深圳市公安消防支队坂雪岗中队消防站基坑支护设计涉及到的规范

深圳市公安消防支队坂雪岗中队消防站基坑支护设计涉及到的规范
深圳市公安消防支队坂雪岗中队消防站基坑支护设计涉及到的规范

深圳市公安消防支队坂雪岗中队消防站基坑支护设计涉及到的规范

————————————————————————————————作者: ————————————————————————————————日期:

?

深圳市公安消防支队坂雪岗中队消防站基坑支护设计涉及到《建筑工程基坑支护技术规程2012》里的规范

3.1.3 基坑支护设计时, 应综合考虑基坑周边环境和地质条件的复杂程度、基坑深度等因素,按表3.1.3采用支护结构的安全等级。对同一基坑的不同部位,可采用不同的安全等级。

表3.1.3支护结构的安全等级

安全等级破坏后果

一级支护结构失效、土体过大变形对基坑周边环境或主体结构施工安全的影响很严重

二级支护结构失效、土体过大变形对基坑周边环境或主体结构施工安全的影响严重

三级支护结构失效、土体过大变形对基坑周边环境或主体结构施工安全的影响不严重

7.4 集水明排

7.4.1对基底表面汇水、基坑周边地表汇水及降水井抽出的地下水,可采用明沟排水;对坑底以下的渗出的地下水,可采用盲沟排水;当地下室底板与支护结构间不能设置明沟时,基坑坡脚处也可采用盲沟排水;对降水井抽出的地下水,也可采用管道排水。

7.4.2排水沟的截面应根据设计流量确定,设计排水流量应符合下式规定:

Q≤V/1.5(7.

4.2) 式中:Q──排水沟的设计流量(m3/d);

V──排水沟的排水能力(m3/d)。

7.4.3明沟和盲沟坡度不宜小于0.3%。采用明沟排水时,沟底应采取防渗措施。采用盲沟排出坑底渗出的地下水时,其构造、填充料及其密实度应满足主体结构的要求。

7.4.4沿排水沟宜每隔30m~50m设置一口集水井;集水井的净截面尺寸应根据排水流量确定。集水井应采取防渗措施。采用盲沟时,集水井宜采用钢筋笼外填碎石滤料的构造形式。

7.4.5基坑坡面渗水宜采用渗水部位插入导水管排出。导水管的间距、直径及长度应根据渗水量及渗水土层的特性确定。

7.4.6采用管道排水时,排水管道的直径应根据排水量确定。排水管的坡度不宜小于0.5%。排水管道材料可选用钢管、PVC管。排水管道上宜设置清淤孔,清淤孔的间距不宜大于10m。

7.4.7基坑排水与市政管网连接前应设置沉淀池。明沟、集水井、沉淀池使用时应排水畅通并应随时清理淤积物。

5土钉墙

5.1稳定性验算

5.1.1土钉墙应按下列规定对基坑开挖的各工况进行整体滑动稳定性验算:1整体滑动稳定性可采用圆弧滑动条分法进行验算;

2 采用圆弧滑动条分法时,其整体稳定性应符合下列规定(图5.1.1):

{}s i s s s K K K K ≥ ,,,min ,2,1, (5.1.1-1)

()[]

()[]()j

j j

j k

x v k k k k j j j j

j j

j i

s G l

q s R G b q l c K θψαθ?θsin /cos tan cos ,,',∑∑∑?++++?++=

(5.1.1-2)

式中: Ks ──圆弧滑动整体稳定安全系数;安全等级为二级、三级的土钉墙,K s 分别不应小

于1.3、1.25;

K s,i ──第i 个滑动圆弧的抗滑力矩与滑动力矩的比值;抗滑力矩与滑动力矩

之比的最小值宜通过搜索不同圆心及半径的所有潜在滑动圆弧确定;

c j 、?j ──第j 土条滑弧面处土的粘聚力(kP a)、内摩擦角(°),按本规程第3.1.14

条的规定取值;

bj──第j 土条的宽度(m);

q j──作用在第j 土条上的附加分布荷载标准值(kP a);

ΔG j──第j 土条的自重(kN),按天然重度计算;

θj ──第j土条滑弧面中点处的法线与垂直面的夹角(°);

?R ’k,k ──第k层土钉或锚杆对圆弧滑动体的极限拉力值(kN );应取土钉或锚杆在滑动面以外的锚

固体极限抗拔承载力标准值与杆体受拉承载力标准值(f y kAs或fptk A p )的较小值;锚固体的极限抗拔承载力应按本规程第5.2.5条和第4.7.4条的规定计算,但锚固段应取圆弧滑动面以外的长度;

αk ──第k 层土钉或锚杆的倾角(°);

θk──滑弧面在第k层土钉或锚杆处的法线与垂直面的夹角(°);

s x ,k──第k 层土钉或锚杆的水平间距(m);

ψv──计算系数;可取ψv =0.5si n(θk +αk )t an ?,此处,?为第k 层土钉

或锚杆与滑弧交点处土的内摩擦角。

水泥土桩复合土钉墙,在考虑地下水压力的作用时,其整体稳定性应按本规程公式(4.2.

3-1)、(4.2.3-2)验算,但R ’

k,k 应按本条的规定取值。

当基坑面以下存在软弱下卧土层时,整体稳定性验算滑动面中尚应包括由圆弧与软弱土层层面组成的复合滑动面。

k

j

j

k,k x,k

j

j

i

(a)

k

j

j

k,k x,k

j

j

i

(b )

图5.1.1 土钉墙整体稳定性验算

(a)土钉墙在地下水位以上;(b)水泥土桩复合土钉墙

1-滑动面;2-土钉或锚杆;3-喷射混凝土面层;4-水泥土桩或微型桩

5.1.2 微型桩、水泥土桩复合土钉墙,滑弧穿过其嵌固段的土条可适当考虑桩的抗滑作用。

5.1.3 基坑底面下有软土层的土钉墙结构应进行坑底隆起稳定性验算,验算可采用下列公式(图5.1.3)。

()()

he c

q m K b b b q b q cN DN ≥+++2122112/γ (5.1.3-1)

?π?

tan 2)2

45(e tg N q +=? (5.1.3-2)

?tan /)1(-=q c N N (5.1.3-3)

D h q m m 2115.0γγ+= (5.1.3-4) 0212q D h q m m ++=γγ (5.1.3-5)

式中: q0──地面均布荷载(kP a);

γm1──基坑底面以上土的重度(kN/m 3);对多层土取各层土按厚度加权的平均重度; h ──基坑深度(m);

γm 2──基坑底面至抗隆起计算平面之间土层的重度(kN/m 3);对多层土

取各层土按厚度加权的平均重度;

D ──基坑底面至抗隆起计算平面之间土层的厚度(m);当抗隆起计算平面为基坑

底平面时,取D 等于0;

N c 、Nq ——承载力系数;

c 、?──抗隆起计算平面以下土的粘聚力(kP a)、内摩擦角(°),按本规程第

3.1.14条的规定取值;

b1──土钉墙坡面的宽度(m);当土钉墙坡面垂直时取b 1等于0;

b 2──地面均布荷载的计算宽度(m),可取b 2等于h ;

K he ──抗隆起安全系数;安全等级为二级、三级的土钉墙,K he 分别不应小于1.6、

1.4。

m2

2

1

1

2

图5.1.3 基坑底面下有软土层的土钉墙抗隆起稳定性验算

5.1.4 土钉墙与截水帷幕结合时,应按本规程附录C 的规定进行地下水渗透稳定性验算。

5.2 土钉承载力计算

5.2.1 单根土钉的抗拔承载力应符合下式规定:

t j

k j k K N R ≥,, (5.2.1)

式中: K t ──土钉抗拔安全系数;安全等级为二级、三级的土钉墙,Kt 分别不应小于1.6、

1.4;

N k,j ──第j 层土钉的轴向拉力标准值(kN ),应按本规程第5.2.2条的规定确定; Rk,j ──第j 层土钉的极限抗拔承载力标准值(kN ),应按本规程第5.2.5条的规定确定。

5.2.2 单根土钉的轴向拉力标准值可按下式计算:

zj

xj j ak j j

j k s s p N ,,cos 1

ζηα=

(5.2.2)

式中:N k,j ──第j 层土钉的轴向拉力标准值(k N);

αj ──第j 层土钉的倾角(°);

ζ──墙面倾斜时的主动土压力折减系数,可按本规程第5.2.3条确定。 ηj ──第j层土钉轴向拉力调整系数,可按公式(5.2.4-1)计算; p ak ,j ──第j 层土钉处的主动土压力强度标准值(kP a),应按本规程第3.4.2条确定; s x j──土钉的水平间距(m); s zj ──土钉的垂直间距(m )。

5.2.3 坡面倾斜时的主动土压力折减系数(ζ)可按下式计算:

??? ?

?

-?????

?

??

