微波电子技术-定向耦合器概述.
微波定向耦合器工作原理

微波定向耦合器工作原理引言:微波定向耦合器是一种常见的无源微波器件,广泛应用于微波通信、卫星通信、雷达系统等领域。
它能够实现微波信号的能量分配和定向耦合,具有较高的传输效率和较低的插损。
本文将从微波定向耦合器的工作原理、结构以及应用等方面进行介绍。
一、工作原理微波定向耦合器通过特殊的设计和制造工艺,实现了微波信号的能量分配和定向耦合。
其工作原理主要基于两个重要的物理现象:电磁波的传输特性和微波传输线的耦合机制。
1. 电磁波的传输特性微波定向耦合器中的微波信号是以电磁波的形式传输的。
电磁波在传输过程中,具有幅度、相位和频率等特性。
幅度决定了电磁波的强弱,相位决定了电磁波的相对位置,频率决定了电磁波的振动次数。
2. 微波传输线的耦合机制微波传输线是微波定向耦合器中的重要组成部分。
它通常由金属导体制成,并具有特定的传输特性。
微波传输线中的电磁波会沿着导体表面传播,并在传输过程中与其他导体发生相互作用。
这种相互作用会引起电磁波的能量分布和传输方向的改变。
二、结构和工作方式微波定向耦合器通常由输入端口、输出端口和耦合结构组成。
其中,输入端口用于接收输入信号,输出端口用于输出耦合后的信号,耦合结构用于实现输入信号到输出信号的能量分配和定向耦合。
1. 能量分配微波定向耦合器的能量分配是指将输入信号的能量按照一定比例分配到不同的输出端口。
这种能量分配通常通过合理设计的耦合结构实现。
耦合结构中的导体、介质和空气等介质的特性会影响能量分配的效果。
2. 定向耦合微波定向耦合器的定向耦合是指将输入信号的能量按照一定的方向耦合到输出端口。
这种定向耦合可以通过合理设计的导体形状和布局实现。
导体的形状和布局会影响电磁波在耦合结构中的传输路径和传输方向。
三、应用微波定向耦合器在各种微波系统中具有广泛的应用。
以下是一些常见的应用场景:1. 微波通信系统微波定向耦合器可以用于微波通信系统中的信号分配和耦合。
它可以将输入信号的能量按照一定的比例分配到不同的输出端口,实现信号的多路复用和分配。
定向耦合器的原理与应用

定向耦合器的原理与应用下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!定向耦合器是一种广泛应用于微波和射频系统中的关键组件,它能够在系统中实现信号的传输和耦合,发挥着重要的作用。
3db定向耦合器原理

3db定向耦合器原理引言3db定向耦合器是一种常见的微波器件,广泛应用于无线通信、雷达系统和微波电路中。
本文将介绍3db定向耦合器的原理及其在实际应用中的作用。
一、3db定向耦合器的基本原理3db定向耦合器是一种四端口器件,由两个耦合器和两个耦合器之间的传输线构成。
其基本原理是利用微波信号在传输线上的传播特性,实现耦合和分离的功能。
1.1 耦合和分离耦合器是一种能够将输入信号分为两个输出的器件,其中一个输出端口为主输出端口,另一个为耦合输出端口。
耦合输出端口输出的信号是从主输出端口输入信号中耦合出来的一部分。
耦合器的耦合度决定了主输出端口和耦合输出端口之间的功率分配比例。
1.2 传输线的特性传输线上的电磁波在传播过程中会发生反射和透射,这取决于传输线的特性阻抗和长度。
当传输线的特性阻抗等于负载的阻抗时,传输线上的信号将完全传输到负载上;当传输线的特性阻抗不等于负载的阻抗时,部分信号将被反射回来。
二、3db定向耦合器的工作原理3db定向耦合器是通过将两个耦合器和两个传输线相互耦合连接而成的。
其工作原理如下:2.1 信号的耦合和分离当输入信号通过传输线进入耦合器时,一部分信号将从主输出端口输出,另一部分信号将从耦合输出端口输出。
耦合输出端口输出的信号是通过传输线之间的耦合实现的。
在理想情况下,耦合输出端口输出的功率占输入功率的一半,即耦合度为3dB。
2.2 信号的相位差由于两个传输线之间存在一定的相位差,导致从主输出端口输出的信号和耦合输出端口输出的信号之间存在相位差。
这个相位差可以通过调整传输线的长度来实现。
