DES加密与解密过程原理解析
des加解密算法原理

des加解密算法原理DES(Data Encryption Standard)是一种基于对称加密算法的加解密技术,被广泛应用于计算机和网络安全领域。
它采用分组密码的设计思想,将明文分成64位的数据块,并使用密钥对其进行加密和解密操作。
下面我们将详细介绍DES算法的原理和应用。
DES算法的原理可以分为四个主要步骤:初始置换、16轮迭代、逆初始置换和子密钥生成。
首先是初始置换,将输入的64位明文根据所定义的置换表进行重排,以加强加密的随机性和扩散性。
这一步骤的目的是为了消除输入数据之间的相关性,使其在进入加密过程之前更具随机性。
接下来是16轮迭代,每一轮迭代都包括四个主要步骤:扩展置换、密钥与明文异或、S盒置换和置换函数。
扩展置换将32位数据扩展为48位,以使之与扩展后的子密钥进行异或运算。
然后,将异或结果分为8个组,每个组经过S盒代替置换,将6位数据映射为4位数据,增加了加密的复杂性。
最后,经过置换函数进行置换操作。
第三步是逆初始置换,将经过16轮迭代后得到的数据根据逆置换表进行重排,以得到最终的密文。
逆初始置换是初始置换的逆运算,用于恢复密文的顺序,使之与明文对应。
最后是子密钥的生成,根据输入的64位密钥经过置换和位移操作生成16个48位的子密钥。
每轮迭代都使用一个子密钥,通过改变子密钥可以增加加密的随机性,从而提高安全性。
DES算法的应用广泛,主要用于网络通信中的数据加密保护。
例如,在银行系统中,通过DES算法可以对用户的敏感信息进行加密,保护用户的财产安全。
在电子商务领域,通过DES算法可以对在线交易的数据进行加密,防止黑客窃取用户的个人信息和银行卡号。
此外,DES算法还常用于数据库加密、文件加密和数据传输等领域,以确保机密信息的安全性。
总之,DES算法是一种经典的对称加密算法,通过初始置换、16轮迭代、逆初始置换和子密钥生成四个步骤,实现了对数据的加密和解密操作。
它具有较高的安全性和广泛的应用领域,是保护计算机和网络安全的重要工具。
DES例题详解(一)

DES例题详解(一)DES例题解析1. 背景介绍DES(Data Encryption Standard)是一种对称加密算法,由IBM 在1970年代初期开发出来。
它是一种使用相同的密钥进行加密和解密的算法,被广泛应用于数据安全领域。
2. DES例题简述下面是一个关于DES的例题,我们将会对该例题进行详细解释和分析。
例题:对以下明文进行DES加密,密钥为“ABCDEF”,加密结果为多少?明文:3. DES加密过程DES加密过程包括初始置换、16轮迭代和最终置换三个步骤。
3.1 初始置换(Initial Permutation)初始置换是将明文进行位重排,得到一个置换后的明文。
如下表所示,是DES中使用的初始置换表。
输入位置 | 58 | 50 | 42 | 34 | 26 | 18 | 10 | 2 || — | — | — | — | — | — | — | — |输出位置 | 40 | 32 | 24 | 16 | 8 | 0 | 33 | 25 |将明文按照初始置换表进行重排,得到置换后的明文。
置换后的明文:3.2 16轮迭代16轮迭代是DES中最重要的步骤。
每轮迭代中,明文会经过子密钥的选择、扩展置换、异或运算、S盒代替、P盒置换和交换等操作。
3.2.1 子密钥的选择(Key Schedule)根据密钥,生成16个子密钥,每个子密钥48位长。
子密钥的生成使用了PC-2表和循环左移。
3.2.2 扩展置换(Expansion Permutation)扩展置换是将32位的明文扩展为48位,以便与子密钥进行异或运算。
扩展置换使用了E表。
3.2.3 异或运算(XOR)将扩展置换后的明文与子密钥进行逐位异或运算。
3.2.4 S盒代替(S-Box Substitution)将异或运算后的结果分成8组,每组6位。
然后每个6位分别经过S盒代替。
3.2.5 P盒置换(Permutation)S盒代替后,将结果再经过P盒置换,得到新的32位数据。
DES算法原理完整版

DES算法原理完整版1.所需参数key:8个字节共64位的⼯作密钥data:8个字节共64位的需要被加密或被解密的数据 mode:DES⼯作⽅式,加密或者解密2.初始置换DES算法使⽤64位的密钥key将64位的明⽂输⼊块变为64位的密⽂输出块,并把输出块分为L0、R0两部分,每部分均为32位。
初始置换规则如下:注意:这⾥的数字表⽰的是原数据的位置,不是数据158,50,42,34,26,18,10,2,260,52,44,36,28,20,12,4,362,54,46,38,30,22,14,6,464,56,48,40,32,24,16,8,557,49,41,33,25,17, 9,1,659,51,43,35,27,19,11,3,761,53,45,37,29,21,13,5,863,55,47,39,31,23,15,7,即将输⼊的64位明⽂的第1位置换到第40位,第2位置换到第8位,第3位置换到第48位。