-

+-=245tan tan 12tan 12tan 02m m m ?β?β?βζ (5.2.3)

式中: ζ──主动土压力折减系数;

β──土钉墙坡面与水平面的夹角(°);

φm ──基坑底面以上各土层按土层厚度加权的内摩擦角平均值(°)。

5.2.4 土钉轴向拉力调整系数(ηj )可按下列公式计算:

h

z j b a a j )

(ηηηη--= (5.2.4-1)

∑∑==?-?-=

n

i aj

j

n

i aj

j

b

a E

z h E

z h 1

1)()(ηη (5.2.4-2)

式中: ηj ──土钉轴向拉力调整系数;

zj ──第j层土钉至基坑顶面的垂直距离(m);

h ──基坑深度(m);

ΔE aj──作用在以s x j、s zj 为边长的面积内的主动土压力标准值(k N);

ηa ──计算系数;

ηb──经验系数,可取0.6~1.0;

n ──土钉层数。 5.2.5单根土钉的极限抗拔承载力应按下列规定确定:

1 单根土钉的极限抗拔承载力应通过抗拔试验确定,其试验方法应符合本规程附录D 的规定。

2 单根土钉的极限抗拔承载力标准值可按下式估算,但应通过本规程附录D 规定的土钉抗拔试验进行验证:

∑=i sik j j k l q d R π, (5.2.5)

式中:R k,j ──第j层土钉的极限抗拔承载力标准值(kN );

dj——第j 层土钉的锚固体直径(m);对成孔注浆土钉,按成孔直径计算,

对打入钢管土钉,按钢管直径计算;

qsik ──第j 层土钉在第i 层土的极限粘结强度标准值(kPa);应由土钉抗拔试

验确定,无试验数据时,可根据工程经验并结合表5.2.5取值; l i──第j 层土钉在滑动面外第i土层中的长度(m );计算单根土钉极限抗

拔承载力时,取图5.2.5所示的直线滑动面,直线滑动面与水平面的

夹角取

2

m

?β+。

表5.2.5 土钉的极限粘结强度标准值

土的名称

土的状态

qsi k(kPa)

成孔注浆土钉

打入钢管土钉 素填土 15~30 20~35 淤泥质土

10~20 15~25 粘性土

0.75< IL≤1

0.25< I L ≤0.75

0< I L ≤0.25 I L≤0

20~30 30~45 45~60 60~70 20~40 40~55 55~70 70~80 粉土

40~80 50~90 砂土

松散

稍密 中密 密实

35~50 50~65 65~80 80~100

50~65 65~80 80~100 100~120

3 对安全等级为三级的土钉墙,可仅按公式(5.2.5)确定单根土钉的极限抗拔承载力。

4 当按本条第1~3款确定的土钉极限抗拔承载力标准值(R k,j )大于f ykA s 时,应取R k,

j=f yk A s。

k,j

j

i

m

图5.2.5 土钉抗拔承载力计算 1-土钉;2-喷射混凝土面层

5.2.6 土钉杆体的受拉承载力应符合下列规定:

s y j A f N (5.2.6)

式中: Nj ──第j层土钉的轴向拉力设计值(kN),按本规程第3.1.7的规定计算;

y f ──土钉杆体的抗拉强度设计值(kPa);

A s ──土钉杆体的截面面积(m 2)。

5.3 构造

5.3.1 土钉墙、预应力锚杆复合土钉墙的坡度不宜大于1:0.2;当基坑较深、土的抗剪强度较低时,宜取较小坡度。对砂土、碎石土、松散填土,确定土钉墙坡度时尚应考虑开挖时坡面的局部自稳能力。微型桩、水泥土桩复合土钉墙,应采用微型桩、水泥土桩与土钉墙面层贴合的垂直墙面。

注:土钉墙坡度指其墙面垂直高度与水平宽度的比值。

5.3.2 土钉墙宜采用洛阳铲成孔的钢筋土钉。对易塌孔的松散或稍密的砂土、稍密的粉土、

填土,或易缩径的软土宜采用打入式钢管土钉。对洛阳铲成孔或钢管土钉打入困难的土层,宜采用机械成孔的钢筋土钉。

5.3.3土钉水平间距和竖向间距宜为1m~2m;当基坑较深、土的抗剪强度较低时,土钉间距应取小值。土钉倾角宜为5°~20°,其夹角应根据土性和施工条件确定。土钉长度应按各层土钉受力均匀、各土钉拉力与相应土钉极限承载力的比值近于相等的原则确定。

5.3.4成孔注浆型钢筋土钉的构造应符合下列要求:

1成孔直径宜取70mm~120mm;

2土钉钢筋宜采用HRB400、HRB335级钢筋,钢筋直径应根据土钉抗拔承载力设计要求确定,且宜取16mm~32;

3应沿土钉全长设置对中定位支架,其间距宜取1.5m~2.5m,土钉钢筋保护层厚度不宜小于20mm;

4土钉孔注浆材料可采用水泥浆或水泥砂浆,其强度不宜低于20MPa;

5.3.5钢管土钉的构造应符合下列要求:

1钢管的外径不宜小于48mm,壁厚不宜小于3mm;钢管的注浆孔应设置在钢管里端l/2~2l/3范围内,此处,l为钢管土钉的总长度;每个注浆截面的注浆孔宜取2个,且应对称布置,注浆孔的孔径宜取5mm~8mm,注浆孔外应设置保护倒刺;

2钢管土钉的连接采用焊接时,接头强度不应低于钢管强度;可采用数量不少于3根、直径不小于16mm的钢筋沿截面均匀分布拼焊,双面焊接时钢筋长度不应小于钢管直径的2倍。

5.3.6土钉墙高度不大于12m时,喷射混凝土面层的构造要求应符合下列规定:1喷射混凝土面层厚度宜取80mm~100mm;

2喷射混凝土设计强度等级不宜低于C20;

3喷射混凝土面层中应配置钢筋网和通长的加强钢筋,钢筋网宜采用HPB235级钢筋,钢筋直径宜取6mm~10mm,钢筋网间距宜取150mm~250mm;钢筋网间的搭接长度应大于300mm;加强钢筋的直径宜取14mm~20mm;当充分利用土钉杆体的抗拉强度时,加强钢筋的截面面积不应小于土钉杆体截面面积的二分之一。

5.3.7土钉与加强钢筋宜采用焊接连接,其连接应满足承受土钉拉力的要求;当在土钉拉力作用下喷射混凝土面层的局部受冲切承载力不足时,应采用设置承压钢板等加强措施。

5.3.8当土钉墙墙后存在滞水时,应在含水土层部位的墙面设置泄水孔或其它疏水措施。

5.3.9采用预应力锚杆复合土钉墙时,预应力锚杆应符合下列要求:

1宜采用钢绞线锚杆;

2当预应力锚杆用于减小地面变形时,锚杆宜布置在土钉墙的较上部位;用于增强面层抵抗土压力的作用时,锚杆应布置在土压力较大及墙背土层较软弱的部位;

3锚杆的拉力设计值不应大于土钉墙墙面的局部受压承载力;

4预应力锚杆应设置自由段,自由段长度应超过土钉墙坡体的潜在滑动面;

5锚杆与土钉墙的喷射混凝土面层之间应设置腰梁连接,腰梁可采用槽钢腰梁或混凝土腰梁,腰梁与喷射混凝土面层应紧密接触,腰梁规格应根据锚杆拉力设计值确定;

6除符合上述规定外,锚杆的构造尚应符合本规程第4.7节有关构造的规定。

5.3.10采用微型桩垂直复合土钉墙时,微型桩应符合下列要求:

1 应根据微型桩施工工艺对土层特性和基坑周边环境条件的适用性选用微型钢管桩、型钢桩或灌注桩等桩型;

2 采用微型桩时,宜同时采用预应力锚杆;

3微型桩的直径、规格应根据对复合墙面的强度要求确定;采用成孔后插入微型钢管

桩、型钢桩的工艺时,成孔直径宜取130mm~300mm,对钢管,其直径宜取48mm~250mm,对工字钢,其型号宜取Ⅰ10~Ⅰ22;孔内应灌注水泥浆或水泥砂浆并充填密实;采用微型混凝土桩时,其直径宜取200mm~300mm;

4 微型桩的间距应满足土钉墙施工时桩间土的稳定性要求;

5 微型桩伸入基坑底面的长度宜大于桩径的5倍,且不应小于1m;

6微型桩应与喷射混凝土面层贴合。

5.3.11采用水泥土桩复合土钉墙时,水泥土桩应符合下列要求:

1应根据水泥土桩施工工艺对土层特性和基坑周边环境条件的适用性选用搅拌桩、旋喷桩等桩型;

2伸入基坑底面的长度宜大于桩径的2倍,且不应小于1m;

3水泥土桩应与喷射混凝土面层贴合;

4桩身28d无侧限抗压强度不宜小于1MPa;

5水泥土桩兼作截水帷幕时,尚应符合本规程第7.2节对截水的要求。

5.4施工与检测

5.4.1土钉墙应按每层土钉及混凝土面层分层设置、分层开挖基坑的步序施工。

5.4.2当有地下水时,对易产生流砂或塌孔的砂土、粉土、碎石土等土层,应通过试验确定土钉施工工艺和措施。

5.4.3钢筋土钉成孔时应符合下列要求:

1土钉成孔范围内存在地下管线等设施时,应在查明其位置并避开后,再进行成孔作业;

2应根据土层的性状选择洛阳铲、螺旋钻、冲击钻、地质钻等成孔方法,采用的成孔方法应能保证孔壁的稳定性、减小对孔壁的扰动;

3当成孔遇不明障碍物时,应停止成孔作业,在查明障碍物的情况并采取针对性措施后方可继续成孔;

4对易塌孔的松散土层宜采用机械成孔工艺;成孔困难时,可采用注入水泥浆等方法进行护壁。

5.4.4钢筋土钉杆体的制作安装时应符合下列要求:

1 钢筋使用前,应调直并清除污锈;

2当钢筋需要连接时,宜采用搭接焊、帮条焊;应采用双面焊,双面焊的搭接长度或帮条长度应不小于主筋直径的5倍,焊缝高度不应小于主筋直径的0.3倍;

3对中支架的断面尺寸应符合土钉杆体保护层厚度要求,对中支架可选用直径6mm~8mm的钢筋焊制;

4土钉成孔后应及时插入土钉杆体,遇塌孔、缩径时,应在处理后再插入土钉杆体。

5.4.5钢筋土钉注浆时应符合下列规定:

1注浆材料可选用水泥浆或水泥砂浆;水泥浆的水灰比宜取0.5~0.55;水泥砂浆的水灰比宜取0.40~0.45,同时,灰砂比宜取0.5~1.0,拌和用砂宜选用中粗砂,按重量计的含泥量不得大于3%;

2水泥浆或水泥砂浆应拌和均匀,一次拌和的水泥浆或水泥砂浆应在初凝前使用;

3注浆前应将孔内残留的虚土清除干净;

4注浆时,宜采用将注浆管与土钉杆体绑扎、同时插入孔内并由孔底注浆的方式;注浆管端部至孔底的距离不宜大于200mm;注浆及拔管时,注浆管口应始终埋入注浆液面内,应在新鲜浆液从孔口溢出后停止注浆;注浆后,当浆液液面下降时,应进行补浆。

5.4.6打入式钢管土钉施工时应符合下列规定:

1钢管端部应制成尖锥状;顶部宜设置防止钢管顶部施打变形的加强构造;

2注浆材料应采用水泥浆;水泥浆的水灰比宜取0.5~0.6;

3注浆压力不宜小于0.6MPa;应在注浆至管顶周围出现返浆后停止注浆;当不出现返浆时,可采用间歇注浆的方法。

5.4.7喷射混凝土面层施工应符合下列规定:

1细骨料宜选用中粗砂,含泥量应小于3%;

2粗骨料宜选用粒径不大于20mm的级配砾石;

3水泥与砂石的重量比宜取1:4~1:4.5,砂率宜取45%~55%,水灰比宜取0.4~0.45;

4使用速凝剂等外掺剂时,应做外加剂与水泥的相容性试验及水泥净浆凝结试验,并应通过试验确定外掺剂掺量及掺入方法;

5喷射作业应分段依次进行,同一分段内喷射顺序应自下而上均匀喷射,一次喷射厚度宜为30mm~80mm;

6喷射混凝土时,喷头与土钉墙墙面应保持垂直,其距离宜为0.6m~1.0m;

7喷射混凝土终凝2h后应及时喷水养护;

8钢筋与坡面的间隙应大于20mm;

9 钢筋网可采用绑扎固定;钢筋连接宜采用搭接焊,焊缝长度不应小于钢筋直径的10倍;

10 采用双层钢筋网时,第二层钢筋网应在第一层钢筋网被喷射混凝土覆盖后铺设。

5.4.8土钉墙的施工偏差应符合下列要求:

1钢筋土钉的成孔深度应大于设计深度0.1m;

2土钉位置的允许偏差应为100mm;

3土钉倾角的允许偏差应为3°;

4土钉杆体长度应大于设计长度;

5 钢筋网间距的允许偏差应为±30mm;

6微型桩桩位的允许偏差应为50mm;

7微型桩垂直度的允许偏差应为0.5%。

5.4.9复合土钉墙中预应力锚杆的施工应符合本规程第4.8节的有关规定。微型桩的施工应符合现行行业标准《建筑桩基技术规范》JGJ94的有关规定。水泥土桩的施工应符合本规程第7.2节的有关规定。

5.4.10土钉墙的质量检测应符合下列规定:

1应对土钉的抗拔承载力进行检测,抗拔试验可采用逐级加荷法;土钉的检测数量不宜少于土钉总数的1%,且同一土层中的土钉检测数量不应少于3根;试验最大荷载不应小于土钉轴向拉力标准值的1.1倍;检测土钉应按随机抽样的原则选取,并应在土钉固结体强度达到设计强度的70%后进行试验;试验方法应符合本规程附录D的规定;

2土钉墙面层喷射混凝土应进行现场试块强度试验,每500m2喷射混凝土面积试验数量不应少于一组,每组试块不应少于3个;

3应对土钉墙的喷射混凝土面层厚度进行检测,每500m2喷射混凝土面积检测数量不应少于一组,每组的检测点不应少于3个;全部检测点的面层厚度平均值不应小于厚度设计值,最小厚度不应小于厚度设计值的80%;

4复合土钉墙中的预应力锚杆,应按本规程第4.8.8条的规定进行抗拔承载力检测;

5复合土钉墙中的水泥土搅拌桩或旋喷桩用作帷幕时,应按本规程第7.2.14条的规定进行质量检测。

?8.1 基坑开挖

8.1.1基坑开挖应符合下列规定:

1当支护结构构件强度达到开挖阶段的设计强度时,方可向下开挖;对采用预应力锚杆的支护结构,应在施加预加力后,方可开挖下层土方;对土钉墙,应在土钉、喷射混凝土面层的养护时间大于2d后,方可开挖下层土方;

2应按支护结构设计规定的施工顺序和开挖深度分层开挖;

3开挖至锚杆、土钉施工作业面时,开挖面与锚杆、土钉的高差不宜大于500mm;

4开挖时,挖土机械不得碰撞或损害锚杆、腰梁、土钉墙墙面、内支撑及其连接件等构件,不得损害已施工的基础桩;

5当基坑采用降水时,地下水位以下的土方应在降水后开挖;

6当开挖揭露的实际土层性状或地下水情况与设计依据的勘察资料明显不符,或出现异常现象、不明物体时,应停止挖土,在采取相应处理措施后方可继续挖土;

7挖至坑底时,应避免扰动基底持力土层的原状结构。

8.1.2软土基坑开挖尚应符合下列规定:

1应按分层、分段、对称、均衡、适时的原则开挖;

2当主体结构采用桩基础且基础桩已施工完成时,应根据开挖面下软土的性状,限制每层开挖厚度;

3对采用内支撑的支护结构,宜采用开槽方法浇筑混凝土支撑或安装钢支撑;开挖到支撑作业面后,应及时进行支撑的施工;

4对重力式水泥土墙,沿水泥土墙方向应分区段开挖,每一开挖区段的长度不宜大于40m。

8.1.3 当基坑开挖面上方的锚杆、土钉、支撑未达到设计要求时,严禁向下超挖土方。8.1.4采用锚杆或支撑的支护结构,在未达到设计规定的拆除条件时,严禁拆除锚杆或支撑。

8.1.5 基坑周边施工材料、设施或车辆荷载严禁超过设计要求的地面荷载限值。

8.1.6基坑开挖和支护结构使用期内,应按下列要求对基坑进行维护:

1雨期施工时,应在坑顶、坑底采取有效的截排水措施;排水沟、集水井应采取防渗措施;

2基坑周边地面宜作硬化或防渗处理;

3基坑周边的施工用水应有排放系统,不得渗入土体内;

4当坑体渗水、积水或有渗流时,应及时进行疏导、排泄、截断水源;

5开挖至坑底后,应及时进行混凝土垫层和主体地下结构施工;

6主体地下结构施工时,结构外墙与基坑侧壁之间应及时回填。

8.1.7支护结构或基坑周边环境出现本规程第8.2.23条规定的报警情况或其他险情时,应立即停止开挖,并应根据危险产生的原因和可能进一步发展的破坏形式,采取控制或加固措施。危险消除后,方可继续开挖。必要时,应对危险部位采取基坑回填、地面卸土、临时支撑等应急措施。当危险由地下水管道渗漏、坑体渗水造成时,尚应及时采取截断渗漏水水源、疏排渗水等措施。

8.2 基坑监测

8.2.1基坑支护设计应根据支护结构类型和地下水控制方法,按表8.2.1选择基坑监测项目,并应根据支护结构构件、基坑周边环境的重要性及地质条件的复杂性确定监测点部位及

数量。

选用的监测项目及其监测部位应能够反映支护结构的安全状态和基坑周边环境受影响的程度。

表8.2.1 基坑监测项目选择

监测项目

支护结构的安全等级

一级二级三级

支护结构顶部水平位移应测应测应测

基坑周边建(构)筑物、

地下管线、道路沉降

应测应测应测坑边地面沉降应测应测宜测支护结构深部水平位移应测应测选测锚杆拉力应测应测选测

支撑轴力应测宜测选测挡土构件内力应测宜测选测

支撑立柱沉降应测宜测选测

支护结构沉降应测宜测选测地下水位应测应测选测

土压力宜测选测选测孔隙水压力宜测选测选测

注:表内各监测项目中,仅选择实际基坑支护形式所含有的内容。

8.2.2 安全等级为一级、二级的支护结构,在基坑开挖过程与支护结构使用期内,必须进行支护结构的水平位移监测和基坑开挖影响范围内建(构)筑物、地面的沉降监测。

8.2.3 支挡式结构顶部水平位移监测点的间距不宜大于20m,土钉墙、重力式挡墙顶部水平位移监测点的间距不宜大于15m,且基坑各边的监测点不应少于3个。基坑周边有建筑物的部位、基坑各边中部及地质条件较差的部位应设置监测点。

8.2.4 基坑周边建筑物沉降监测点应设置在建筑物的结构墙、柱上,并应分别沿平行、垂直于坑边的方向上布设。在建筑物邻基坑一侧,平行于坑边方向上的测点间距不宜大于15m。垂直于坑边方向上的测点,宜设置在柱、隔墙与结构缝部位。垂直于坑边方向上的布点范围应能反映建筑物基础的沉降差。必要时,可在建筑物内部布设测点。

8.2.5 地下管线沉降监测,当采用测量地面沉降的间接方法时,其测点应布设在管线正上方。当管线上方为刚性路面时,宜将测点设置于刚性路面下。对直埋的刚性管线,应在管线节点、竖井及其两侧等易破裂处设置测点。测点水平间距不宜大于20m。