2.3 信号的分离通过调整传输线的长度,可以使主输出端口和耦合输出端口之间的信号达到90度的相位差,从而实现信号的分离。
2.4 功率的分配3db定向耦合器在主输出端口和耦合输出端口之间实现了功率的分配,主输出端口输出的功率为输入功率的一半,耦合输出端口输出的功率也为输入功率的一半。
三、3db定向耦合器的应用3db定向耦合器广泛应用于微波电路和射频系统中,常见的应用包括:3.1 功率分配由于3db定向耦合器可以将输入功率分配到主输出端口和耦合输出端口,因此可以用于实现功率的分配和控制。
定向耦合器

定向耦合器是一种通用的微波/毫米波部件,可用于信号的隔离、分离和混合,如功率的监测、源输出功率稳幅、信号源隔离、传输和反射的扫频测试等。
主要技术指标有方向性、驻波比、耦合度、插入损耗。
基本简介定向耦合器是微波系统中应用广泛的一种微波器件,它的本质是将微波信号按一定的比例进行功率分配。
定向耦合器由传输线构成,同轴线、矩形波导、圆波导、带状线和微带线都可构成定向耦合器,所以从结构来看定向耦合器种类繁多,差异很大。
但从它的耦合机理来看主要分为四种,即小孔耦合、平行耦合、分支耦合以及匹配双T。
定向耦合器是把两根传输线放置在足够近的位置使得一条线上的功率可以耦合到另一条线上的元件。
它的两个输出端口的信号幅度可以相等也可以不等,一种应用特别广泛的耦合器是3dB 耦合器,这种耦合器的两个输出端口输出信号的幅度是相等的。
在20世纪50年代初以前,几乎所有的微波设备都采用金属波导和同轴线电路,那个时候的定向耦合器也多为波导小孔耦合定向耦合器,其理论依据是Bethe小孔耦合理论,Cohn和Levy等人也做了很多贡献。
随着航空和航天技术的发展,要求微波电路和系统做到小型化、轻量化和性能可靠,于是出现了带状线和微带线。
随后由于微波电路与系统的需要有相继出现了鳍线、槽线、共面波导和共面带状线等微波集成传输线。
这样就出现了各种传输线定向耦合器。
第一个真正意义上的定向耦合器由H. A. Wheeler在1944年设计实现,Wheeler使用了一对长为四分之一中心频率波长的圆柱来实现电场与磁场的能量相互耦合,遗憾的是这种方法只能实现一个倍频程的带宽。
定向耦合器是一种具有方向性的功率耦合(分配)元件。
它是一种四端口元件,通常由称为直通线(主线)和耦合线(副线)的两段传输线组合而成。
直通线和耦合线之间通过一定的耦合机制(例如缝隙、孔、耦合线段等)把直通线功率的一部分(或全部)耦合到耦合线中,并且要求功率在耦合线中只传向某一输出端口,另一端口则无功率输出。
微波电子技术-定向耦合器

(b)
图 6-2 L-C (a) 低通式; (b) 高通式
第6章 定向耦合器
步骤一: 确定耦合器的指标,包括耦合系数C(dB)、 端口的等效阻抗Z0(Ω)、电路的工作频率fc。
步骤二: 利用下列公式计算出k、Z0s及Z0p:
k 10c/10
Z0s Z0 1 k
Z0p Z0
1 k k
P4
S41 2
S31 2
第6章 定向耦合器
6.2
6.2.1 常用的集总参数定向耦合器是电感和电容组成的
分支线耦合器。其基本结构有两种: 低通L-C式和高 通L-C式,如图6-2所示。
第6章 定向耦合器
1 Z0
Ls
P1
Cp
4
Ls
P4
(a)
2 P2
Cp
3 P3
1 Z0
Cs
P1
Lp
4
Cs
P4
2 P2
Lp
- 15.00
- 20.00
S41
- 25.00 S11
- 30.00
- 35.00
- 40.00 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 FREQ[GHz]
图 6-8平行线型耦合器仿真结果
第6章 定向耦合器
在上述平行耦合线定向耦合器的基础上,可以得到 各种变形结构,如图6-9 所示。结构越复杂,计算越困难。 在正确概念的指导下,实验仍然是这类电路设计的有效 方法。
合环的设计关键就是按照分配比计算阻抗值和长 度。对于等分环形桥,
Z1=Z2= 2 Z0 每个端口之间的距离为λg/4或3λg/4。
