2018学年高二数学上学期寒假作业4理(1)
高二数学寒假作业:(四)(Word版含答案)

高二数学寒假作业(四)一、选择题,每小题只有一项是正确的。
1.公比为2的等比数列{an)的各项都是正数,且=16,则a6等于A .1B .2C .4D .82.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )3.一个有11项的等差数列,奇数项之和为30,则它的中间项为( ) A .8 B .7 C .6D .54.在ABC △中,已知4,6a b ==,60B =,则sin A 的值为A.26 B. 23 C. 36D. 335.在060,20,40===∆C c b ABC 中,已知,则此三角形的解为( ) A.有一解 B.有两解 C.无解 D.有解但解的个数不确定6.若n =(1,-2,2)是平面α的一个法向量,则下列向量能作为平面α法向量的是 A .(1,-2,0) B .(0,-2,2) C .(2,-4,4) D .(2,4, 4)7.已知点(3,1,4)A --,(3,5,10)B -则线段AB 的中点M 的坐标为 ( ) A. ()0,4,6-B. ()0,2,3-C. ()0,2,3D. ()0,2,6-8.已知椭圆12222=+b x a y ( a > b > 0) 的离心率为1e ,准线为1l 、2l ;双曲线132222=-b y a x 离心率为2e ,准线为3l 、4l ;;若1l 、2l 、3l 、4l 正好围成一个正方形,则21e e 等于( )A.33 B .36 C.22D. 2 9.下列命题是真命题的为 ( ) A .若11x y=,则x y = B .若21x =,则1x =C .若x y =,D .若x y <,则 22x y <二、填空题10.已知条件p :1≤x ,条件q :11<x,则p ⌝是q 的_____________________条件. 11.已知x 、y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则y x z 42+=的最小值为 .12.设椭圆22162x y +=和双曲线2213x y -=的公共焦点为1F ,2F ,P 是两曲线的一个交点,12cos PF F ∠的值是 。
2017-2018学年高二上学期数学寒假作业一含答案

2017-2018学年高二上学期数学寒假作业(一)1、命题“若,则”的否命题为( )A.若,则且B.若,则或C.若,则且D.若,则或2、已知命题:“”,命题:“直线与直线互相垂直”,则命题是命题的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3、若动点到点和直线的距离相等,则点的轨迹方程为( )A. B. C. D.4、一个多面体的三视图如下图所示,正视图为等腰直角三角形,俯视图中虚线平分矩形的面积,则该多面体的表面积为( )A. B. C. D.5、如图,棱长为1的正方体中,为线段上的动点,则下列结论正确的有( )①三棱锥的体积为定值②的最大值为③的最小值为A.①②B.①②③C.③④D.②③④6、已知双曲线的一条渐近线与直线垂直,则双曲线的离心率为( )A. B. C. D.7、如图,边长为的正方形中,点分别是边的中点,,分别沿折起,使三点重合于点,若四面体的四个顶点在同一个球面上,则该球的半径为( )A. B. C. D.8、若直线的方向向量为,平面的法向量为,则( )A. B. C. D.与斜交9、下图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( )A. B. C. D.10、若圆与曲线没有公共点,则半径的取值范围是( )A. B. C.D11、已知双曲线的两条渐近线均和圆相切,且圆的圆心是双曲线的一个焦点,则该双曲线的方程为( )A. B. C. D.12、已知椭圆的左焦点为与过原点的直线相交于两点,连接.若,则的离心率为( )A. B. C. D.13、已知三棱锥的三视图的正视图是等腰三角形,俯视图是边长为的等边三角形,侧视图是直角三角形,且三棱锥的外接球表面积为,则三棱锥的高为.14、命题:“或”的否定是.15、若直线, 当时.16、在椭圆上有两个动点,为定点, ,则最小值为.17、已知:以点为圆心的圆与轴交于点和点,与轴交于点和点,其中为原点.1.求证:的面积为定值;2.设直线与圆交于点,,若, 求圆的方程.18、设:函数的定义域为;:不等式对一切正实数均成立.如果命题或为真命题,命题且为假命题,求实数的取值范围19、如图,在四棱锥中,底面四边形是正方形,,且.1.求证:平面底面;2.设,当为何值时直线与平面所成角的余弦值为?20、已知动点在抛物线上,过点作轴的垂线,垂足为,动点满足.1.求动点的轨迹的方程;2.点,过点且斜率为的直线交轨迹于两点,设直线,的斜率分别为,求的值.21、如图,在直角梯形中,.