1.细菌耐药机制
简述细菌的耐药机制

简述细菌的耐药机制
细菌的耐药机制指的是细菌对抗抗生素的能力,使其能够在存在抗生素的环境中存活和繁殖。
下面是常见的细菌耐药机制:
1. 靶标修改:细菌通过改变抗生素作用的靶点来减少抗生素的结合能力。
这使得抗生素无法有效地与细菌靶标结合,从而降低其抑制细菌生长的效果。
2. 药物代谢:细菌能够产生酶来降解或改变抗生素的结构,使其失去药物活性。
这包括β-内酰胺酶、氨基糖苷酶等。
3. 药物外排:细菌能够通过多种泵机制将抗生素从细胞内排出。
这些泵可以将抗生素推出细菌细胞,降低抗生素在细菌内的浓度,从而减少其对细菌的杀菌作用。
4. 耐药基因的水平转移:细菌能够通过水平基因转移,将抗生素抵抗性的基因从一个细菌传递到另一个细菌。
这使得细菌能够快速地获得抗生素耐药性。
5. 生物膜形成:细菌可以生产粘附于细菌表面的生物膜,使得抗生素难以渗透到细菌内部,从而减少其抑制细菌生长的效果。
细菌的耐药机制可以单独存在,也可以同时出现,使得细菌对多种抗生素产生耐药性。
这对临床治疗造成了很大的挑战,因为耐药菌株难以被常规抗生素有效杀灭,需要寻找新的抗菌策略。
细菌的五种耐药机制

细菌的五种耐药机制
细菌的耐药机制主要包括五种,分别是:
1. 靶点变异:细菌通过改变药物的靶点,使得药物无法与其结合,从而失去了药物的作用。
这种耐药机制常见于抗生素的应用中,如青霉素、四环素等。
2. 药物降解:细菌通过产生酶类物质,使得药物在体内被降解,从而失去了药物的作用。
这种耐药机制常见于抗生素的应用中,如β-内酰胺酶、氨基糖苷酶等。
3. 药物泵:细菌通过产生药物泵,将药物从细胞内部排出,从而失去了药物的作用。
这种耐药机制常见于抗生素的应用中,如四环素、氨基糖苷类等。
4. 代谢途径变化:细菌通过改变代谢途径,使得药物无法进入细胞内部,从而失去了药物的作用。
这种耐药机制常见于抗结核药物、抗真菌药物等。
5. 细胞壁变化:细菌通过改变细胞壁的结构,使得药物无法穿透细胞壁进入细胞内部,从而失去了药物的作用。
这种耐药机制常见于青霉素、头孢菌素等β-内酰胺类抗生素的应用中。
以上是细菌的五种耐药机制,这些机制的出现使得细菌对药物的抵抗力增强,对于人类的健康和生命安全带来了巨大的威胁。
因此,我们需要加强对细菌的研究,
开发出更加有效的抗生素和治疗方法,以保障人类的健康和生命安全。
细菌耐药性机制

• 3、改变细菌外膜通透性: • 很多光谱抗菌药都对铜绿假单胞菌无效或作用很弱,主要 是抗菌药物不能进入铜绿假单胞菌菌体内,故产生天然耐 药。细菌接触抗生素后,可以通过改变通道蛋白(porin) 性质和数量来降低细菌的膜通透性而产生获得性耐药性。 正常情况下细菌外膜的通道蛋白以OmpF和OmpC组成非 特异性跨膜通道,允许抗生素等药物分子进入菌体,当细 菌多次接触抗生素后,菌株发生突变,产生OmpF蛋白的 结构基因失活而发生障碍,引起OmpF通道蛋白丢失,导 致β-内酰胺类、喹诺酮类等药物进入菌体内减少。在铜绿 假单胞菌还存在特异的OprD蛋白通道,该通道晕粗亚胺 培南通过进入菌体,而当该蛋白通道丢失时,同样产生特 异性耐药。
• 细菌对抗生素产生耐药性的基因学机制 1、细菌生物膜的形成 2、耐药性基因学最新研究进展-整合子 整合子是存在于细菌中可移动的基因捕获 和表达的遗传单位细菌通过整合子系统,在 整合酶作用下,不断从周围环境捕获外来耐 药基因,通过启动子作用得以表达,从而使细 菌具有耐药性和多重耐药性