第6章 定向耦合器
微波实验 定向耦合器

实验六定向耦合器特性的测量及应用目的:研究定向耦合器的特性及其应用。
原理:定向耦合器是微波测量和其它微波系统中常见的微波器件,它是一种有方向性的微波功率分配器,更是近代扫频反射计中不可缺少的部件,通常有波导、同轴线、带状线及微带等几种类型。
图1为其结构示意图。
它主要包括主线和副线两部分,彼此之间通过种种形式小孔、缝、隙等进行耦合。
因此,从主线端上“1”输入的功率,将有一部分耦合到副线中去,由于波的干涉或叠加,使功率仅沿副线一个方向传输(称“正向”),而另一方向则几乎毫无功率传输(称“反向”),图2为本实验所用的十字定向耦合器,耦合器中端口之一终端接一内装的匹配负载。
主线副线图1(一)定向耦合器的主要特性参量有二:为了便于解释耦合度和方向性,画出了定向耦合器传输示意图(图3),图中P1、P2分别为主线输入、输出功率;PF3为副线中正向输出功率,PR3为副线中反向输出功率。
(1)耦合度(或过度衰减)C如图31243主线副线图3P3F 1243主线副线P1P23RP P1P21(a )所示,主线输入功率P 1,与副线中正向输出功率P F 3之比,称为定向耦合的耦合度,若以分贝(db )表示则:C=10logFP P 31(db) (6.1) (2)方向性D如图3所示,副线中正向输出功率P F 3与反向输出功率P R 3之比称为定向耦合器的方向性,若以分贝表示,则:D=logRFP P 33(db) (6.2) 有时,反映定向程度的指标也用隔离度D ’来表示。
隔离度表示主线输入功率P 与副线反向输出功率之比,即D=10logRP P 31(db) (6.3) 由式子(2)D=10logR F P P 33=10log R P P31=D ’-C (6.4) 从上可知,定向耦合器的方向性等于隔离度与耦合度之差,理想的定向耦合器的方向性D →∞;也就是说,当各端均匹配端接时,若功率从主线端“1”输入,则副线仅端“3”有输出,而端“4”无输出;即端“1”与端“4”彼此隔离;端“2”与端“3”彼此隔离,实际的定向耦合器隔离端的耦合隔离的理想器件。
微波定向耦合器工作原理

微波定向耦合器工作原理一、引言微波定向耦合器是一种常用的微波器件,广泛应用于微波通信、雷达系统、卫星通信等领域。
它具有方便、灵活、高效的特点,能够实现微波信号的分配和耦合,是实现无线通信系统中重要的组成部分。
本文将对微波定向耦合器的工作原理进行全面、详细、完整的探讨。
二、微波定向耦合器的基本结构微波定向耦合器通常由耦合器和耦合环组成。
耦合器是一种特殊的波导结构,用于将微波信号从一个波导传输到另一个波导。
耦合环是一种特殊的环形结构,用于实现信号的定向耦合。
三、微波定向耦合器的工作原理微波定向耦合器的工作原理可以简单地分为两个步骤:耦合和定向。
3.1 耦合在耦合器中,微波信号通过波导进入耦合环。
当信号进入耦合环时,一部分能量会被传输到耦合环内部,形成环内模式。
耦合环内部的环形结构可以通过控制其几何参数来实现对耦合效果的调节。
当耦合环的几何参数适当时,可以实现最佳的耦合效果,使得尽可能多的能量被传输到耦合环内部。
3.2 定向在耦合环内部,耦合器通过调节耦合环的几何参数和输入信号的相位差,实现对信号的定向耦合。
定向耦合是指将输入信号按照一定的比例传输到不同的输出端口上。
耦合环内部的环形结构可以通过调节其几何参数来实现对信号的定向耦合。
当耦合环的几何参数适当时,可以实现理想的定向耦合效果,使得输入信号按照预定的比例传输到不同的输出端口上。
四、微波定向耦合器的性能指标微波定向耦合器的性能主要包括插入损耗、耦合平衡度、隔离度等指标。
4.1 插入损耗插入损耗是指微波信号在经过耦合器时的功率损耗。
插入损耗越小,说明耦合器的能量传输效果越好。
4.2 耦合平衡度耦合平衡度是指在不同的输出端口上输出的信号功率之间的平衡程度。
耦合平衡度越高,说明耦合器的定向耦合效果越好。
4.3 隔离度隔离度是指不同输出端口上的信号之间的相互干扰程度。