以此类推,最后⼀位是原来的第7位。
置换规则是规定的。
L0(Left)是置换后的数据的前32位,R0(Right)是置换后的数据的后32位。
例如:64位输⼊块是D1~D64,则经过初始置换后是D58,D50...D7。
则L0=D58,D50,D12...D8;R0=D57,D49,D41 (7)该置换过程是在64位秘钥的控制下。
3.加密处理--迭代过程经过初始置换后,进⾏16轮完全相同的运算,在运算过程中数据与秘钥结合。
函数f的输出经过⼀个异或运算,和左半部分结合形成新的右半部分,原来的右半部分成为新的左半部分。
每轮迭代的过程可以表⽰如下:Ln = R(n - 1);Rn = L(n - 1)⊕f(Rn-1,kn-1)⊕:异或运算Kn是向第N层输⼊的48位的秘钥,f是以Rn-1和Kn为变量的输出32位的函数3.1函数f函数f由四步运算构成:秘钥置换(Kn的⽣成,n=0~16);扩展置换;S-盒代替;P-盒置换。
DES例题详解

DES例题详解摘要:一、DES加密算法简介1.DES加密原理2.DES算法结构二、DES例题详解1.实例一:DES加密过程解析2.实例二:DES解密过程解析3.实例三:DES加密解密实战应用三、DES加密算法的优缺点1.优点2.缺点四、DES算法的改进与延伸1.三重DES算法2.AES加密算法正文:一、DES加密算法简介1.DES加密原理DES加密算法是一种对称加密算法,其加密过程是将明文经过16轮的加密操作,最终生成密文。
DES算法依赖于密钥,相同的明文使用相同的密钥加密后,得到的密文相同。
2.DES算法结构DES算法的主要结构包括:置换、替换、S盒替换和置换。
其中,置换操作是将明文分成左右两部分,分别进行加密;替换操作是将置换后的明文部分进行替换;S盒替换是将替换后的明文部分通过S盒进行替换;最后再进行置换操作,得到密文。
二、DES例题详解1.实例一:DES加密过程解析假设明文为:ABCDEF,密钥为:123456。
(1)置换:将明文分成左右两部分,分别为ABC和DEF。
(2)替换:将左右两部分分别进行替换操作,得到:TFEC和ADCB。
(3)S盒替换:将替换后的左右两部分分别进行S盒替换,得到:XYZAB和MPQST。
(4)再置换:将替换后的两部分进行置换,得到密文:MPQSTXYZAB。
2.实例二:DES解密过程解析假设密文为:MPQSTXYZAB,密钥为:123456。
(1)解密置换:将密文进行解密置换,得到:ABCDEF。
(2)解密替换:将解密后的密文部分进行解密替换,得到:TFECB和ADCB。
(3)解密S盒替换:将解密后的左右两部分分别进行解密S盒替换,得到:XYZAB和MPQST。
(4)再解密置换:将解密后的两部分进行解密置换,得到明文:ABCDEF。
3.实例三:DES加密解密实战应用在实际应用中,DES加密解密算法广泛应用于数据保护、网络安全等领域。
以下是一个简单的DES加密解密实战应用示例:明文:Hello, World!密钥:1234561.使用DES加密算法加密明文:- 置换:将明文分成左右两部分,分别为Hello和World。
DES加密解密实验报告

DES加密解密实验报告实验报告题目:DES加密解密实验一、实验目的1.了解DES加密算法的工作原理。
2. 学习使用Python编程语言实现DES加密算法。
3.掌握DES加密算法的应用方法。
二、实验原理DES(Data Encryption Standard)是一种用于加密的对称密钥算法,其密钥长度为64位,分为加密过程和解密过程。
1.加密过程(1)初始置换IP:将64位明文分成左右两部分,分别为L0和R0,进行初始置换IP操作。
(2)子密钥生成:按照规则生成16个子密钥,每个子密钥长度为48位。
(3)迭代加密:通过16轮迭代加密运算,得到最终的密文。
每轮迭代加密包括扩展置换、异或运算、S盒替代、P置换和交换操作。
(4)逆初始置换:将最终的密文分成左右两部分,进行逆初始置换操作,得到最终加密结果。
2.解密过程解密过程与加密过程类似,但是子密钥的使用顺序与加密过程相反。
三、实验材料与方法材料:电脑、Python编程环境、DES加密解密算法代码。
方法:1. 在Python编程环境中导入DES加密解密算法库。
2.输入明文和密钥。
3.调用DES加密函数,得到密文。
4.调用DES解密函数,得到解密结果。
5.输出密文和解密结果。
四、实验步骤1.导入DES加密解密算法库:```pythonfrom Crypto.Cipher import DES```2.输入明文和密钥:```pythonplaintext = "Hello World"key = "ThisIsKey"```3.创建DES加密对象:```pythoncipher = DES.new(key.encode(, DES.MODE_ECB) ```。