直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面.为线段的中点,为线段上的动点.(1).求证:;2.当点是线段中点时,求二面角的余弦值;3.是否存在点,使得直线平面?请说明理由.22、已知椭圆的两个焦点,且椭圆过点,且是椭圆上位于第一象限的点,且的面积.1.求点的坐标;2.过点的直线与椭圆相交与点,直线与轴相交与两点,点,则是否为定值,如果是定值,求出这个定值,如果不是请说明理由.数学作业(一)参考答案一、单选题1.D2.A3.B4.D5.A6.C7.D8.B9C10.C11. A 12.B二、填空题13.214.且15.或16.9三、解答题17.1.证明:∵圆过原点.∴,设圆的方程为,令,得,;令,得,.∴,即的面积为定值.2.∵,∴垂直平分线段.∵,∴,∴直线的方程为,∴,解得或.当时,圆心的坐标为,,此时圆心到直线:的距离,圆与直线相交于两点. 符合题意,此时,圆的方程为.当时,圆心的坐标为,,此时到直线的距离,圆与直线不相交,∴不符合题意,应舍去.∴圆心的方程.18.为真命题的定义域为对任意实数均成立,所以为真命题.为真命题对一切正实数均成立对一切正实数均成立,由于,所以,所以,所以,所以为真命题.由题意知与有且只有一个是真命题,当真假时,不存在;当假真时,,综上,.19.1.因为,,,所以平面,又平面,所以平面底面.2.取的中点,连接,设,因为平面平面,平面平面,,平面,所以平面.以为坐标原点,方向为轴,方向为轴,方向为轴,建立空间直角坐标系.由题意,得平面的法向量为,,则,,.20.1.设点,由,则点,将代入中,得轨迹的方程为.2.设过点的直线方程为,,.联立,得,则.∵,,∴.21.1.由已知,且平面平面,所以,即.又因为且,所以平面.由已知,所以平面.因为平面,所以.2.由1可知两两垂直.分别以为轴、轴、轴建立空间直角坐标系如图所示. 由已知,所以.因为为线段的中点,为线段的中点,所以.易知平面的一个法向量.设平面的一个法向量为,由得取,得.由图可知,二面角的大小为锐角,所以.所以二面角的余弦值为.3.存在点,使得直线平面.设,且,,则,所以.所以.设平面的一个法向量为,由得取,得(显然不符合题意).又,若平面,则.所以.所以.所以在线段上存在点,且时,使得直线平面.22.1.因为椭圆过点,∴,计算的得出,∴椭圆的方程为:∵的面积,∴∴,代入椭圆方程.∵,计算得出∴2.解法一:设直线的方程为:,直线的方程为:,可得:即直线的方程为:,可得:即联立消去整理的:. 由,可得;故为定值,且.解法二、设,直线、、的斜率分别为,由得,可得:,∴由, 令,得,即同理的,即,则故为定值,该定值为。
吉林省长春市田家炳实验中学2017-2018学年高二上学期数学(理)寒假作业四+Word版含答案

2017—2018上学期高二数学寒假作业(四)命题人:苑立国1.椭圆2299x y +=的长轴长为( ) A .2 B.3 C.6 D. 92.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率 ( )A 31B 33C 21D 233.设抛物线x y 82=的焦点为F ,过点F 作直线l 交抛物线于A 、B 两点,若线段AB 的中点E到y 轴的距离为3,则AB 的长为( )A. 5B. 8C. 10D. 12 4.下列命题中正确命题的个数是( )(1)对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∀∈,均有210x x ++>;(2)命题“已知,x y R ∈,若3x y +≠,则2x ≠或1y ≠”是真命题;(3)回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x ∧=+;(4)3m =是直线()320m x my ++-=与直线650mx y -+=互相垂直的充要条件. A. 1 B. 2 C. 3 D. 45.执行右面的程序框图,如果输入的x 在[]1,3-内取值,则输出的y 的取值区间为( ) A .[]0,2 B .[]1,2 C .[]0,1 D .[]1,5-7.已知椭圆()2212:11x C y m m +=>与双曲线()2222:10x C y n n-=>的焦点重合, 12,e e 分别为12,C C 的离心率,则( )A. m n >且121e e >B. m n >且121e e <C. m n <且121e e >D. m n >且121e e <8..已知复数122,3z i z i =+=-,其中i 是虚数单位,则复数12z z 的实部与虚部之和为( )A .0B .12C .1D .29.P 是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,若∠F 1PF 2=3π,则△F 1PF 2的面积为( )A....9(210.设F 1, F 2分别为双曲线2221x a b2y -=(a>0,b>0)的左、右焦点,P 为双曲线右支上任一点。