8.2.6 道路沉降监测点的间距不宜大于30m,且每条道路的监测点不应少于3个。必要时,沿道路方向可布设多排测点。

8.2.7对坑边地面沉降、支护结构深部水平位移、锚杆拉力、支撑轴力、立柱沉降、支护结构沉降、挡土构件内力、地下水位、土压力、孔隙水压力进行监测时,监测点应布设在邻近建筑物、基坑各边中部及地质条件较差的部位,监测点或监测面不宜少于3个。8.2.8 坑边地面沉降监测点应设置在支护结构外侧的土层表面或柔性地面上。与支护结构的水平距离宜在基坑深度的0.2倍范围以内。有条件时,宜沿坑边垂直方向在基坑深度的

1~2倍范围内设置多测点的监测面,每个监测面的测点不宜少于5个。

8.2.9采用测斜管监测支护结构深部水平位移时,对现浇混凝土挡土构件,测斜管应设置在挡土构件内,测斜管深度不应小于挡土构件的深度;对土钉墙、重力式挡墙,测斜管应设置在紧邻支护结构的土体内,测斜管深度不宜小于基坑深度的 1.5倍。测斜管顶部尚应设置用作基准值的水平位移监测点。

8.2.10锚杆拉力监测宜采用测量锚头处的锚杆杆体总拉力的方式。对多层锚杆支护结构,宜在同一竖向平面内的每层锚杆上设置测点。

8.2.11支撑轴力监测点宜设置在主要支撑构件、受力复杂和影响支撑结构整体稳定性的支撑构件上。对多层支撑支护结构,宜在同一竖向平面的每层支撑上设置测点。

8.2.12挡土构件内力监测点应设置在最大弯距截面处的纵向受拉钢筋上。当挡土构件采用沿竖向分段配置钢筋时,应在钢筋截面面积减小且弯距较大部位的纵向受拉钢筋上设置测点。

8.2.13支撑立柱沉降监测点宜设置在基坑中部、支撑交汇处及地质条件较差的立柱上。8.2.14当挡土构件下部为软弱持力土层,或采用大倾角锚杆时,宜在挡土构件顶部设置沉降监测点。

8.2.15基坑内地下水位的监测点可设置在基坑内或相邻降水井之间。当监测地下水位下降对基坑周边建筑物、道路、地面等沉降的影响时,地下水位监测点应设置在降水井或截水帷幕外侧且宜尽量靠近被保护对象。当有回灌井时,地下水位监测点应设置在回灌井外侧。水位观测管的滤管应设置在所测含水层内。

8.2.16各类水平位移观测、沉降观测的基准点应设置在变形影响范围外,且基准点数量不应少于两个。

8.2.17基坑各监测项目采用的监测仪器的精度、分辨率及测量精度应能反映监测对象的实际状况,并应满足基坑监控的要求。

8.2.18各监测项目应在基坑开挖前或测点安装后测得稳定的初始值,且次数不应少于两次。

8.2.19支护结构顶部水平位移的监测频次应符合下列要求:

1基坑向下开挖期间,监测不应少于每天一次,直至开挖停止后连续三天的监测数值稳定;

2当地面、支护结构或周边建筑物出现裂缝、沉降,遇到降雨、降雪、气温骤变,基坑出现异常的渗水或漏水,坑外地面荷载增加等各种环境条件变化或异常情况时,应立即进行连续监测,直至连续三天的监测数值稳定;

3当位移速率大于或等于前次监测的位移速率时,则应进行连续监测;

4在监测数值稳定期间,尚应根据水平位移稳定值的大小及工程实际情况定期进行监测。

8.2.20支护结构顶部水平位移之外的其他监测项目,除应根据支护结构施工和基坑开挖情况进行定期监测外,尚应在出现下列情况时进行监测:

1支护结构水平位移增长时;

2 出现本规程第8.2.19条第1~2款的情况时;

3锚杆、土钉或挡土构件施工时,或降水井抽水等引起地下水位下降时,应进行相邻建筑物、地下管线、道路的沉降观测。

当监测数值比前次数值增长时,应进行连续监测,直至数值稳定。

8.2.21对基坑监测有特殊要求时,各监测项目的测点布置、量测精度、监测频度等应根据实际情况确定。

8.2.22在支护结构施工、基坑开挖期间以及支护结构使用期内,应对支护结构和周边环境

的状况随时进行巡查,现场巡查时应检查有无下列现象及其发展情况:

1基坑外地面和道路开裂、沉陷;

2基坑周边建筑物开裂、倾斜;

3基坑周边水管漏水、破裂,燃气管漏气;

4挡土构件表面开裂;

5锚杆锚头松动,锚杆杆体滑动,腰梁和锚杆支座变形,连接破损等;

6支撑构件变形、开裂;

7土钉墙土钉滑脱,土钉墙面层开裂和错动;

8基坑侧壁和截水帷幕渗水、漏水、流砂等;

9降水井抽水不正常,基坑排水不通畅。

8.2.23基坑监测数据、现场巡查结果应及时整理和反馈。当出现下列危险征兆时应立即报警:

1支护结构位移达到设计规定的位移限值,且有继续增长的趋势;

2支护结构位移速率增长且不收敛;

3支护结构构件的内力超过其设计值;

4基坑周边建筑物、道路、地面的沉降达到设计规定的沉降限值,且有继续增长的趋势;基坑周边建筑物、道路、地面出现裂缝,或其沉降、倾斜达到相关规范的变形允许值;

5支护结构构件出现影响整体结构安全性的损坏;

6基坑出现局部坍塌;

7开挖面出现隆起现象;

8基坑出现流土、管涌现象。

基坑支护规范

建筑基坑支护技术规程 1 总则 1.0.1 为了在建筑基坑支护设计与施工中做到技术先进、经济合理、确保基坑边坡稳定、基坑周围建筑物、道路及地下设施安全,制定本规程。 1.0.2 本规程适用于一般地质条件下的建筑物和一般构筑物的基坑工程勘察、支护设计、施工、检测及基坑开挖与监控。对于膨胀土和湿陷性黄土等特殊地质条件地区应结合当地工程经验应用。 1.0.3 基坑支护设计与施工应综合考虑工程地质与水文地质条件、基础类型、基坑开挖深度、降排水条件、周边环境对基坑侧壁位移的要求、基坑周边荷载、施工季节、支护结构使用期限等因素,做到因地制宜,因时制宜,合理设计、精心施工、严格监控。 1.0.4 基坑支护工程除应符合本规程的规定外,尚应符合国家现行的有关标准、规范和规程的规定。 2 术语、符号 2.1 术语 2.1.1 建筑基坑building foundation pit 为进行建筑物(包括构筑物)基础与地下室的施工所开挖的地面以下空间。 2.1.2 基坑侧壁side of foundation pit 构成建筑基坑围体的某一侧面。 2.1.3 基坑周边环境Surroundings around foundation pit 基坑开挖影响范围内包括既有建(构)筑物、道路、地下设施、地下管线、岩土体及地下水体等的统称。 2.1.4 基坑支护retaining and protecting for foundation excavation 为保证地下结构施工及基坑周边环境的安全,对基坑侧壁及周边环境采用的支挡、加固与保护措施。 2.1.5 排桩piles in row 以某种桩型按队列式布置组成的基坑支护结构。 2.1.6 地下连续墙diaphragm 用机械施工方法成槽浇灌钢筋混凝土形成的地下墙体。 2.1.7 水泥土墙cement –soil wall 由水泥土桩相互搭接形成的格栅状、壁状等形式的重力式结构。 2.1.8 土钉墙soil nailing wall 采用土钉加固的基坑侧壁土体与护面等组成的支护结构。 2.1.9 土层锚杆soil anchor 由设置于钻孔内、端部伸入稳定土层中的钢筋或钢绞线与孔内注浆体组成的受拉杆体。 2.1.10 支撑体系bracing system 由钢或钢筋混凝土构件组成的用以支撑基坑侧壁的结构体系。 2.1.11 冠梁top beam 设置在支护结构顶部的钢筋混凝土连梁。 2.1.12 腰梁middle beam 设置在支护结构顶部以下传递支护结构与锚杆或内支撑支点力的钢筋混凝土梁或钢梁。 2.1.13 支点fulcrum

基坑围护设计手册

基坑围护设计手册 基坑围护设计手册 目录 1 土压力 1.1 库仑土压力 1.2 朗肯土压力 1.3 特殊情况下的土压力 1.4 《建筑基坑支护技术规程》土压力 1.5 工程实测土压力 1.6 土压力计算模型 2 基坑稳定性 2.1 土坡稳定性 2.2 围护结构整体稳定性 2.3 基坑底面抗隆起稳定性 2.4 基坑底面抗渗流稳定性 3 土钉墙 3.1 概述 3.2 《建筑基坑支护技术规程》方法 3.3 《建筑基坑工程技术规范》方法 3.4 《基坑土钉支护技术规程》方法 3.5 王步云建议的方法 3.6 冶金部建筑研究总院建议的方法 3.7 王长科建议的方法 3.8 工程实例 4 重力式围护结构 5 桩墙式围护结构 5.1 桩墙式围护结构的类型 5.2 悬臂式围护结构

5.3 锚撑式围护结构 6 锚杆 6.1 锚杆承载力 6.2 锚杆稳定性 1 土压力 1.1 库仑土压力 1773年,法国科学家库仑做出两项假定,提出了土压力理论。 (1) 墙后填土为砂土(黏聚力c =0); (2) 产生主动、被动土压力时,墙后填土形成滑楔体,其滑裂面为通过墙脚的平面。 1.1.1 主动土压力(图1.1-1、图1.1-2) 库仑主动土压力为: z K e a a γ= (1.1-1) a 2a 2 1 K h E γ= (1.1-2) 2 2 2a )cos()cos()sin()sin(1)cos(cos ) (cos ? ? ? ???-+-+++-= βρδρβφδφδρρρφK (1.1-3) 式中 a e ----主动土压力强度; a E ----总主动土压力; ρ----墙背倾角; β----墙背填土表面的倾角; δ----墙背和土体之间的摩擦角; φγ、----土的重力密度、内摩擦角;