DES算法

DES算法DES(Data Encryption Standard)是在1970年代中期由美国IBM公司发展出来的,且被美国国家标准局公布为数据加密标准的一种分组加密法。
DES属于分组加密法,而分组加密法就是对一定大小的明文或密文来做加密或解密动作。
在这个加密系统中,其每次加密或解密的分组大小均为64位,所以DES没有密码扩充问题。
对明文做分组切割时,可能最后一个分组会小于64位,此时要在此分组之后附加“0”位。
另一方面,DES所用的加密或解密密钥也是64位大小,但因其中以8个位是用来做奇偶校验,所以64位中真正起密钥作用的只有56位。
加密与解密所使用的算法除了子密钥的顺序不同之外,其他部分则是完全相同的。
Des算法的原理:Des算法的入口参数有3个:Key,,Data和Mode。
其中key为8个字节共64位,是Des 算法的工作密钥。
Data也为8个字节64为,是要被加密或解密的数据。
Mode为Des的工作方式由两种:加密或解密。
如Mode为加密,则用key把数据Data进行加密,生成Data的密码形式(64位)作为 Des 的输出结果;若Mode为解密,则用key把密码形式的数据Data解密,还原为Data的明码形式(64位)作为Des的输出结果算法实现步骤实现加密需要3个步骤。
第一步:变换明文。
对给定的64位的明文x.,首先通过一个置换IP表来重新排列x.,从而构造出64位的x0, x0=IP(x)=L0R0,其中L0表示x0的前32位,R0表示x0的后32位。
第二步:按照规则迭代。
规则为:L i=R i-1R i=L i⊕f(R i-1, K i) (i=1,2,3, (16)经过第1步变换已经得到L0和R0的值,其中符号⊕表示数学运算“异或”,f表示一种置换,由s盒置换构成,K i是一些由密钥编排函数产生的比特块。
F和K i将在后面介绍。
第三步:对L16R16利用IP-1作逆置换,就得到了密文y0加密过程。
DES加密算法与解密(带流程图)

DES加密算法与解密(带流程图)一、DES加密及解密算法程序源代码:#include <iostream>using namespace std;const static char IP_Table[] = { //IP_Table置换58, 50, 42, 34, 26, 18, 10, 2,60, 52, 44, 36, 28, 20, 12, 4,62, 54, 46, 38, 30, 22, 14, 6,64, 56, 48, 40, 32, 24, 16, 8,57, 49, 41, 33, 25, 17, 9, 1,59, 51, 43, 35, 27, 19, 11, 3,61, 53, 45, 37, 29, 21, 13, 5,63, 55, 47, 39, 31, 23, 15, 7};const static char Final_Table[] = { //最终置换40, 8, 48, 16, 56, 24, 64, 32,39, 7, 47, 15, 55, 23, 63, 31,38, 6, 46, 14, 54, 22, 62, 30,37, 5, 45, 13, 53, 21, 61, 29,36, 4, 44, 12, 52, 20, 60, 28,35, 3, 43, 11, 51, 19, 59, 27,34, 2, 42, 10, 50, 18, 58, 26,33, 1, 41, 9, 49, 17, 57, 25};const static char S_Box[8][64] = {//s_box/* S1 */{14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13},/* S2 */{15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10,14, 5, 2, 8, 4,3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14},/* S5 */{2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3},/* S6 */{12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13},/* S7 */{4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12},/* S8 */{13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}const static char Rar_Table[] = { //压缩置换14, 17, 11, 24, 1, 5,3, 28, 15, 6, 21, 10,23, 19, 12, 4, 26, 8,16, 7, 27, 20, 13, 2,41, 52, 31, 37, 47, 55,30, 40, 51, 45, 33, 48,44, 49, 39, 56, 34, 53,46, 42, 50, 36, 29, 32};const static char Exp_Table[] = { //扩展置换32, 1, 2, 3, 4, 5,4, 5, 6, 7, 8, 9,8, 9, 10, 11, 12, 13,12, 13, 14, 15, 16, 17,16, 17, 18, 19, 20, 21,20, 21, 22, 23, 24, 25,24, 25, 26, 27, 28, 29,28, 29, 30, 31, 32, 1const static char P_Table[]={ //P置换16, 7, 20, 21,29, 12, 28, 17,1, 15, 23, 26,5, 18, 31, 10,2, 8, 24, 14,32, 27, 3, 9,19, 13, 30, 6,22, 11, 4, 25};const static char KeyRar_Table[]={57, 49, 41, 33, 25, 17, 9,1, 58, 50, 42, 34, 26, 18,10, 2, 59, 51, 43, 35, 27,19, 11, 3, 60, 52, 44, 36,63, 55, 47, 39, 31, 23, 15,7, 62, 54, 46, 38, 30, 22,14, 6, 61, 53, 45, 37, 29,21, 13, 5, 28, 20, 12, 4};//设置全局变量,16轮密钥bool key[16][48]={{0}};void ByteToBit(bool *Out,char *In,int bits) //字节到位转换函数{int i;for(i=0;i<bits;i++)Out[i]=(In[i/8]>>(i%8))&1;}void BitToByte(char *Out,bool *In,int bits)//位到字节转换函数{int i;for(i=0;i<bits/8;i++)Out[i]=0;for(i=0;i<bits;i++)Out[i/8]|=In[i]<<(i%8);}void Xor(bool *InA,const bool *InB,int length) //按位异或for(int i=0;i<length;i++)InA[i]^=InB[i];}void keyfc(char *In) //密钥生成函数{int i,j=0,mov,k,m;bool* key0 = new bool[56];bool* keyin = new bool[64];bool temp;ByteToBit(keyin,In,64); //字节到位的转换for(i=0;i<56;i++) //密钥压缩为56位key0[i]=keyin[KeyRar_Table[i]-1];for(i=0;i<16;i++) //16轮密钥产生{if(i==0||i==1||i==8||i==15)mov=1;elsemov=2;for(k=0;k<mov;k++) //分左右两块循环左移{for(m=0;m<8;m++){temp=key0[m*7];for(j=m*7;j<m*7+7;j++)key0[j]=key0[j+1];key0[m*7+6]=temp;}temp=key0[0];for(m=0;m<27;m++)key0[m]=key0[m+1];key0[27]=temp;temp=key0[28];for(m=28;m<55;m++)key0[m]=key0[m+1];key0[55]=temp;}for(j=0;j<48;j++) //压缩置换并储存key[i][j]=key0[Rar_Table[j]-1];}delete[] key0;delete[] keyin;}void DES(char Out[8],char In[8],bool Type)//加密核心程序,Type=0时加密,反之解密{bool* MW = new bool[64];bool* tmp = new bool[32];bool* PMW = new bool[64];bool* kzmw = new bool[48];bool* keytem = new bool[48];bool* ss = new bool[32];int