辽宁省庄河市18学年高二数学寒假作业(综合)(1)

高二数学寒假作业(综合)(1)选用模版:4选12填6答(A3)时间:120满分:150命卷人:刘晓辉审核人:考试日期:2018-02-01一、选择题(共4小题)1 (id:27442).一个空间几何体的三视图如图所示,则该几何体的表面积为( )48802 (id:44501).已知四面体中,,,,平面,则四面体的内切球半径与外接球半径的比 ( )∙∙∙∙∙∙3 (id:30162).函数的部分图象是( ) ∙∙∙∙∙∙∙4 (id:31852).若三个角、、满足,则有( ) ∙最小值为∙∙最小值为∙∙最小值为∙∙最小值为∙二、填空题(共12小题)5 (id:29736).若,则__________.6 (id:30573).函数的最小值是__________.7 (id:29065).在中,,边上的高为,则的最小值为__________.8 (id:30937).点是三角形内一点,若,则__________.9 (id:32050).若将向量,绕原点按逆时针方向旋转,得到向量,则向量的坐标为__________.10 (id:102376).已知是单位向量,.若向量满足,则的最大值是__________.11 (id:30980).已知是偶函数,则__________.12 (id:32956).已知,则的值是__________.13 (id:43300).已知方程(为大于1的常数)的两根为,且,则__________.14 (id:104147).已知,,化简__________.15 (id:53023).把数列中各项划分为:.照此下去,第个括号里各数的和为__________.16 (id:36088).等差数列的公差不为零,,成等比数列,数列满足条件,则__________.三、简答题(共6小题)17 (id:52095).已知数列是等差数列,,,数列的前项和为,且.(1)求数列的通项公式;(2)记,若对任意的恒成立,求实数的取值范围.18 (id:168731).已知等差数列满足:,且,,成等比数列.(1)求数列的通项公式.(2)记为数列的前n项和,是否存在正整数n,使得?若存在,求n的最小值;若不存在,说明理由.19 (id:153772).在中,内角的对边,且,已知,,,求:(1)和的值;(2)的值.20 (id:35351).在中,分别为角的对边,且.(1)若,求的值;(2),的面积是,求的值.21 (id:27865).如图,是等腰直角三角形,是直角,是它的一条中位线,.把沿折起,使得平面平面,连接,,是的中点,如图所示.(1)求证:平面;(2)求证:平面;(3)求四棱锥的体积.22 (id:60756).已知抛物线:,点在轴的正半轴上,过的直线与相交于,两点,为坐标原点.(1)若,且直线的斜率为,求以为直径的圆的方程;(2)是否存在定点,不论直线绕点如何转动,使得恒为定值?。
2017-2018学年高二上学期数学寒假作业含答案

2017-2018学年寒假作业高二数学试题一必修5文理都用一、选择题(本大题共12小题,共60.0分)1.若,则A. B.C. D.2.若正实数满足,则的最小值A. 3B. 4C.D.3.若实数满足条件则的最大值为A. B. C. D.4.中,角A、B、C成等差,边a、b、c成等比,则一定是A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形5.如图,在平面四边形ABCD中,,则BC的长为A. B. 2 C. 3 D.6.若的内角所对的边分别为,已知,且,则等于A. B. C. D.7.中,边长a、b是方程的两根,且则边长c等于A. B. C. 2 D.8.已知等比数列满足,则A. 1B.C.D. 49.设为等差数列的前n项和,若,则当最大时正整数n为A. 4B. 5C. 6D. 1010.数列满足,则A. B. C. 2 D.11.等差数列中,,且为其前n项之和,则A. 都小于零,都大于零B. 都小于零,都大于零C. 都小于零,都大于零D. 都小于零,都大于零12.已知函数的图象关于对称,且在上单调,若数列是公差不为0的等差数列,且,则的前100项的和为A. B. C. D. 0二、填空题(本大题共4小题,共20.0分)13.设函数,则不等式的解集为______ .14.在锐角中,,则a等于______ .15.已知等差数列满足,则数列的前n项和 ______ .16.设等比数列满足,则的最大值为______ .三、解答题(本大题共6小题,共72.0分)17.