基坑支护设计总说明

基坑边坡支护设计总说明 一、工程概况 项目位于贵阳市白云区南湖东路西北侧,场地西北紧临建设小区,建设小区比本项目±0.000高程面低2至4米,东北侧紧临白云区医院现有锅炉房及医院用房,东南侧紧临医院用房及南湖路,西南侧紧靠山体绿地。拟建建筑物住院楼±0.000高程为1299.300m,设两层地下室,框架结构,拟采用柱基(桩基);一号医技楼±0.000高程为1300.000m,设两层地下室,框架结构,拟采用柱基(桩基);二号医技楼±0.000高程为1298.45m,框架结构,拟采用柱基(桩基);根据场地周边现状及项目建筑构成,白云区医院改扩建项目基坑边坡支护工程将形成十三段基坑边坡,总长724.5m,各段边坡工程概况详见表1: 各段边坡特征统计表表1 本项目场地狭小,基坑AB、CWDEJ、FG段无放坡条件,采用垂直开挖;BC、JF、JHF段土层按1:1坡比开挖,岩层采用1:0.3坡比开挖;GYKLMNQ段土层按1:0.3坡比开挖,岩层采用1:0.15坡比开挖;AQ段按1:05开挖施工挡墙后再按施工规范回填,所有基坡均是一级开挖到位。WDEJHFG、AQ段坑顶周围为场内临时便道及材料加工存放场,上部考虑均布荷载30KPa,但距支护结构顶2.0m范围内不许如何形式的附加荷载。基坑边坡若垮塌,造成的不良影响严重,边坡安全等级为二级。基坑GYKLMNQ段边坡按永久性边坡进行设计,设计年限与主体结构一致;其余边坡均按临时性边坡进行设计,设计有效支护时间为2年。 受贵阳白云泉福医疗投资管理有限公司(以下称“建设单位”)委托,我公司对拟建场地基坑边坡支护工程进行专项设计。 二、岩土工程地质条件 据白云区医院改扩建项目基坑边坡岩土工程勘察报告,结合现场踏勘,现将场地工程地质条件简述如下: 1、地质地貌 场地位于贵阳市白云区,紧邻南湖路,交通便利。该区域为溶蚀残丘-洼地地貌区,原自然地面起伏较小,地势开阔平坦,南高北低,拟建场地位于坡度较缓的山脚处,经后期平场,勘察期间拟建场地地形较平坦,地面标高在1299.5~1303,最大高差3.5米。

基坑支护桩施工方案

云岭·盛世佳园工程 基坑支护水泥土桩施工专项方案 一、工程概况及编制依据 云岭·盛世佳园基坑的一层地下室,采用放坡(素喷或网喷)+水泥土桩支护+长螺旋水泥土桩止水帷幕结合的支护方案。其中水泥土桩桩径分别为?600,?800,搭接200mm,有效桩长在7 M以内,空桩长度约2—2.5米(详见设计图),总桩数约1600颗。配合比暂定:水泥采用P.S.A 32.5矿渣水泥,水泥掺量120~150kg/m,水灰比0.5~0.6;水泥:黏土:瓜子石采用2:3:2的配合比,可根据现场泵送情况进行适当调整,现场做配比试验和水泥土和易性试验,必要时增加外掺剂,确保水泥土桩的强度不低于 2.0MPa。最终施工配合比按按实验室提供的配合比进行施工。 1、编制依据: (1)西南有色勘测院提供的《岩土工程勘察报告》; (2)云南省设计院提供的基坑支护设计图。 (3)水泥土桩施工经验。 2、主要规范规程 《建筑基坑支护技术规程》JGJ 120-99 《建筑施工安全技术规范》ISBNT-112-04108-2 《建筑基坑工程技术规范》YB9258-97

《建筑地基基础设计规范》GB50007—2002 《建筑地基基础工程施工质量验收规范》GB50202-2002 《施工现场临时用电安全技术规范》JGJ46-2005 《建筑机械使用安全技术规程》JGJ33-2001 《建筑施工安全技术规范》ISBNT-112-04108-2 《建筑工程施工质量验收统一标准》GB50300-2001 3、法律、法规 《中华民人共和国建筑法》 《中华人民共和国环境保护法》 《建筑工程消防监督审核管理规定》 二、工程地质条件: 1、工程地质条件 拟建场地原为耕地、鱼塘,勘察时经人工填筑整平,现状地形平坦,高差较小;场地原为耕地,经填土整平后场地较为平坦,勘察范围内地面标高介于1888.60m~1889.37m,最大高差0.77 m,场地平均标高1888.80m。 2、场地地基土 据钻探揭露,拟建场地地基土层顶部为第四系人工填土,向下为淤积、湖积软土及湖积的粘性土及粉土、砂土等构成。现将基坑开挖范围内各土层特征自上而下分述如下: ①层—杂填土:场地浅表部为新近的人工填土,含有大量碎砖、碎石块等建筑垃圾,粘性土充填。结构松散,固结差。层厚0.1-2.5米。 ②层—粉质粘土:以褐黄、褐灰色为主,可塑状态,湿,中等压缩性。夹少量钙质结

基坑支护细则汇编

XX项目工程基坑支护监理细则 一、工程概述: 该工程为XX项目工程的基础支护工程,基坑开挖深度-9.0m,采用深搅桩止水帷幕、基坑土钉支护方案施工;深搅桩计有1200根,深度18m左右;土钉墙面积3670m2,计划工期(含土方、降水)80天。 二、监理工作依据: 1.本项目实施阶段的监理合同; 2.建设单位与施工单位签订的承包合同及附件; 3.建设单位、监理公司、施工单位三方工作程序; 4.建设单位提供的工程地质勘察报告及基础开挖图; 5.经业主及监理公司审定的施工方案及补充意见; 6.与本项工程有关的施工及验收规范、标准及规定; 7.监理规划。 三、技术要求: 1.深搅桩桩径D500mm,间距300mm,搭接200mm。 2.桩的垂直度偏差不得超过1%,桩位偏差不得大于50mm,桩径偏差不得大于4%,桩间搭接应满足要求;施工间隔时间不应大于24小时,确保根根直立,防止开岔。 3.控制深搅桩深度进入不透水层,上下搅动2-3次,水泥掺入比15%—20%。 4.锚杆长度9-16m;间距1500×1500mm,基坑四周中部1/3范围内的加强部份为1200×1200mm。 5.所有锚杆接头应达到要求,应进行拉拔力破坏实验。 6.每根锚杆的注浆压力与注浆量依据不同土层并根据实验确定标准要求。

7.一、二层预应力锚杆采用预紧螺栓法施加预应力。 8.钢筋网Φ6.5@200×200,锚杆头之间用Φ16圆钢焊接,加强筋尺寸Φ16@1500×1500(加强范围内Φ16@1200×1200)。 9.喷射砼按配合比1:2:2(水泥:砂:石子)施工,喷射厚度70-100mm。 10.控制基坑顶部的侧向位移在基坑开挖深度的1‰-3‰范围内。 11.土钉支护必须进行土钉的现场抗拉拔实验。 四、监理质量控制措施: (一)质量控制的原则: 1.工程质量是监理工作的核心,与进度控制、投资控制协调统一,监督施工单位按合同、技术规范、设计图纸及审定的方案要求施工; 2.坚持“一丝不苟、实事求是、公正合理、热情服务”的原则; 3.坚持“预防为主、动态管理、跟踪监控”,实现工程质量总目标。 (二)质量控制措施: 1.施工前: ①了解熟悉工程地质勘察报告及周围的建筑物、构筑物、道路及管线情况; ②分析地勘报告及地质剖面图,了解场地土质状况,确定深搅深度、土钉锚杆的倾角、降水井的设置; ③审查分包单位的施工能力及机械设备、人力的配备; ④复核施工单位的测量放线、水准点及基坑周边侧向位移及沉降点的设置、监测措施; ⑤预测施工中可能发生的影响,要求施工单位提交相应方案措施; ⑥要求施工单位落实人员职责,分工明确,确保人员到位,保证工程按质、按量,安全施工。 2.施工中:

基坑支护方案(土钉墙,详细计算)..

第一章基坑边坡计算 一、工程概况 (一)土质分布情况 ①1杂填土(Q4ml):由粉质粘土混较多的碎砖、碎石子等建筑垃圾及生活垃圾组成。层厚0.50~4.80米。 ①2素填土(Q4ml):主要由软~可塑状粉质粘土夹少量小碎石子、碎砖组成。层厚0.40~2.90米。 ①3淤泥质填土(Q4ml):。主要为原场地塘沟底部的淤泥,后经翻填。分布无规律,局部分布。层厚0.80~2.30米。 ②1粉质粘土(Q4al):可塑,局部偏软塑,中压缩性,切面稍有光泽,干强度中等,韧性中等,土质不均匀,该层分布不均,局部缺失。层顶标高5.00~13.85米,层厚0.50~8.20米。 ②2粉土夹粉砂(Q4al):中压缩性,干强度及韧性低。夹薄层粉砂,具水平状沉积层理,单层厚1.0~5.0cm,局部富集。该层分布不均匀,局部缺失。层顶标高1.30~ 10.93米,层厚0.80~4.50米。 ②3含淤泥质粉质粘土(Q4al):软~流塑,高压缩性,干强度、韧性中等偏低。局部夹少量薄层状粉土及粉砂,层顶标高1.87~10.03米,层厚1.00~13.50米。 ②4粉质粘土(Q4al):饱和,可塑,局部软塑,中压缩性,层顶标高-8.30~7.27米,层厚1.10~14.60米。 ③1粉质粘土(Q3al):可~硬塑,中压缩性。干强度高,韧性高。含少量铁质浸染斑点及较多的铁锰质结核。该层顶标高-11.83~13.23米,层厚1.40~14.00米。 ③2粉质粘土(Q3al)可塑,局部软塑,中压缩性。该层顶标高-18.83~6.83米,层厚2.20~23.70米。 ④粉质粘土混砂砾石(Q3al):可塑,局部软塑,中偏低压缩性,干强度中等,韧性中等。该层顶标高-26.73~-10.64米,层厚0.50~6.50米。 (二)支护方案的选择 根据本工程现场实际情况,基坑各部位确定采取如下支护措施

