A和B,其交集为:$$(Acap B)(x)=min{A(x),B(x)}$$模糊集合的并:对于两个模糊集合A和B,其并集为:$$(Acup B)(x)=max{A(x),B(x)}$$模糊集合的补:对于一个模糊集合A,其补集为:$$(eg A)(x)=1-A(x)$$模糊集合的乘积:对于两个模糊集合A和B,其乘积为:$$(Atimes B)(x,y)=min{A(x),B(y)}$$其中,(A×B)(x,y)表示元素(x,y)属于模糊集合A×B的隶属度。
1.3 模糊关系和模糊逻辑在模糊集合论中,还有两个重要的概念,即模糊关系和模糊逻辑。
模糊关系是指一个元素对另一个元素的隶属度,可以用矩阵表示。
例如,设A和B是两个模糊集合,它们之间的模糊关系R可以表示为: $$R=begin{bmatrix} R_{11} & R_{12} R_{21} & R_{22}end{bmatrix}$$其中,Rij表示元素i与元素j之间的隶属度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c
x
a
cb
0
x ac ac xab ab xab ab xac xac
0
x b
1
1
sin
[x ab]
b x a
A(x) 12 2 b a
2 a x a
1
1
sin
[x ab]
axb
2 2 ba 2
0
xb
三. 模糊集上的运算 1. 几点说明
经典集合可用特征函数完全刻画, 因而经典集合可看成 模糊集的特例(即隶属函数只取0, 1两个值的模糊集)。
A(x)
1 0
xa xa
1
xa
A(x) ek(xa) x a, k 0
A(x)
1 ek
( xa )2
xa x a, k 0
1
A( x)
1
1 b(x a)c
xa x a (b, c 0)
1
xa
A(
x)
1 2
1 2
sin
b
a
[x
a
2
b
]
0
xb
a xb
1
A( x)
b b
x a
第二பைடு நூலகம் 模糊集的基本运算
一. 模糊集的表示方法
模糊集合是论域X 到[0,1]的映射, 因此用隶属函 数来表示模糊集合是最基本的方法。除此以外, 还有 以下的表示方法: 1)序偶表示法
A={(x, A(x)|xX}. 例如: 用集合X={x1, x2, x3, x4}表示某学生宿舍中的四 位男同学, “帅哥”是一个模糊的概念。经某种方法 对这四位学生属于帅哥的程度(“帅度”)做的评价依 次为: 0.55, 0.78, 0.91, 0.56, 则以此评价构成的模糊集 合A记为:
度值。 对于任意论域X中的模糊集合A可记为:
A A(x) / x xX
A A(x)
xX x
模糊集“年轻”A可表示为
A
1
x x[ 0 , 25 ]
[1 ( x 25)2 ]1
x( 25,100 )
5 x
0
x x[100,200]
注意:当论域明确的情况下, 在序偶和Zadeh表示法 中, 隶属度为0的项可以不写出。而在向量表示法中, 应 该写出全部分量。
矩形分布, 尖Γ形分布, 正态分布, 柯西分布, 梯形分布, 岭形分布。
0 A(x) 1
0
x a b ab xab x ab
A(x) ek(xa)2 , k 0
A(
x)
ek (xa) ek (xa)
xa xa
A(x) 1
b 0 (c为正偶数)
1 b(x a)c
0
c
x
a
A(x) 1 c b
易证 CAB(x)=max{CA(x), CB(x)}=CA(x)CB(x).
1
A={(x1, 0.55), (x2, 0.78), (x3, 0.91), (x4, 0.56)}.
2) 向量表示法 当论域X={x1, x2, …, xn}时, X上的模糊集A可表示为向量 A=(A(x1), A(x2), …,A(xn)). 模糊集“帅哥”A可记为:
A=(0.55, 0.78, 0.91, 0.56).
xa x a (b, c 0)
0
A( x)
x b
a a
1
0
xa
A(x)
1 2
1 2
sin
b
a
[x
a
2
b
]
a xb
1
xb
xa a xb xb
“年轻”模糊集合的隶属函数为降半柯西分布, 其中取 a =1/5 , b =25 , c =2. “年老”模糊集合的隶属函数为升半柯 西分布, 其中取a=1/5 , b=50, c=2. 3. 中间型(对称型)
例如, 论域X为1到10的所有正整数, 模糊集“近似于 5”A可表示为:
A 0 /1 0 / 2 0.3 / 3 0.7 / 4 1/ 5 1/ 6 0.7 / 7 0.3 / 8 0 / 9 0 /10
或 A 0.3 / 3 0.7 / 4 1/ 5 1/ 6 0.7 / 7 0.3 / 8 或 A (0, 0, 0.3, 0.7,1,1, 0.7, 0.3, 0, 0)
A=(0.55, 0.78, 0.91, 0.56). X上的模糊集B为:
帅哥
B=(0.35, 0.52, 0.65, 0.37). 则根据定义有BA.
超男
定义 论域X上的模糊集A与B称为是相等的, 如果AB 且BA, 即对任意xX有A(x)= B(x).
3. 模糊集的并 设X为非空论域, A, B为X上的两个经典集合。 A∪B={xX| xA或xB}.
0
xa a xb xb
2. 偏大型
升半矩形分布,升半Γ形分布,升半正态分布,升半柯
西分布,升半梯形分布,升岭形分布。
A(x)
0 1
xa xa
A(
x)
0 1
ek
( xa )2
0
xa
A(x) 1 ek(xa) x a, k 0
xa x a, k 0
0
A( x)
1
1 b(x a)c
当且仅当属于A的元素都属于B. 易证AB当且仅当对任意xX有CA(x) CB(x).
11
X
定义 设X为非空论域, A, B为X上的两个模糊集合。 称A包含于B(记作AB), 如果对任意xX有A(x) B(x). 这时也称A为B的子集。
1 B(x) A(x)
X
例 论域X={x1, x2, x3, x4}时, X上的模糊集A为:
二. 典型的隶属函数
构造恰当的隶属函数是模糊集理论应用的基础。一 种基本的构造隶属函数的方法是“参考函数法”, 即参 考一些典型的隶属函数, 通过选择适当的参数, 或通过拟 合、整合、实验等手段得到需要的隶属函数。
下面介绍典型隶属函数。 1. 偏小型
降半矩形分布, 降半Γ形分布, 降半正态分布, 降半柯 西分布, 降半梯形分布, 降岭形分布。
向量的每个分量都在0与1之间,称之为模糊向量。
3) Zadeh表示法 当论域为有限集{x1, x2, …, xn}时, 模糊集合可表示为 A=A(x1)/x1+A(x2)/x2+ …+A(xn)/xn. 注意, 这里仅仅是借用了算术符号+和/, 并不表示分数 和运算, 而只是描述A中有哪些元素,以及各个元素的隶属
设 X 为 非 空 论 域 , X 上 的 全 体 模 糊 集 记 作 F(X). 于 是 , P(X)F(X), 这里P(X)为X的幂集(即X的全体子集构成的集合).
特别地, 空集的隶属函数恒为0, 全集X的隶属函数恒为1, 即、X都是X上的模糊集。
2. 模糊集的包含关系 设X为非空论域, A, B为X上的两个经典集合。 AB