某客运公司用两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次两种车辆的载客量分别为36人和60人,在甲地和乙地之间往返一次的营运成本分别为1600元辆和2400元辆公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆若每天要运送不少于900人从甲地去乙地的旅客,并于当天返回,为使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?营运成本最小为多少元?18.已知实数满足.求的取值范围;求最小值.19.在中,角所对的边分别是,满足.求的面积;若,求a的值.20.如图,中,,点D在线段AC上,且Ⅰ求:BC的长;Ⅱ求的面积.21.数列的通项公式是.这个数列的第4项是多少?是不是这个数列的项?若是这个数列的项,它是第几项?该数列从第几项开始各项都是正数?22.已知是等差数列,是各项均为正数的等比数列,.Ⅰ求数列的通项公式;Ⅱ求数列的前n项和.高二数学试题一必修5文理都用1. D2. B3. C4. A5. C6. C7. D8. B9. B10. C11. C12. B13. 14. 15. 16. 6417. 解:设应配备A型车、B型车各x辆,y辆,营运成本为z元;则由题意得,;;故作平面区域如下,故联立,解得,;此时,有最小值元.答:应配备A型车5辆、B型车12辆,营运成本最小,36800元.18.解:实数满足,作出可行域如图所示,并求顶点坐标,表示可行域内任一点与定点连线的斜率,由图知,又,的取值范围是表示可行域内任一点到直线的距离在图中作出直线,由图易知可行域中的点B到该直线的距离最小点B到该直线的距离,,可得最小值为:3.19. 解:分分的面积分分分20. 解:Ⅰ因为,所以分在中,设,由余弦定理可得:分在和中,由余弦定理可得:分因为,所以有,所以由可得,即分Ⅱ由Ⅰ知,则,又,则的面积为,又因为,所以的面积为分21. 解:,.这个数列的第4项是.解方程,得,或,,是这个数列的项,它是第16项.由,得,或.数列从第7项开始各项都是正数.22. 解:Ⅰ设数列的公差为的公比为,由.则解得或舍,所以.Ⅱ.。
高二数学寒假作业四.doc

高二数学寒假作业四一、选择题(每小题3分,共计30分)1.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( )A .66B .99C .144D .2972.已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第( )项 A .2 B .4 C .6 D .83.设n S 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则( ) A .1 B .1- C .2 D .21 4.若)32lg(),12lg(,2lg +-x x 成等差数列,则x 的值等于( )A .1B .0或32C .32D .5log 25.数列{}n a 的通项公式11++=n n a n ,则该数列的前( )项之和等于9。
A .98B .99C .96D .976.设11a b >>>-,则下列不等式中恒成立的是 ( )A .ba 11< B .b a 11> C .2a b > D .22a b > 7.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2y =D .1y x = 8.如果 20ax bx c ++>的解集为()(),24,-∞-⋃+∞,那么对函数()2f x ax bx c =++应有( )A .()()()521f f f <<-B .()()()251f f f <<-C .()()()125f f f -<<D .()()()215f f f <-<11.目标函数y x z +=2,变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,则有 ( )A .3,12min max ==z zB .,12max =z z 无最小值C .z z ,3min =无最大值D .z 既无最大值,也无最小值12.某工厂第二年比第一年的年产量的增长率为P ,第三年比第二年的年产量的增长率为q ,这两年 的年平均增长率为x ,则( )A .2p q x +=B .2p q x +≤C .2p q x +>D .2p q x +≥二、填空题(每小题4分,共计24分)9.二次方程22(1)20x a x a +++-=,有一个根比1大,另一个根比0小,则a 的取值范围是 ( )A .31a -<<B .20a -<<C .D .02a << 10.如果不等式222x 2mx m 14x 6x 3++<++对一切实数x 均成立,则实数m 的取值范围是( ) A . B .(-∞,3) C .(-∞,1)⋃(2,+∞) D . (-∞+∞)13.