深基坑支护工程设计的几点体会

深基坑支护工程设计的几点体会 2013-12-05 10:37 来源:中国岩土网阅读:1304 深基坑支护工程设计一般要经历设计前的准备工作、方案设计、施工图设计等阶段,结合自己的几年的工作经历写的几点体会。 深基坑支护工程设计一般要经历设计前的准备工作、方案设计、施工图设计等阶段,下面结合自己的几年的工作经历写几点体会。 一、设计前的准备工作 1、收集相关资料 接到一项设计任务后,首先要做的工作就是收集相关资料,包括场地现状地形图、地质勘察报告、建筑总平面图、地下室平面(剖面)图、建筑基础及基础底板结构图,周边若有建(构)筑物或地下管线的还要收集场地周边建(构)筑物的地基基础图纸(包括基础形式、埋深、平面布置等)和地下管线的图纸。 收集到上述资料后,应认真理解、消化有关图纸,并做好以下几件事情: (1)确定基坑底开挖标高,初步了解基坑各侧的开挖深度; (2)重点关注地下室外墙与场地红线的相对位置关系,以确定有无放坡空间的可能; (3)阅读地质勘察报告,掌握整个场地大致地质分布情况,重点关注有无砂(砾)层、软弱土层及基岩深度,若有砂(砾)层、软弱土层等,查看其土层描述及标贯击数情况,初步掌握其岩土力学性质。 (4)根据管线资料,了解管线分布情况,尤其分布在1.5~2.0倍坑深范围内的管线分布情况。 2、踏勘现场 踏勘现场是进行基坑工程设计很重要的一步现场工作,很多年轻的同志不以为然,认为坐在办公室看场地地形图就可以了,其实这是错误的。只有亲自踏勘现场,才能充分了解现场情况,做到了然于胸,在后面确定支护设计方案时才能抓住重点,做到有的放矢。那么踏勘现场时要注意哪些方面呢: (1)前面通过资料收集已初步掌握场地红线的与地下室外墙的距离管线,踏勘现场时应重点关注,现场确认有无放坡的可能以及放坡的大概坡率及空间。 (2)沿着场地红线察看一周,看周边建(构)筑物的情况以及与红线的大致位置关系,增加感性认识,察看时应重点关注周边建(构)筑物的结构形式(是框架结构还是砖砌结构、楼层高度)、建筑物墙体有无旧裂缝、建筑物现在的使用情况及周边地面有无裂缝、下沉等现象,同时察看周边地下管线情况,看看还有没有其

基坑支护设计总说明

基坑支护设计总说明 一、工程概况 本工程为新川科技园污水泵站提升泵房项目基坑支护施工图设计。 (一)基坑位置及建设规模 场地位于污水泵站提升泵房位于新川科技园二组团内,东临洗瓦堰及B线道路,北面为规划220KV变电站,西面为地铁一号线红星站场站用地,之间有规划10m宽防护绿地,南面为规划市政绿地及华阳大道,该建筑物为1F,设一层地下室,设计 +0.00=480.30m。 (二)使用年限 本工程场地地面标高在481.0m左右,因此基坑设计时高度按481.0m考虑,地 下室基坑开挖深度西边按16.5m考虑(即基坑开挖底面标高为464.50m),东边按13.8m考虑(即基坑开挖底面标高为467.2m)。基坑安全等级为一级,结构重要性系数为1.1。 本项目基坑支护结构设计使用年限为一年,从基坑开挖之日起算。超过使用年限后未回填,支护体系需进行安全鉴定。 (三)基坑对周边影响 本工程地下室开挖深度为场地面标高(481.0m)以下13.8-16.5m,基坑开挖底 面标高为464.5-467.2m。根据业主提供的周边道路及地下管线资料及现状周边建(构)筑物情况,场地周边环境情况如下: 1、周边建构筑物及市政道路 基坑现在场地周围无建筑物分布。

2、地下管线 基坑的东侧和南侧有军用电缆分布电缆埋深约3m,距离本工程地下室边线约10~16.7m,不会对其造成影响。 3、地面沉降 本工程拟采用管井降水与明排水相结合。明挖顺作法施工时,工程施工可能引起地面不均匀沉降,应预防周边建(构筑)物下沉、倾斜、开裂,甚至造成破坏性影响。 施工前应对周边进行摄像取证,并在建筑物周边布设观测点,进行系统、全面的跟踪测量,信息化施工。根据监测结果及时调整施工方案,如出现异常情况,应立即停止施工,及时采用补救措施,确保建(构)筑物安全。 二、设计依据 1、《新川创新科技园污水泵站及配套管网市政工程岩土工程勘察报告》 2、业主提供的《新川创新科技园污水泵站建筑设计图》 3、设计采用的规范: 《岩土工程勘察规范》(GB50021-2001)(2009版) 《建筑地基基础设计规范》(GB50007-2011) 《混凝土结构设计规范》(GBJ50010-2010) 《建筑桩基技术规范》(JGJ94-2008) 《建筑基坑支护技术规范》(JGJ120-2012)

基坑工程技术规范

12 管道沟槽基坑工程 12.1 一般规定 12.1.1 本章适用于各类管道沟槽基坑工程支护结构的设计、施工与检测。 12.1.2 管道沟槽基坑工程的开槽应按管线布置图确定开挖深度,方型涵管的开挖沟槽宽度由外包尺寸确定,圆形管道开挖沟槽的槽底宽度不应小于表12.1.2所列值 表12.1.2 圆形管道开挖沟槽底宽度值 <2.00 2.00 ~ 2.49 2.50 ~ 2.99 3.00 ~ 3.49 3.50 ~ 3.99 4.00 ~ 4.49 4.50 ~ 4.99 5.00 ~ 5.49 5.50 ~ 5.99 6.00 ~ 6.50 > 6.50 Φ 230 1400 1400 1400 1400 1400 Φ 300 1450 145 1450 1450 1450 1450 Φ 450 1750 1750 1750 1750 1750 1750 Φ 600 1950 1950 1950 1950 1950 1950 1950 1950 Φ 800 2200 2200 2200 2200 2200 2200 2200 2200 Φ 1000 2450 2450 2450 2450 2450 2550 2550 2550 Φ 1200 2650 2650 2650 2650 2650 2750 2750 2750 2750 Φ 1350 2800 2800 2800 2800 2900 2900 2900 2900 3000 Φ 1500 3000 3000 3000 3000 3100 3100 3100 3100 3200 Φ 1650 3150 3150 3150 3150 3250 3250 3250 3250 3350 Φ 1800 3350 3350 3350 3350 3450 3450 3450 3450 3550 Φ 2000 3650 3650 3650 3750 3750 3750 3750 3850 Φ 2200 3850 3850 3850 3850 3950 3950 3950 4050 Φ 2400 4100 4100 4200 4200 4200 4200 4300 Φ 2700 4600 4700 4700 4700 4700 4800 Φ 3000 4900 4900 4900 4900 5000 >Φ 3000 管径+2000

建筑基坑支护设计规范

建筑基坑支护设计规范 《建筑基坑支护设计规范》基本概况: 《建筑基坑支护设计规程》本规程适用于一般地质条件下临时性建筑基坑支护的勘察、设计、施工、检测、基坑开挖与监测。对湿陷性土、多年冻土、膨胀土、盐渍土等特殊土或岩石基坑,应结合当地工程经验应用本规程,并应符合相关技术标准的规定。 《建筑基坑支护设计规程》的主要内容包括:总则、术语、符号、基本规定、放坡、排桩、地下连续墙、土钉墙、地下水控制等内容。 建筑施工企业对建筑基坑支护设计规程中基坑内支撑结构形式内容怎么规定: 4.9.3 内支撑结构应综合考虑基坑平面的形状、尺寸、开挖深度、周边环境条件、主体结构的形式等因素,选用下列内支撑形式: 1 水平对撑或斜撑,可采用单杆、桁架、八字形支撑; 2 正交或斜交的平面杆系支撑; 3 环形杆系或板系支撑; 4 竖向斜撑。 说明: 内支撑结构形式很多,从结构受力形式划分,可主要归纳为以下几类 1、水平对撑或斜撑,包括单杆、桁架、八字形支撑; 2、正交或斜交的平面杆系支撑; 3、环形杆系或板系支撑;

4、竖向斜撑。每类内支撑形式又可根据具体情况有多钟布置形式。 一般来说,对面积不大、形状规则的基坑常采用水平对撑或斜撑;对面积较大或形状不规则的基坑有时需采用正交或斜交的平面杆系支撑;对圆形、方形及近似圆形的多边形基坑,为能行成较大开挖空间,可采用环形杆系或环形板系支撑;对深度较浅、面积较大的基坑,可采用竖向斜撑,但需注意,在设置斜撑基础、安装竖向斜撑前,无撑支护结构应能够满足承载力、变形和整体稳定性要求。对各类支撑形式,支撑结构的布置要重视支撑体系总体刚度的分布,避免突变,尽可能使水平力作用中心与支撑刚度中心保持一致。 附件:建筑基坑支护技术规程