• 最新研究发现,细菌整合子携带的耐药基因有70 余种。 同时,整合子作为一个移动遗传元件,通过质粒、转 座子在细菌同种或不同种属间进行基因水平转移, 使细菌的耐药性在病原菌中广泛传播,因此整合子 系统对于研究细菌耐药性的传播具有非常重要的 意义。 国外研究的整合子在细菌种属间的分布文献多有 报道,整合子在细菌间的传播借助于转化、转导及 接合来完成,可跨越菌属间的界限,整合子的水平转 移可解释耐药基因的扩散和多重耐药菌株的产生
防治措施
• • • • • • • • 1、加强对抗菌药物的研究 2、针对耐药机制合理选择抗菌药物 3、以回复突变为理论依据,循环使用抗菌药物 4、减少非必须抗菌素药物的应用 5、严格执行消毒隔离制度 6、建立细菌耐药监测网 7、研制开发新型抗菌药物 8、破环耐药基因
常见抗生素的细菌耐药机制解析

常见抗生素的细菌耐药机制解析常见抗生素的细菌耐药机制解析抗生素是治疗感染疾病的重要药物,然而,近年来细菌耐药性的普遍增加使得抗生素的有效性受到严重威胁。
了解细菌耐药机制对于找到解决这一问题的方法至关重要。
本文将对常见抗生素的细菌耐药机制进行分析和解析。
一、β-内酰胺类抗生素的细菌耐药机制1. β-内酰胺酶的产生:β-内酰胺酶是一种能够降解β-内酰胺类抗生素的酶。
细菌通过产生β-内酰胺酶来降解抗生素,从而降低抗生素的疗效。
2. 靶点突变:β-内酰胺类抗生素通过抑制细菌生成细胞壁的酶来发挥作用。
细菌产生突变使得这些酶对抗生素的敏感性降低,从而导致抗生素的耐药性增加。
二、氨基糖苷类抗生素的细菌耐药机制1. 酶的修饰:某些细菌能够产生修饰酶,这些酶会改变抗生素的结构,从而使其失去对细菌的杀菌作用。
2. 降低药物进入细胞:细菌通过改变细胞外膜的通透性、增加外膜层的厚度等方式,降低了氨基糖苷类抗生素进入细胞的效率,从而减少了抗生素对其的杀菌作用。
三、喹诺酮类抗生素的细菌耐药机制1. DNA去甲基酶的产生:喹诺酮类抗生素通过抑制革兰氏阳性细菌和革兰氏阴性细菌中的DNA酶来发挥杀菌作用。
细菌产生DNA去甲基酶能够降低抗生素对细菌的作用效果。
2. 靶点突变:喹诺酮类抗生素的靶点是革兰氏阳性细菌和革兰氏阴性细菌的DNA酶。
细菌产生突变使得这些酶对抗生素的结合能力降低,从而导致抗生素的耐药性增加。
四、磺胺类抗生素的细菌耐药机制1. 构建带有耐药基因的耐药质粒:细菌通过水平基因转移的方式,将带有耐药基因的耐药质粒传递给其他细菌,从而使得更多的细菌获得耐药性。
2. 靶点突变:磺胺类抗生素通过抑制细菌对二氢蝶呤的合成来发挥杀菌作用。
细菌产生突变使得这一合成酶的结构或功能发生改变,从而减弱了抗生素对细菌的作用效果。
结论细菌耐药机制的研究对于制定合理的抗生素使用策略以及开发新型抗生素至关重要。
通过了解细菌耐药机制,我们可以预测和解决细菌耐药性的问题,保护抗生素的疗效,确保人类健康。
细菌耐药的遗传机制

细菌耐药的遗传机制
一、染色体突变
染色体突变是细菌耐药性的重要遗传机制之一。
染色体上的基因发生突变,可以导致细菌对某些药物的敏感性降低或丧失,从而产生耐药性。
这些基因的突变通常是由于DNA复制过程中发生的随机错误,或者是由于某些诱变因素如紫外线、化学诱变剂等引起的。