隔离度越高,说明耦合器的输出信号之间的相互干扰越小。
五、微波定向耦合器的应用微波定向耦合器在无线通信系统中有着广泛的应用。
定向耦合器的工作原理

定向耦合器的工作原理定向耦合器是一种常见的微波器件,广泛应用于无线通信系统、雷达系统、卫星通信系统等领域。
它具有将微波能量从一个波导传输到另一个波导的功能,同时能够实现对微波能量的定向耦合和解耦。
在本文中,我们将详细介绍定向耦合器的工作原理。
定向耦合器通常由主波导、辅助波导和耦合装置组成。
主波导和辅助波导分别用于传输微波能量,而耦合装置则用于实现微波能量的定向耦合和解耦。
在定向耦合器中,主波导和辅助波导之间通过耦合装置进行能量的传输和耦合。
当微波能量从主波导传输到辅助波导时,耦合装置将一部分微波能量耦合到辅助波导中,同时将剩余的微波能量继续传输到主波导中。
这样,就实现了微波能量的定向耦合。
定向耦合器的工作原理可以通过电磁场理论来解释。
当微波能量在主波导中传输时,会产生一定的电磁场分布。
而耦合装置的设计则能够利用这种电磁场分布,实现微波能量的定向耦合和解耦。
通过合理设计耦合装置的结构和参数,可以实现不同程度的定向耦合效果,从而满足不同的应用需求。
除了电磁场理论,定向耦合器的工作原理还涉及到微波传输理论和波导理论。
在微波传输过程中,波导的特性对能量的传输和耦合起着重要作用。
定向耦合器的设计需要考虑到波导的特性,以实现高效的微波能量传输和定向耦合。
在实际应用中,定向耦合器还需要考虑到频率响应、功率损耗、耦合效率等因素。
通过优化设计,可以实现定向耦合器在特定频率范围内的高效能量传输和定向耦合。
同时,定向耦合器还需要考虑到耦合装置的制造工艺和材料选择,以实现稳定可靠的性能。
总之,定向耦合器是一种重要的微波器件,它通过合理设计的耦合装置,实现了微波能量的定向耦合和解耦。
在实际应用中,定向耦合器的工作原理涉及到电磁场理论、微波传输理论和波导理论等多个方面。
通过深入理解定向耦合器的工作原理,可以实现对其性能的更好把控和优化设计,从而满足不同应用场景的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章 定向耦合器 (3) 耦合度: 描述耦合输出端口与主路输入端口的比例关系 ,通常用分 贝表示,dB值越大,耦合端口输出功率越小。耦合度的大小由 定向耦合器的用途决定。 (4) 方向性: 描述耦合输出端口与耦合支路隔离端口的比例关系。理 想情况下,方向性为无限大。 (5) 隔离度:
线相互靠近,故4—3线中便耦合有能量,能量既通过电场(以 耦合电容表示)又通过磁场(以耦合电感表示)耦合。通
过耦合电容Cm的耦合,在传输线4—3中引起的电流为ic4和ic3。
第6章 定向耦合器
1 P1 2 P2
Z
Z0 e Z0 o
Z
Z
P4 4-5平行线型耦合器
第6章 定向耦合器 同时由于i1的交变磁场的作用,在线4—3上感应有电流iL。 根据电磁感应定律 ,感应电流iL的方向与i1的方向相反, 如 图6-6所示。所以能量从1口输入,则耦合口是4口。 而在 3 口因为电耦合电流的 ic3 与磁耦合电流 iL 的作用相反 而能量互相抵消,故3口是隔离口。
第6章 定向耦合器
6.2 集总参数定向耦合器
6.2.1 集总参数定向耦合器设计方法 常用的集总参数定向耦合器是电感和电容组成的 分支线耦合器。其基本结构有两种: 低通 L-C 式和高 通L-C式,如图6-2所示。
第6章 定向耦合器
1 Z0 P1 Cp 4 P4
Ls
2 P2 Cp
1 Z0 P1 Lp
Cs
2 P2 Lp
Ls
3 P3
4 P4
Cs
3 P3
(a )
(b )
图 6-2 L-C分支线型耦合器 (a) 低通式; (b) 高通式
第6章 定向耦合器 集总参数定向耦合器的设计步骤如下: 步骤一: 确定耦合器的指标,包括耦合系数C(dB)、
端口的等效阻抗Z0(Ω)、电路的工作频率fc。