hang,lie,i;ByteToBit(PMW,In,64);for(int j=0;j<64;j++){MW[j]=PMW[IP_Table[j]-1]; //初始置换}bool *Li=&MW[0],*Ri=&MW[32];for(i=0;i<48;i++) //右明文扩展置换kzmw[i]=Ri[Exp_Table[i]-1];if(Type==0) //DES加密过程{for(int lun=0;lun<16;lun++){for(i=0;i<32;i++)ss[i]=Ri[i];for(i=0;i<48;i++) //右明文扩展置换kzmw[i]=Ri[Exp_Table[i]-1];for(i=0;i<48;i++)keytem[i]=key[lun][i];Xor(kzmw,keytem,48);/*S盒置换*/for(i=0;i<8;i++)hang=kzmw[i*6]*2+kzmw[i*6+5];lie=kzmw[i*6+1]*8+kzmw[i*6+2]*4+kzmw[i*6+3] *2+kzmw[i*6+4];tmp[i*4+3]=S_Box[i][(hang+1)*16+lie]%2;tmp[i*4+2]=(S_Box[i][(hang+1)*16+lie]/2)%2 ;tmp[i*4+1]=(S_Box[i][(hang+1)*16+lie]/4)%2 ;tmp[i*4]=(S_Box[i][(hang+1)*16+lie]/8)%2;}for(i=0;i<32;i++) //P置换Ri[i]=tmp[P_Table[i]-1];Xor(Ri,Li,32); //异或for(i=0;i<32;i++) //交换左右明文Li[i]=ss[i];}}for(i=0;i<32;i++){tmp[i]=Li[i];Li[i]=Ri[i];Ri[i]=tmp[i];}for(i=0;i<64;i++)PMW[i]=MW[Final_Table[i]-1];BitToByte(Out,PMW,64); //位到字节的转换}else //DES解密过程{for(int lun=15;lun>=0;lun--){for(i=0;i<32;i++)ss[i]=Ri[i];for(i=0;i<48;i++) //右明文扩展置换kzmw[i]=Ri[Exp_Table[i]-1];for(i=0;i<48;i++)keytem[i]=key[lun][i];Xor(kzmw,keytem,48);/*S盒置换*/for(i=0;i<8;i++){hang=kzmw[i*6]*2+kzmw[i*6+5];lie=kzmw[i*6+1]*8+kzmw[i*6+2]*4+kzmw[i*6+3] *2+kzmw[i*6+4];tmp[i*4+3]=S_Box[i][(hang+1)*16+lie]%2;tmp[i*4+2]=(S_Box[i][(hang+1)*16+lie]/2)%2 ;tmp[i*4+1]=(S_Box[i][(hang+1)*16+lie]/4)%2 ;tmp[i*4]=(S_Box[i][(hang+1)*16+lie]/8)%2; }for(i=0;i<32;i++) //P置换Ri[i]=tmp[P_Table[i]-1];Xor(Ri,Li,32); //异或for(i=0;i<32;i++) //交换左右明文{Li[i]=ss[i];}}for(i=0;i<32;i++){tmp[i]=Li[i];Li[i]=Ri[i];Ri[i]=tmp[i];}for(i=0;i<64;i++)PMW[i]=MW[Final_Table[i]-1]; BitToByte(Out,PMW,64); //位到字节的转换}delete[] MW;delete[] tmp;delete[] PMW;delete[] kzmw;delete[] keytem;delete[] ss;}bool RunDes(char *Out, char *In, int datalength, char *Key, bool Type) //加密运行函数,判断输入以及对输入文本8字节分割{if( !