二、质粒和转座子
质粒和转座子是细菌染色体外的遗传物质,可以在细菌间转移和传播,从而影响细菌的耐药性。
质粒携带的耐药基因可以在不同菌株间传播,使细菌获得新的耐药性。
转座子则可以通过插入或转位的方式,引起染色体基因的突变或重组,导致细菌对药物的敏感性改变。
三、细菌种间转移
细菌种间转移是指不同种类的细菌通过接合、转化、转导等方式交换遗传物质,从而获得新的耐药性基因。
这种转移方式通常发生在肠道、呼吸道等部位,其中接合是将一个细菌的DNA片段直接转移给另一个细菌的过程;转化是细菌从周围环境中吸收并利用外源DNA的过程;转导则是病毒将自身基因组转移到另一个细菌中的过程。
四、药物作用靶点的改变
药物作用靶点的改变是细菌耐药性的另一种重要机制。
某些药物在细菌体内的作用靶点是特定的蛋白质或酶,当这些蛋白质或酶发生突变时,可以降低药物对它们的抑制作用,从而使细菌对药物产生耐药性。
这种改变通常是由于细菌基因突变引起的。
五、外排泵
外排泵是一种将药物等物质从细胞内排出到细胞外的机制,可以帮助细菌对抗药物的作用。
当药物进入细菌体内时,外排泵能够将其迅速排出体外,使药物无法在细菌体内积累到足够的浓度,从而达到耐药的目的。
外排泵的基因通常存在于质粒或染色体上,可以在不同菌株间传播。
细菌耐药机理

细菌耐药机理
细菌耐药机理是指细菌对抗生素或其他药物的抵抗能力。
以下是几种常见的细菌耐药机制:
1. 基因突变:细菌通过基因突变导致药物的靶点发生变化,使得抗生素无法与其结合起作用。
2. 酶的产生:细菌可以分泌一种特殊的酶来降解抗生素,使其失去活性。
例如,β-内酰胺酶可以降解β-内酰胺类抗生素。
3. 药物外排:细菌可以通过泵机制将抗生素从细菌内部排出,降低抗生素的浓度,减少其对细菌的杀伤作用。
4. 耐受性的产生:细菌可以改变其生理代谢途径,使得抗生素无法影响其生长和繁殖。
5. 横向基因转移:细菌可以通过质粒传递等方式在不同菌株之间传递耐药基因。
这些基因可以编码耐药性蛋白,从而使受感染的菌株也具有耐药性。
细菌的耐药机制是由多种因素共同作用引起的,包括自然选择、基因突变和基因转移等。
这些机制使得某些细菌菌株对抗生素具有较强的抵抗能力,从而导致抗药性的出现和传播。
细菌耐药的机制与方法

细菌耐药的机制与方法随着抗生素的广泛使用,细菌耐药成为了一个全球性的医疗和公共卫生问题。
细菌耐药是指细菌对一种或多种抗生素产生抗药性的现象。
全球每年有数百万人死于细菌耐药,如果不采取积极措施,这个数字还将继续增加。
细菌耐药的机制细菌耐药主要是由于以下几个机制所致:1. 基因突变:细菌的基因可以突变,使其对某些抗生素产生抗药性。
2. 突变累积:细菌在繁殖的过程中,如果遇到了细菌抗生素,有一部分细菌会因为突变而获得抗药性。
如果这些耐药细菌又继续繁殖,它们的数量就会越来越多,最终形成耐药菌株。
3. 水平基因转移:不同种类的细菌之间可以通过水平基因转移(如质粒转移)来共享抗药基因。
这意味着即使一种细菌开始对某种抗生素敏感,也可能通过与其他耐药细菌接触感染而得到抗药性。
细菌耐药的方法控制细菌耐药的方法包括以下几个方面:1. 合理使用抗生素:抗生素并不能对所有病菌都有效,医生需要明确诊断病原菌的种类,选择合适的抗生素进行治疗。