P2 1 T (dB ) 10lg 10lg P S 21 2 1 P3 1 C (dB) 10 lg 10 lg P S31 2 1 P4 1 I (dB) 10 lg 10 lg P S 41 2 1 P3 1 1 D(dB) 10 lg 10 lg 10 lg I (dB) C (dB) 2 2 P4 S 41 S31
1 Cs 2f c Z 0 s Lp Z0 p 2f c
第6章 定向耦合器 步骤四: 利用模拟软件检验,再经过微调以满足设计 要求。
6.2.2 集总参数定向耦合器设计实例
设计一个工作频率为400 MHz的10 dB低通L-C支路 型耦合器。Z0=50 Ω,要求S11≤-13dB, S21≥-2 dB, S31≤-13 dB,S41≥-10dB。 步骤一 : 确定耦合器的指标 ,C=-10dB,fc=400MHz, Z0=50 Ω。 步骤二: 利用下列公式计算K、Z0s、 Z0p:
第6章 定向耦合器 步骤三: 利用下列公式计算元件值: 1 C1 8.59 pF 2f c Z 0 s
2f c 步骤四: 进行仿真计算,如图 6-3 所示。
L2
Z0 p
56.68nH
第6章 定向耦合器
图 6-3低通L-C支路型耦合器等效电路
第6章 定向耦合器 仿真结果如图6-4所示。
2 P2 定向耦合器 3 P3
图 6-1 定向耦合器方框图
第6章 定向耦合器 信号输入端 1的功率为P1, 信号传输端2 的功率为P2, 信号耦合端3的功率为 P3, 信号隔离端 4 的功率为 P4 。若
P1 、P2 、 P3 、 P4 皆用毫瓦( mW)来表示 , 定向耦合器
的四大参数则可定义为: 插入损耗
0.00 - 5.00 - 10.00 - 15.00 - 20.00 - 25.00 - 30.00 0.00
0.20
0.40 0.60 FR EQ[GHz]
0.80
1.00
图 6-4 低通L-C支路型耦合器仿真结果
第6章 定向耦合器
6.3 耦合微带定向耦合器
6.3.1 平行耦合线耦合器基本原理
6.3.2 平行耦合线耦合器设计方法
平行线耦合定向耦合器的设计步骤如下: 步骤一 : 确定耦合器指标 , 包括耦合系数 C(dB) 、 各端 口的特性阻抗Z0(Ω )、中心频率fc、基板参数(ε r,h)。 步骤二:利用下列公式计算奇模阻抗和偶模阻抗 Z0e
通常,平行耦合线定向耦合器由主线和辅线构成 ,两条平
行微带的长度为四分之一波长 ,如图6-5所示。信号由1 口输 入,2口输出,4口是耦合口,3口是隔离端口。 因为在辅线上耦合输出的方向与主线上波传播的方向 相反,故这种形式的定向耦合器也称为“反向定向耦合器”。
当导线 1—2 中有交变电流 i1 流过的时候 , 由于 4—3 线和 1—2
步骤二: 利用下列公式计算出k、Z0s及Z0p:
k 10
c / 10
Z0s Z0 1 k Z0 p Z0 1 k k
第6章 定向耦合器 步骤三: 利用下列公式计算出元件值: (1) 低通L-C式:
Z0s Ls 2f c 1 Cp 2f c Z 0 p
(2) 高通L-C式:
第6章 定向耦合器
第6章 定向耦合器
6.1 定向耦合器的基本原理 6.2 集总参数定向耦合器
6.3 耦合微带定向耦合器
6.4 分支线型定向耦合器 6.5 环形桥定向耦合器
第6章 定向耦合器
6.1 定向耦合器的基本原理
6.1.1 定向耦合器的技术指标 定向耦合器的技术指标包括频率范围、 插入损耗、 耦合度、 方向性、 隔离度等。 (1) 工作频带: 定向耦合器的功能实现主要依靠波程相位的关系, 也就是说与频率有关。工作频带确定后才能设计满足 指标的定向耦合器。 (2) 插入损耗: 主路输出端和主路输入端的功率比值,包括耦合损 耗和导体介质的热损耗。
描述主路输入端口与耦合支路隔离端口的比例关系。理 想情况下,隔离度为无限大。
描述定向耦合器特性的三个指标间有严格的关系,即方向 性=耦合度-隔离度。
第6章 定向耦合器 6.1.2 定向耦合器的原理 定向耦合器是个四端口网络结构 , 如图 6-1 所示。
第6章 定向耦合器
1 P1 4 P4