基坑支护(钢板桩)设计及计算书

目录 1 计算依据 (1) 2 工程概况 (1) 3 地质情况 (1) 4 设计施工方案概述 (1) 5 围堰结构计算 (2) 5.1 设计计算参数 (2) 5.1.1材料设计指标 (2) 5.1.2单元内支撑支撑刚度计算 (3) 5.1.3单元内支撑材料抗力计算 (3) 5.1.4 设计安全等级 (4) 5.2 拉森钢板桩封闭支护结构设计分析 (4) 5.2.1 开挖过程结构分析 (4) 5.2.2 拉森钢板桩单元计算分析结果 (4) 5.2.3 内支撑应力和变形计算 (18) 5.2.4支护结构强度验算 (19) 5.2.4 支撑型钢强度、稳定性验算 (23)

基坑拉森钢板桩围堰设计及计算书 1 计算依据 1.2 《特大桥承台基坑拉森钢板桩围堰设计图》; 1.3 《建筑施工计算手册》; 1.4 《钢结构设计规范》(GB500017-2003); 1.5 《理正深基坑软件7.0版》; 1.6 《基坑工程设计规程》(DBJ08-61-97) 1.7 《建筑基坑支护技术规程》(JGJ120-2012) 1.8 《建筑基坑工程技术规范》(YB9258-97) 2 工程概况 桥址处为荒地、民房,地势平坦,交通便利。根据现场调查,特大桥1#承台施工为最不利基坑,承台尺寸为4.85×5.7×2m,开挖后深度4.209m。 3 地质情况 根据工程地质勘测报告,承台处的地质情况如表1。 表3-1 承台地质情况 取样 编号厚度(m)名称 重度 (kN/m3) 粘聚力 (Kpa) 摩擦角(。) 侧摩阻力 (Kpa) 1 1.25 杂填土17.7 11.00 7.20 30.0 2 4.25 淤泥质土17. 3 13.00 6.00 22.0 3 6.20 粉砂18.0 45.00 --- 40.0 4 4.60 粘性土19.8 49.00 --- 65.0 5 21.60 粉砂19. 6 47.00 --- 70.0 4 设计施工方案概述 使用9m拉森Ⅳ钢板桩对基坑进行封闭支护,钢围檩设于承台顶标高以上1.509m,钢板桩顶往下1m处,围檩采用H400×400×13×21mm型钢,围檩长边下方设置不少于3个牛腿,上方采用直径8mm钢丝绳兜吊在拉伸钢板桩上,斜角撑采用H400×400×13×21mm型钢,斜撑两端与围檩型钢焊接牢固。基坑尺寸控制原则为自承台外轮廓外扩1.2m,为保证承台模板与钢筋的顺利施工,围檩斜角撑的位置应避免阻碍模板与钢筋的吊装施工。

基坑工程安全手册

基坑工程安全手册 基坑工程安全手册目录主要包括:1、施工方案;2、基坑支护;3、降排水;4、基坑开挖;5、坑边载荷;6、安全防护;7、基坑监测;8、支撑拆除;9、作业环境;10、应急预案等。 ★基坑工程应编制专项施工方案 ★专项施工方案应按规定审核、审批 设置要求: 1、开挖深度超过3m(含3m)或虽未超过3m但地质条件和周边环境复杂的基坑土方开挖、支 护、降水工程,应单独编制专项施工方案。(建质[2009]87号附件一) 2、基坑工程施工前应根据《危险性较大的分部分项工程安全管理办法>(建质(2009) 87号)13号) 文件规定,由施工企业技术部门组织本单位施工技术、安全、质量等部门的专业技术人员进行审 核,经审核通过的,由施工企业技术负责人签字,加盖单位法人公章后报监理企业,由项目总监 理工程师审核签字并加盖执业资格注册章。(建质【2009】87号第八条) ★超过一定规模条件的基坑工程专项施工方案应按规定组织专家论证 设置要求: 1、开挖深度超过5m(含5m)的基坑(槽)的土方开挖、支护、降水工程。(建质[2009]87号 附件二) 2、开挖深度虽未超过5m,但地质条件、周围环境和地下管线复杂,或影响毗邻建筑(构筑)物 安全的基坑(槽)的土方开挖、支护、降水工程。土方开挖、支护、降水工程。(建质[2009]87 号附件二) ★基坑周边环境或施工条件发生变化,专项施工方案应重新进行审核、审批 设置要求:基坑支护结构受到周边环境、开挖深度改变等影响较大,需改变原施工方案的,专项 施工方案应重新进行审核、审批。 ★人工开挖的狭窄基槽,开挖深度较大或存在边坡塌方危险应采取支护措施 钢板桩支护 设置要求: 1、开挖深度较大或存在边坡塌方危险应按(JGJ120-2012)中表3.3.2的适用条件选用放坡、悬臂式 排桩支护结构等。 2、在基础沟槽开挖过程中,随时观察支护的变化情况,若有明显的倾覆或隆起状态,立即在倾 覆或隆起的部位增加对称支撑。 ★自然放坡的坡率应符合专项施工方案和规范要求 土质边坡坡率允许值 自然放坡

广州地区建筑基坑支护技术规定(1998版)

广州地区建筑基坑支护 技术规定 (98-02) 《广州地区建筑基坑支护技术规定》 编委会 1998.6.15.广州

目录 1 总则 (1) 2 术语、符号 (2) 2.1 术语 (2) 2.2 符号 (3) 3 基本规定 (5) 3.1 一般规定 (5) 3.2 设计规定 (5) 3.3 施工规定 (7) 3.4 检测与监测规定 (7) 4 岩土工程勘察与环境调查 (8) 4.1 一般规定 (8) 4.2 勘察与测试 (8) 4.3 环境调查 (9) 4.4 勘察报告 (9) 5 支护结构水平荷载和抗力计算 (10) 5.1 一般规定 (10) 5.2 水平荷载标准值 (10) 5.3 水平抗力标准值 (15) 6 支护结构设计 (16) 6.1 支护结构分类与选型 (16) 6.2 混凝土支护结构圆形截面承载力设计 (18) 6.3 放坡设计 (20) 6.4 土钉墙设计 (21) 6.5 排桩设计 (26) 6.6 地下连续墙设计 (31) 6.7 重力式挡墙设计 (32) 6.8 锚杆设计 (36) 6.9 内支撑设计 (39) 6.10 逆作法支撑体系设计 (43) 6.11 组合式支护结构设计 (45) 7 地下水控制 (47) 7.1 一般规定 (47) 7.2 集水明排设计 (47) 7.3 降水设计 (48) 7.4 高压喷射注浆止水设计 (51) 7.5 深层搅拌法止水设计 (53) 7.6 压力注浆止水设计 (54) 7.7 回灌设计 (55) 7.8 集水明排施工 (55) 7.9 降水施工 (56) 7.10 高压喷射注浆止水施工 (56)

《建筑边坡工程技术规范》

岩质边坡的破坏形式(表)滑移型+ 崩塌型 确定岩质边坡的岩体类型应考虑因 素 视为相对软弱岩质组成的边坡情况 和可分段确定边坡类型情况 3.2边坡工程安全等级 边坡工程安全等级(表) 安全等级为一级和二级的情况 边坡塌滑区范围估算 3.3设计原则 两类极限状况定义 荷载效应最不利组合(分项系数,重 要系数γο等) 永久性边坡的设计使用年限应不低 于受其影响相邻建筑的使用年限 考虑地震作用影响的原则 边坡工程设计应包括内容 计算和验算的对象和内容 3.4一般规定 设计时应取得的资料

一级边坡工程应采用动态设计法(内容) 二级边坡工程宜采用动态设计 边坡支护结构常用形式(表)参考因素 不应修筑边坡情况 避免深挖高填,后仰或分阶放坡 洞室 生态保护+自身保护措施 下列边坡工程专门论证 开挖坡角,坡顶超载,水渗入坡体3.5排水措施 截水沟(地表水) 排水管、管井、截槽(地下水) ~3.5.6泄水孔 3.6坡顶有重要建(构)筑物的边坡工程设计 设计规定(与基础相邻作用) 新建边坡措施(与相邻基础) 新建重要建筑规定 已建档墙坡脚新建建(构)筑物时

位于稳定土质或弱风化岩层边坡的 挡墙和基础 四、边坡工程勘察 4.1一般规定境条件复杂的边坡宜分阶段勘察;地质环境复杂的一级边坡尚应进行施 工勘察(专门勘察+合并勘察+分阶段 勘察+施工勘察对应情况) 勘探范围+控制性勘探孔深度 勘察报告内容 变形监测、水文长观孔 4.2边坡勘察 勘查前应取得的资料 分阶段勘察 勘察应查明的内容 勘探的方法 详勘的勘探线、点间距(垂直边坡走 向,数量≧2) 三轴试验,试样数量 特殊要求、流变试验 及时封填密实 可选部分钻孔埋设检测设备