另外,不要随意打断用药过程,以免导致抗生素治疗失效。
2. 发展新的抗菌药物:由于人类对抗生素的滥用,致使许多细菌对传统的抗生素已经发展出了耐药性。
因此,发展新的抗菌药物是控制细菌耐药的可持续方法之一。
此外,必须加强对抗菌药物的开发和研究,包括对抗菌药物的剂量、用法、疗程和其他治疗策略的深入了解。
3. 提高公众意识:公众应该认识到抗生素的滥用和不合理使用会导致细菌耐药性,从而丧失药物的疗效。
我们必须鼓励人们采取健康的生活方式,尽可能避免被感染,并挽救使用抗生素的方法来治疗疾病。
4. 排放管制:药物排放也会影响细菌的耐药性。
医院、养殖业和个人的用药排放都会污染水源和环境。
为改善这些问题,需要实行更加严格的管制,避免药物排放的过程。
5. 加强国际合作:细菌耐药的现象已经成为了全球性的问题,因此需要各个国家之间的合作。
我们需要共同努力,分享疫情情报、研究数据、诊断结果和专业知识,以便更好地控制细菌耐药的问题。
细菌的耐药性机制研究

细菌的耐药性机制研究引言:细菌耐药性已成为全球性的公共卫生问题,威胁到世界各地人们的健康。
耐药性的发展不仅缩小了抗生素治疗的选择范围,而且也增加了治疗感染疾病的难度。
因此,研究细菌的耐药性机制显得至关重要。
1.遗传变异:细菌的遗传变异是其适应快速变化环境的一种机制。
通过突变或水平基因转移,细菌可以获得耐药基因。
突变是细菌在繁殖过程中发生的自然变异,可能会导致细菌对抗生素产生耐药性。
水平基因转移通常通过质粒或转座子载体,使细菌之间传递耐药基因。
2.质粒介导的耐药:细菌通过质粒介导的耐药性机制来获得抗药基因。
质粒是环状DNA分子,可以独立复制和转移给其他细菌。
质粒上携带的抗药基因编码产生抗生素降解酶或调控抗生素靶点以减少抗生素的效果。
细菌通过质粒介导的耐药性机制可以横向传播抗药性。
3.靶点变异:细菌可以通过改变抗生素的靶点来获得耐药性。
例如,靶点变异包括靶点酶的结构改变,抗生素进入细菌的通道受阻或改变细菌与抗生素之间的相互作用。
这些变化使细菌对抗生素具有较低的敏感性。
4.抗生素的灭活:一些细菌可以通过酶活性来轻松地降解抗生素,使其失去药效。
例如,β-内酰胺酶就是一种常见的细菌酶,可以降解β-内酰胺类抗生素,如青霉素,使之无法抑制细菌的生长。
5.多药耐药泵:细菌可以表达多药耐药泵以将抗生素从细胞内排出,从而减少细菌对抗生素的敏感性。
这些多药耐药泵可以排出多种抗生素,使细菌获得耐药性。
这也是细菌产生耐药性的一个重要机制。
结论:细菌的耐药性机制包括遗传变异、质粒介导的耐药、靶点变异、抗生素的灭活以及多药耐药泵等。
理解这些机制对于开发新的抗生素以及控制细菌感染非常重要。
此外,细菌耐药性也需要更加严格的使用和管理抗生素,以克服这一全球性的公共卫生问题。
在未来,我们还需要继续研究和了解细菌耐药性机制,以应对不断出现的新问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比较稳定
头孢西丁 头孢替坦 碳青霉烯类最稳定
但是不同类型的ESBLs最优化的底物各不相同
ESBLs Detection Methods:Inhibition by Clavulanic Acid
© Ronald J. Jones (Reprinted with Permission of Author).