已知等比数列{}n a 满足=a 133,12+-=n n a a n ,则n a n 的最小值为 14.不等式20ax bx c ++<的解集为()(),23,-∞-⋃+∞,则不等式20cx bx a -+>的解集为15.已知x.>0,y>0,且2x+8y-xy=0则xy 的最小值为16.两等差数列{}n a 、{}n b 的前n 项和的比5327n n S n T n +=+,则53a b 的值是 三、解答题:(共46分,其中17题10分,其他各题12分)解答题应写出文字说明.证明过程或演算步骤.17 .(本小题满分12分)(1).记关于x 的不等式a 11x 1+>+的解集为P ,不等式11x -≤的解集为Q (Ⅰ)若3a =,求P ;(Ⅱ)若Q P ⊆,求正数a 的取值范围.18.(本小题满分12分)解关于x 的不等式2()(2)0a x x x --->,(其中a 为常数)19.(本小题满分12分) 已知函数[)22(),1,x x a f x x x++=∈+∞,若对任意[)1,,()0x f x ∈+∞>恒成立, 试求实数a 的取值范围。
吉林省高二数学寒假作业4

高二数学寒假作业(向量)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22小题,共150分,考试时间120分钟,考生作答时将答案答在答题卡上,在本试卷上答题无效。
第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求。
)1.“1<x ”是“0<x ”成立的( )A.充分不必要条件B.必要不充分条件C. 充要条件D.既不充分也不必要条件2. 以下四组向量: ①(1,2,1)a =-,(1,2,1)b =--;②(8,4,0)a =,(2,1,0)b =;③(1,0,1)a =-,(3,0,3)b =-; ④4(,1,1)3a =--,(4,3,3)b =- 其中互相平行的是.A . ②③B .①④C .①②④D .①②③④3.命题“对任意x R ∈,都有20x ≥”的否定为( ).A 对任意x R ∈,都有20x < .B 不存在x R ∈,使得20x <.C 存在0x R ∈,使得200x ≥ .D 存在0x R ∈,使得200x <4.ABC ∆中,c b a ,,分别是角C B A ,,的对边,向量)sin ,(cos ),3,1(B B q p =-=q p//且cos cos 2sin ,b C c B a A C +=∠则=( )A .30︒B .60︒C .120︒D .150︒5.双曲线221y x m-=的充分必要条件是 ( )A .12m > B .1m ≥ C .1m > D .2m >6.已知5OA 1,OB AOB 6π==∠= ,点C 在∠AOB 外且OB OC 0.∙= 设实数m,n 满足OC mOA nOB =+ ,则 mn等于 ( )(A)-2 (B)2 (D)-7.在△ABC 中,∠BAC=60°,AB=2,AC=1,E,F 为边BC 的三等分点(E 为靠近点C 的三等分点),则AE AF ∙等于( )()()()()551015A B C D 34988.设p :f(x)=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m≥284xx +对任意x>0恒成立,则p 是q 的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.有下列四种说法:①命题:“R x ∈∃0,使得02>-x x ”的否定是“R x ∈∀,都有02≤-x x ”; ○2已知随机变量x 服从正态分布),1(2σN ,79.0)4(=≤x P ,则21.0)2(=-≤x P ; ○3函数)(,1cos sin 2)(R x x x x f ∈-=图像关于直线43π=x 对称,且在区间⎥⎦⎤⎢⎣⎡-4,4ππ上是增函数;○4设实数[]1,0,∈y x ,则满足:122<+y x 的概率为4π。
重庆市铜梁县18学年高二数学上学期寒假作业(一)

重庆市铜梁县2017-2018学年高二数学上学期寒假作业(一)一、选择题1、如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A.B.C.D.2、若直线,,相交于同一点,则点可能是( )A.(1,-3)B.(3,-1)C.(-3,1)D.(-1,3) 3、命题“,都有”的否定为( )A.,都有B.,使得C.,都有D.,使得4、直线与圆交于,两点,则△(是原点)的面积为( ) A. B. C. D.5、设,为不重合的平面,,为不重合的直线,则下列命题正确的是( ) A.若,,,则 B.若,,,则 C.若,,,则D.