( Out && In && Key && (datalength=(datalength+7)&0xfffffff8) ) ) return false;keyfc(Key);for(int i=0,j=datalength%8; i<j; ++i,Out+=8,In+=8)DES(Out, In, Type);return true;}int main(){char* Ki = new char[8];char Enter[]="This is the test of DES!"; char* Print = new char[200];int len = sizeof(Enter);int i_mf;cout << "请输入密钥(8位):" <<"\n"; for(i_mf=0;i_mf<8;i_mf++)cin >> Ki[i_mf];cout << "\n";RunDes(Print,Enter,len,Ki,0);//加密cout << "----加密前----" << "\n";for(i_mf=0;i_mf<len;i_mf++)cout << Enter[i_mf];cout << "\n\n";cout << "----加密后----" << "\n";for(i_mf=0;i_mf<len;i_mf++)cout<<Print[i_mf];cout << "\n\n";//此处进行不同密钥输入测试cout << "请输入密钥(8位):" <<"\n"; for(i_mf=0;i_mf<8;i_mf++)cin >> Ki[i_mf];cout << "\n";RunDes(Enter,Print,len,Ki,1);//解密cout << "----解密后----" << "\n";for(i_mf=0;i_mf<len;i_mf++)cout << Enter[i_mf];cout << endl;delete[] Ki;delete[] Print;return 0;}二、程序编译、运行结果图:三、程序总体框架图:读取待加密文本输入密钥DES 加密显示加密后文本再次输入密钥DES 解密显示解密后文本显示错误解密信息密钥错误密钥正确四、程序实现流程图:Enter = 待加密文本分割Enter ,8字节为一段,不足补加,段数为N 初始化:*Print ,i=0,j=0文本第i 段,转为二进制64位初始置换(IP_Table )文本段分为左右两部分左部分(32位)右部分(32)输入8字节密钥转为二进制64位密钥压缩KeyRar_Table (56位)形成16轮密钥合并形成子密钥(48位)S 置换(S_Box )P 置换(P_Table )左右交换,j++最终置换(Final_Table )J<16扩展置换(Exp_Table )i<N异或异或NoYes存入*Print ,i++DES 加密过程结束,输出Print YesNoDES 解密过程为以上逆过程。
DES加密算法原理

DES加密算法原理DES(Data Encryption Standard)是一种对称加密算法,它使用相同的密钥进行加密和解密。
DES算法的原理可以分为以下几个方面。
1.初始置换(IP):DES加密过程的第一步是对明文进行初始置换,通过将明文中的每个位按照事先规定的顺序重新排列,得到一个初始排列的明文块。
2. 轮函数(Feistel function):DES算法采用了Feistel网络结构。
在每一轮中,明文块被分成左右两部分,右半部分经过扩展运算(Expansion),将其扩展为一个48位的数据块。
然后将扩展后的数据块与轮密钥进行异或运算,得到一个48位的结果。
3. S-盒变换(S-Box substitution):接下来,经过48位结果的S-盒变换。
S-盒是DES算法的核心部分,它将6位输入映射为4位输出。
DES算法使用了8个不同的S-盒,每个S-盒都有一个4x16表格,用于将输入映射为输出。
4. P-盒置换(P-Box permutation):经过S-盒变换后,输出结果通过一个固定的P-盒进行置换运算。
P-盒操作将32位输出重新排列,得到一个新的32位结果。
5. 轮密钥生成(Key schedule):DES算法使用了16轮的加密迭代过程。
每一轮使用一个不同的48位轮密钥。
轮密钥生成过程根据初始密钥生成所有的轮密钥。
轮密钥生成包括密钥置换选择1、密钥循环移位、密钥置换选择2等步骤。
6. 最后交换(Inverse Initial Permutation):经过16轮迭代后,得到最终的加密结果。
在最后交换步骤中,将加密结果的左右两部分进行互换,得到最终的加密结果。
DES算法依靠这些步骤进行加密和解密过程。
加密过程中,明文块经过初始置换后,进入16轮的迭代过程,每一轮中使用不同的轮密钥对明文进行加密。
最后得到加密结果。
解密过程与加密过程相反,使用相同的轮密钥对密文进行解密,最终得到明文。
DES算法的安全性主要依赖于密钥的长度和轮数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网络与信息安全作业
题目:DES加密与解密过程原理解析姓名:
学号:
班级:
日期:2016年3月30日
一、D ES简介:
DES (Data Encryption Standard) 是对称加解密算法的一种,由IBM公司W.Tuchman和C.Meyer在上个世纪70年代开发,该算法使用64位密钥(其中包含8位奇偶校验,实际密钥长度为56位)对以64为单位的块数据加密,产生64位密文数据,然后使用相同的密钥进行解密。