如铜绿假单胞菌的细胞外膜上没有大多数革兰阴性细菌
所具有的典型的高渗透性孔蛋白,它的孔蛋白通道对小 分子物质的渗透速度仅为典型孔蛋白通道的1%。
“后天培养”
一些具有高渗透性外膜且对抗菌药物敏感的细菌可以通过 降低外膜的渗透性而发展成为耐药菌,即原有的孔蛋白通 道由于细菌发生突变而使该孔蛋白通道关闭或消失,则细
或定位在I型整合子基因盒中,具备向其他菌种转移 的能力
碳青霉烯酶的地域分布(1)
酶
IMP-1 IMP-2 IMP-3 IMP-4 IMP-5 IMP-6 IMP-7 IMP-8 IMP-9 IMP-10 IMP-11 IMP-12 IMP-13
分类
B B B B B B B B B B B B B
碳青霉烯酶的地域分布
酶 分类 产生的菌属 发现的地区(首次报道的年代)
VIM-1 B VIM-2 B VIM-3 B VIM-4 B VIM-5 B VIM-6 B VIM-7 B SPM-1 B OXA-23/27 D OXA-24/25/26 D OXA-40 D OXA-48 D OXA-49 D OXA-54 D Sme-1/2/3 A IMI-1、NMC-A A KPC-1 A GES –2 A 铜绿假单胞菌 意大利(1999)、希腊 铜绿假单胞菌、不动杆菌 法国(2000)、韩国 铜绿假单胞菌 台湾(2001) 铜绿假单胞菌、不动杆菌 法国(2000)、韩国 肺炎克雷伯菌 土耳其(2002) 恶臭假单胞菌 新加坡(2002) 铜绿假单胞菌 北美(2004) 铜绿假单胞菌 巴西(2002) 不动杆菌 英国(2000)、 新加坡、巴西 不动杆菌 西班牙(2000)、比利时 鲍曼不动杆菌 法国(2002) 肺炎克雷伯菌 法国(2004) 鲍曼不动杆菌 中国(2003) 希瓦菌 法国(2002) (Shewanella oneidensis) 粘质沙雷菌 英国(1990) 、美国 阴沟肠杆菌 法国(1996)、美国 肠炎沙门菌、肺炎克雷伯菌 希腊、美国 铜绿假单胞菌 法国
是质粒介导的能够水解头孢他啶、头孢噻肟等亚氨
基β-内酰胺类及氨曲南等单环酰胺类抗生素,并可被
克拉维酸等β-内酰胺酶抑制剂所抑制的一类β-内酰胺 酶。
ESBLs在分子生物学分类中属于A类酶,在Bush分类
中属于2be类酶。
染色体 (细胞核中)
质粒 (细胞质中)
示意图
ESBLs的分类
根据基因同源性不同分为:
华南地区,2001.4-9,陆坚等
中国重症监护病房, 1994,陈民钧等
台湾的ICU病房, 2000,Hsueh PR
11.9% 大肠埃希菌 11.3% 肺炎克雷伯菌
香港,2000, Ho PL等
11% 大肠埃希菌 13% 肺炎克雷伯菌
ESBLs 的 活 性
可以分解
不耐酶的青霉素类 第一、第二头孢菌素 第三代头孢菌素类 单酰胺菌素类
Process of Selection
Mutants Selected Through Anitbiotic P养: E. coli ATCC 25922
纸片上有待测菌
7、AmpC 纸片法试验
ß -内酰胺酶的检测
酶粗提液 CTX
酶粗提液+ 氯唑西林
酶粗提液+ 克拉维酸
金属酶筛选结果
2-巯基丙酸 IMP纸片
EDTA
2-巯基丙酸 IMP纸片 EDTA
阳性对照株结果
临床标本结果
2f 类酶(三维抑制试验)
Enzyme
Enzyme+ cloxacillion
Enzyme +EDTA
Enzyme+ clavulanic acid
金属酶筛选结果
2-巯基丙酸 CAZ
产碳青霉烯酶细菌感染的治疗
ESBL ® Etest Prescribing Information – AB BIODISK
抑制剂增强的纸片扩散法
头孢噻肟 头孢他啶
头孢噻肟 + 克拉维酸
头孢他啶 + 克拉维酸
头孢菌素酶
大部分肠杆菌科细菌如肠杆菌属菌种、
弗劳地枸橼酸杆菌、摩根摩根菌、普鲁菲登 菌属菌种粘质沙雷菌等都能产生染色体介导 的AmpC酶。
OmpF OmpC
Beta Lactamases
(hydrolyzing enzymes)
penicillin binding proteins
PBP3 PB1b
CBD/RR
PBP2
PBP1a
临床上最重要的-内酰胺酶
超广谱-内酰胺酶(ESBLs) 高产AmpC酶
碳青霉烯酶
超广谱-内酰胺酶 (extended-spectrum -lactamases,ESBLs)
Molecular class C A A A A A D A A B Not determined
Inhibited by CA EDTA + + + + + + + ?