基坑支护设计规范依据

基坑支护设计规范依据 1《建筑地基基础设计规范》GB 50007 2《混凝土结构设计规范》GB 50010 3《钢结构设计标准》GB 50017 4《岩土工程勘察规范》GB 50021 5《地下工程防水技术规范》GB 50108 6 《先张法预应力混凝土管桩》GB 13476 7《预应力筋用锚具、夹具和连接器》GB/T 14370 8《钢筋混凝土用钢第2部分:热轧带肋钢筋》GB 1499.2 9 《焊接H型钢》GB/T 33814 10《建筑结构荷载规范》GB50009 11 《建筑结构可靠度设计统一标准》GB50068 12《给水排水工程构筑物结构设计规范》GB 50069 13 《岩土锚杆与喷射混凝土支护工程技术规范》GB50086 14《混凝土强度检验评定标准》GB/T 50107 15《工程结构可靠度设计统一标准》GB50153 16《地铁设计规范》GB 50157 17《建筑地基基础工程施工质量验收标准》GB 50202 18 《混凝土结构工程施工质量验收规范》GB 50204 19《钢结构工程施工质量验收规范》GB 50205 20《城市轨道交通岩土工程勘察规范》GB 50307 21《建筑基坑工程监测技术规范》GB 50497 22 《钢结构焊接规范》GB 50661 23 《城市轨道交通工程监测技术规范》GB50911 24 《建筑地基基础工程施工规范》GB 51004 25 《沉井与气压沉箱施工规范》GB/T 51130 26《预应力混凝土用钢棒》GB/T 5223.3 27《爆破安全规程》GB 6722 28 《装配式混凝土结构技术规程》JGJ 1 29 《建筑变形测量规范》JGJ8 30《建筑地基处理技术规范》JGJ 79 31《建筑钢结构焊接技术规程》JGJ 81 32《建筑桩基技术规范》JGJ 94 33 《建筑与市政工程地下水控制技术规范》JGJ111 34《建筑基坑支护技术规程》JGJ 120 35 《型钢水泥土搅拌桩技术规程》JGJ199 36 《建筑深基坑工程施工安全技术规范》JGJ311 37《建筑工程逆作法技术标准》JGJ 432 38《建筑砂浆基本性能试验方法》JGJ/T 70 39 《型钢水泥土搅拌墙技术规程》JGJ/T 199 40 《高压喷射扩大头锚杆技术规范》JGJ/T282 41《地下工程盖挖法施工规程》JGJ/T 364 42《锚杆检测与监测技术规程》JGJ/T 401 43 《预应力混凝土管桩技术标准》JGJ/T 406

基坑围护规范

基坑围护规范 一说起基坑围护,相关建筑人士还是比较陌生的,我国制定的基坑围护规范有什么内容?以下是为建筑人士整理相关基坑围护规范基本资料,具体内容如下: 基坑围护规范即建筑基坑支护技术规程,主要包括的内容包括:总则术语、符号基本规定土钉墙逆作拱墙等内容。其中基本规定中设计原则如下: 3.1.1 基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计。 3.1.2 基坑支护结构极限状态可分为下列两类: 1.承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、过大变形导致结构或基坑周边环境破坏; 2.正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正确使用功能。 3.1.3 基坑支护结构设计应根据表3.1.3选用相应的侧壁安全等级及重要性系数。 基坑侧壁安全等级及重要性系数表3.1.3 注:有特殊要求的建筑基坑侧壁安全等级可根据具体情况另行确定。 3.1.4 支护结构设计应考虑其结构水平变形、地下水的变化对周边环境的水平与竖向变形的影响,对于安全等级为一级和对周边环境变形有限定要求的二级建筑基坑侧壁,应根据周边环境的重要性、

对变形的适应能力及土的性质等因素确定支护结构的水平变形限值。 3.1.5 当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础型式等因素,确定地下水控制方法。当场地周边有地表水汇流、排泻或地下水管渗漏时,应对基坑采取保护措施。 3.1.6 根据承载能力极限状态和正常使用极限状态的设计要求,基坑支护应按下列规定进行计算和验算: 1.基坑支护结构均应进行承载能力极限状态的计算,计算内容应包括: 1)根据基坑支护形式及其受力特点进行土体稳定性计算; 2)基坑支护结构的受压、受弯、受剪承载力计算; 3)当有锚杆或支撑时,应对其进行承载力计算和稳定性验算。 2.对于安全等级为一级及对支护结构变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。 3.地下水控制计算和验算: 1)抗渗透稳定性验算: 2)基坑底突涌稳定性验算; 3)根据支护结构设计要求进行地下水位控制计算。 3.1.7 基坑支护设计内容应包括对支护结构计算和验算、质量检测及施工监控的要求。 3.1.8 当有条件时,基坑应采用局部或全部放坡开挖,放坡坡度应满足其稳定性要求。

建筑基坑工程技术规范

《建筑基坑工程技术规范》(YB9258—97)介绍 规范2008-01-29 14:08:45 阅读348 评论0 字号:大中小订阅 唐业清王吉望顾晓鲁李虹 [摘要]介绍了我国行业标准《建筑基坑工程技术规范》(YB9258—97)的编制工作概况及主要内容。 [关键词]基坑工程技术标准支护结构土压力现场监测 Introduction to 《Technical Specifications for Foundation Pits Excavation for Buildings》 (YB9258—97) Tang Yeqing Wang Jiwang Gu Xiaolu Li Hong [Abstract]This article describes the main contents and the drawing-up of the said specifications. [Keywords]Foundation pit excavation;Technical standards;Supporting strecture;Earth pressure;Field monitoring 1编制工作概况 根据建设部标准定额司的要求,由冶金部下达《建筑基坑工程技术规范》(YB9258—97)编制工作任务,冶金部建筑研究总院主持并邀请中国建筑科学研究院、北方交通大学、天津大学、同济大学共16个单位,25位长期从事基坑工程教学、科研和工程施工单位的专家参加编制,前后经历近4年的编制工作。经冶金部主管部门的审查批准,作为中华人民共和国行业标准,于1998年5月1日正式颁布实施。1998年8月由冶金出版社正式出版。 2《建筑基坑工程技术规范》(YB9258—97)的主要内容 本规范共19章,15条附录及条文说明。

深基坑开挖及支护专项方案

目录 一、工程概况............................................................ - 1 - 二、编制依据............................................................ - 1 - 三.基坑支护设计........................................................ - 2 - 四.施工准备............................................................ - 2 - 五.施工部署............................................................ - 6 - 六.施工方法............................................................ - 8 - 七.质量保证措施....................................................... - 27 - 八.安全保证措施....................................................... - 29 - 九.文明施工、环境保护措施............................................. - 33 - 十.附图............................................................... - 35 -

基坑槽钢桩支护方案

中海石油宁波大榭石化有限公司 宁波大榭加氢联合装置项目设备基础 基 坑 支 护 及 挖 土 方 案 编制人:职务: 审核人:职务: 审批人:职务: 施工单位:中国石化工程建设有限公司 编制日期:2014年6月9日

深基坑钢板桩支护专项方案 第一节工程概况 本工程为宁波大榭加氢联合装置项目,基坑长4.80m、宽8.80m。基底标高为-4.6m,对基坑边坡维护决定采用钢板桩进行支护,以达到挡土防止塌方的目的。 第二节编制依据 一、宁波大榭加氢联合装置项目; 二、《工程地质勘察报告》; 三、现场测量数据和调查; 四、《建筑地基基础工程施工质量验收规范》(GB50202-2002); 第三节钢板桩支护设计思路及要点 根据本工程场地地质情况特点,本工程钢板桩主要作用是为了防止深基坑边坡的塌方,起到支护边坡的作用。设计要点如下: 一、采用32C槽钢钢板桩,桩长12m; 二、钢板桩沿基坑四周连续设置成封闭的帷幕; 三、为保证基坑安全,钢板桩帷幕上设置一道连续的槽钢围檩以加强钢度及整体性; 第四节槽钢支护结构设计计算书 计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著

5、《土力学与地基基础》 一、参数信息 1、基本参数 2、土层参数 3、荷载参数 4、计算系数 二、土压力计算

土压力分布示意图 附加荷载布置图1、主动土压力计算 1)主动土压力系数 K a1=tan2(45°- υ1/2)= tan2(45-12/2)=0.656; K a2=tan2(45°- υ2/2)= tan2(45-12/2)=0.656; K a3=tan2(45°- υ3/2)= tan2(45-12/2)=0.656; K a4=tan2(45°- υ4/2)= tan2(45-18/2)=0.528; K a5=tan2(45°- υ5/2)= tan2(45-18/2)=0.528;

基坑支护结构设计原则

基坑支护结构设计原则与勘察要求 基坑支护结构设计原则与勘察要求 3.1 设计原则 3.1.1 基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计。 3.1.2 基坑支护结构极限状态可分为下列两类: 1 承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、过大变形导致支护结构或基坑周边环境破坏; 2 正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正常使用功能。 3.1.3 基坑支护结构设计应根据表3.1.3选用相应的侧壁安全等级及重要性系数。 表3.1.3 基坑侧壁安全等级及重要性系数 安全等级破坏后果Υ0 一级支护结构破坏、土体失稳或过大变形对基坑周边环境及地下 1.10 结构施工影响很严重 二级支护结构破坏、土体失稳或过大变形对基坑周边环境及地下 1.00 结构施工影响一般 三级支护结构破坏、土体失稳或过大变形对基坑周边环境及地下 0.90 结构施工影响不严重 注:有特殊要求的建筑基坑侧壁安全等级可根据具体情况另行确定。 3.1.4 支护结构设计应考虑其结构水平变形、地下水的变化对周边环境的水平与竖向变形的影响,对于安全等级为一级和对周边环境变形有限定要求的二级建筑基坑侧壁,应根据周边环境的重要性、对变形的适应能力及土的性质等因素确定支护结构的水平变形限值。 3.1.5 当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础型式等因素,确定地下水控制方法。当场地周围有地表水汇流、排泻或地下水管渗漏时,应对基坑采取保护措施。 3.1.6 根据承载能力极限状态和正常使用极限状态的设计要求,基坑支护应按下列规定进行计算和验算。 1 基坑支护结构均应进行承载能力极限状态的计算,计算内容应包括: 1) 根据基坑支护形式及其受力特点进行土体稳定性计算; 2) 基坑支护结构的受压、受弯、受剪承载力计算; 3) 当有锚杆或支撑时,应对其进行承载力计算和稳定性验算。 2 对于安全等级为一级及对支护结构变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。 3 地下水控制验算: 1) 抗渗透稳定性验算; 2) 基坑底突涌稳定性验算;

相关文档
最新文档