密钥只有通信双方知晓,不对第三方公开。
二、D ES算法过程:
1.DES的加密过程:
第一阶段:初始置换IP。
在第一轮迭代之前,需要加密的64位明文首先通过初始置换IP 的作用,对输入分组实施置换。
最后,按照置换顺序,DES将64位的置换结果分为左右两部分,第1位到第32位记为L0,第33位到第64位记为R0。
表1:置换IP表
上表为置换IP表,将输入64位的第58位换到第一位,第50位换到第二位,依此类推,最后一位是原来的第7位。
L0是输出的前32位,R0是后32位。
比如:置换前的输入值为D1D2D3...D64,则经过初始置换后的结果为:L0=D58D50...D8,R0=D57D49 (7)
第二阶段:获取函数f和子密钥。
函数f有两个输入:32位的Ri-1和48位Ki,f函数的处理流程如下图所示。
E变换的算法是从
Ri-1的32位中选取某些位,构成48位。
即E将
32比特扩展变换为48位,变换规则根据E位选择表,如表2所示。
表2:E位选择表
Ki是由密钥产生的48位比特串,具体的算法下面介绍。
将E的选位结果与Ki作异或操作,得到一个48位输出。
分成8组,每组6位,作为8个S盒的输入。
每个S盒输出4位,共32位(如下图)。
S盒的输出作为P变换的输入,P的功能是对输入进行置换,P换位表如表3所示。
表3:P换位表
子密钥Ki:假设密钥为K,长度为64位,但是其中第8、16、24、32、40、48、64用作奇偶校验位,实际上密钥长度为56位。
K的下标i的取值范围是1到16,用16轮来构造。
构造过程如下图所示。
首先,对于给定的密钥K,应用PC1变换进行选位,选定后的结果。
位K
1
位K
16
位K
2
是56位,设其前28位为C0,后28位为D0。
PC1选位如表4所示。
表4:PC1选位表
第一轮:对C0作左移LS1得到C1,对D0作左移LS1得到D1,对C1D1应用PC2进行选位,得到K1。
其中LS1是左移的位数,如表5所示。
表5
表5中的第一列是LS1,第二列是LS2,以此类推。
左移的原理是所有二进位向左移动,原来最右边的位移动到最左边。
其中PC2如表6所示。
表6:PC2表
第二轮:对C1,D1作左移LS2得到C2和D2,进一步对C2D2应用PC2进行选位,得到K2。
如此继续,分别得到K3,K4 (16)
S盒的工作原理:S盒以6位作为输入,而以4位作为输出,现在以S1为例说明其过程。
假设输入为A=a1a2a3a4a5a6,则a2a3a4a5所代表的数是0到15之间的一个数,记为:k=a2a3a4a5;由a1a6所代表的数是0到3间的一个数,记为h=a1a6。
在S1的h行,k列找到一个数B,B在0到15之间,它可以用4位二进制表示,为B=b1b2b3b4,这就是S1的输出。
表7-2:选择(替代)函数S
第三阶段:16次迭代运算。
初始置换确定后,经过16次迭代运算,每一次迭代运算都以前一次迭代运算的结果和用户密钥扩展得到的子密钥Ki作为输入;每一次迭代运算只变换了一半数据,它们将输入数据的右半部分经过函数f后将其输出,与输入数据的左半部分进行异或运算,并将得到的结果作为新的右半部分,原来的右半部分变成了新的左半部分,用下面的规则来表示这一过程(假设第i次迭代所得到的结果为LiRi): Li = Ri-1; Ri = Li-1⊕f(Ri-1,Ki);在最后一轮左与右半部分并未变换,而是直接将R16 L16并在一起作为未置换的输入。
第四阶段:逆置换。
逆置换是初始置换IP的逆运算,记为IP-1。
例如,第1位经过初始置换后,处于第40位,而通过逆置换IP-1,又将第40位换回到第1位。
其逆置换IP-1规则如表8所示。
表8:逆置换IP-1规则
在对16次迭代的结果(R16 L16)再使用逆置换IP-1后,即得到密文输出。
其执行过程如下图:
2.DES解密过程:
DES的解密算法与其加密算法使用的算法过程相同。
两者的不同之处在于解密时子密钥Ki的使用顺序与加密时相反,如果子密钥为K1K2...K16,那么解密时子密钥的使用顺序为K16K15 (1)
即使用DES解密算法进行解密时,将以64位密文作为输入,第1次迭代运算使用子密钥K16,第2次迭代运算使用子密钥K15,……,第16 次迭代使用子密钥K1,其它的运算与加密算法相同。
这样,最后输出的是64位明文。
三、D ES学习总结:
1.DES是一种对称加密算法,1977年美国政府采用,作为对无分
类信息加密的官方标准;
2.DES只使用了标准的算术和逻辑运算,易于实现;
3.密钥可为任意的56位数,具有复杂性,破译成本高,使得安全
性得以保障;
4.密钥相对较短,加密效率高,可以用来构造各种密钥机制,可以
用来建造安全性更强的密码;
5.依靠密钥来保障加密信息的安全,要求通信双方都要保持密钥
的秘密性;
6.可通过多重加密,提高安全等级。