β-内酰胺酶的分类方法
Antibiotic interactions with gram negative organisms
碳青霉烯酶
指所有能明显水解亚胺培南或美罗培南等碳青 霉烯类抗生素的一类β内酰胺酶 分别属于Ambler分子分类中的A类、B类、D类 酶。
碳青霉烯酶按其来源可分为
天然来源碳青霉烯酶
嗜麦芽寡养单胞菌的L1酶
获得性碳青霉烯酶(Ambler分子分类)
B类酶(金属酶):IMP、VIM类及SPM-1
Cephalosporins Imipenem
Rapid diffusion due to small size and zwitterionic +/- charge)
-内酰胺酶
最主要的耐药因素
对-内酰胺抗生素造成威胁
slower diffusion due to bulk and ionic charges
Bush-Jacoby-Med eiros group 1 2a 2b 2be 2br 2c 2d 2e 2f 3 4
1989 Bush group 1(头孢菌素酶) 2a(青霉素酶) 2b(广谱酶) 2b’(超广谱酶) Not included Not included 2d 2e Not included 3(金属酶) Not included
菌就会对该抗菌药物产生很高的耐药性。
亚胺培南是一种非典型的β-内酰胺类抗菌药物,其对铜绿 假单胞菌的活性,主要是通过一个特殊的孔蛋白通道 OprD2的扩散而实现的,一旦这一孔蛋白通道消失,则铜 绿假单胞菌对亚胺培南就会产生耐药性。
二、 产生灭活酶
细菌产生一种或多种水解酶或钝化酶来水解
或修饰进入细胞内的抗菌药物,使之到达靶位
培南,可以引起青霉素类、氨曲南、碳青霉烯类抗生素耐药
碳青霉烯类抗生素水解酶
B类酶(金属酶)
金属酶不仅对β-内酰胺酶的抑制剂敏感性差,而且能够水解包括 碳青霉烯类在内的几乎所有β-内酰胺类抗生素。金属酶分别属于 Ⅲ类和B类酶。 多数金属酶对亚胺培南的水解能力强于美洛培南,但蜡样芽胞杆
菌Ⅱ酶和3b中的AsbM1对美洛培南的水解能力更强。
ESBLs 在
中
国
12.4% 大肠埃希菌 16.7% 肺炎克雷伯菌
北京解放军总医院, 1999.3-11,管希周等
上海市11家医院,2000 -2001,耐药性监测组
17.9% 大肠埃希菌
33.1% 肺炎克雷伯菌
浙江省12家医院, 1998.9-1999.6,俞云松等
34.0% 大肠埃希菌 38.3% 肺炎克雷伯菌 12.9% 大肠埃希菌 20.1% 克雷伯菌属菌 10% 大肠埃希菌 12% 肺炎克雷伯菌
TEM型
SHV型
80
46
CTX-M-1组 CTX-M-2组 CTX-M-8组 CTX-M-9组
CTX-M型
OXA型 其它型
37
18
20
/studies/webt.htm.
ESBLs基因型流行情况
美国:TEM-10、TEM-12、TEM-26为主
英国:TEM-10、TEM-12为主 法国:SHV-3、SHV-4、TEM-3为主 希腊: SHV-5,CTX-M型 意大利:SHV-12 阿根廷:CTX-M-2 日本:TOHO-1,TOHO-2
之前失去活性
细菌产生的灭活酶主要有:
β-内酰胺酶 氨基糖苷类钝化酶 氯霉素乙酰转移酶 MLS钝化酶
细菌耐药的主要机制
抗生素靶位点改变 孔蛋白改变,细胞壁/膜 通透性改变
灭活酶产生
β-内酰胺酶
由细菌产生的能够降解β-内酰胺类抗生素(如青 霉素类,头孢菌素类,碳青霉烯类抗生素等), 使其抗菌活性减弱或消失的酶 至今,已发现β-内酰胺酶有四百多种
碳青霉烯类抗生素水解酶
A类酶
分类属于2f型,具有丝氨酸位点,可以被克拉维酸抑制。
包括阴沟肠杆菌、粘质沙雷菌中由染色体介导的NMC-A、Sme1~Sme-3、IMI-1酶,以及肺炎克雷伯菌中质粒介导的KPC-1、 KPC-2酶、铜绿假单胞菌中质粒介导的GES-2酶。
A类碳青霉烯酶都是青霉素酶 ,对亚胺培南的水解活性强于美罗
头孢菌素酶
其分子量大约为39000左右 其等电点大多≥9.0
能分解三代头孢菌素及单环酰胺类抗生素