若,,,则6、设满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则的最大值为( )A.10B.8C.3D.2 7、“”是“方程22125x y k k+=--表示的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 8、已知直线(1)20k x y k ++--=恒过点P, 则点关于直线20x y --=的对称点的坐标是( )A.(3,-2)B.(2,-3)C.(1,3)D.(3,-1)9、某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.30 10、与直线和圆都相切的半径最小的圆方程是( ) (A) (B (C)(D)11、已知圆的方程为,设直线(2)(1)810m x m y m ++---=与该圆相交所得的最长弦和最短弦分别为和,则四边形的面积为( ) A.B.C.D.12、若点和点分别为椭圆22143x y +=的中心和左焦点, 点为椭圆上的任意一点,则的最大值为( )A. 2B.3C.6D.8 二、填空题 13、如果直线平行于直线,则直线在两坐标轴上的截距之和是_____________ 14、已知圆:上任意一点关于直线的对称点都在圆上,则实数__________________ 15、长方体中,,,,则一只小虫从点沿长方体的表面爬到点的最短距离是___________16已知顶点与原点重合, 准线为直线410x +=的抛物线上有两点和,若121y y ⋅=-, 则的大小是三、解答题 17、已知两直线.求分别满足下列条件的的值.(1).直线过点,并且直线与垂直;(2).直线与直线平行,并且直线在轴上的截距为.18、(1)在平行四边形中,,,, 求顶点的坐标. (2)过点作圆:的切线, 求切线的方程19、已知圆.(1)求圆的圆心和半径;(2)已知不过原点的直线与圆相切,且直线在轴、轴的截距相等,求直线的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省峨山彝族自治县2017-2018学年高二数学上学期寒假作业4 理
一,选择题:
1、下列命题正确的是 ( )
A 、若→
a ∥→
b ,且→
b ∥→
c ,则→
a ∥→
c 。
B 、两个有共同起点且相等的向量,其终点可能不同。
C 、向量的长度与向量的长度相等 ,
D 、若非零向量AB 与是共线向量,则A 、B 、C 、D 四点共线。
2、已知向量(),1m =a ,若,
=2,则 m = ( )
A .1± D.
3、在ABC ∆中,若=+,则ABC ∆一定是 ( )
A .钝角三角形
B .锐角三角形
C .直角三角形
D .不能确定
4、已知向量,,a b c 满足||1,||2,,a b c a b c a ===+⊥,则a b 与的夹角等于 ( )
A .0120
B 060
C 030
D 90o
二、填空题:(5分×4=20分)
5、已知向量a 、b ==1,a 3-=3,则 a +3 =
6、已知向量a =(4,2),向量b =(x ,3),且a //b ,则x =
7、已知 三点A(1,0),B(0,1),C(2,5),求cos ∠BAC =
8、.把函数742++=x x y
的图像按向量a 经过一次平移以后得到2x y =的图像,
则平移向量是 (用坐标表示) 三,解答题:
9、设),6,2(),3,4(21--P P 且P 在21P P =,则求点P 的坐标
10、已知两向量),1,1(,),31,,31(--=-+=求与b 所成角的大小,
11、已知向量=(6,2),=(-3,k ),当k 为何值时,有
(1)a ∥b ? (2)a ⊥b ? (3)a 与b 所成角θ是钝角 ?
12、设点A (2,2),B (5,4),O 为原点,点P 满足OP =OA +AB t ,(t 为实数); (1)当点P 在x 轴上时,求实数t 的值;
(2)四边形OABP 能否是平行四边形?若是,求实数t 的值 ;若否,说明理由,
13、已知向量=(3, -4), =(6, -3),=(5-m, -3-m ), (1)若点A 、B 、C 能构成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值.
14、已知向量.1,4
3),1,1(-=⋅=且的夹角为
与向量向量π
(1)求向量; (2)设向量)sin ,,(cos ),0,1(x x b a ==向量,其中R x ∈,
若0=⋅,试求||+的取值范围.
平面向量单元测试题
答案:
一,选择题: C D C A
二,填空题: 5,23; 5,6; 7,13
13
2 8,)3,2(- 三,解答题:
9,解法一: 设分点P (x,y ),∵P 1=―22PP ,
=―2
∴ (x ―4,y+3)=―2(―2―x,6―y),
x ―4=2x+4, y+3=2y ―12, ∴ x=―8,y=15, ∴ P (―8,15) 解法二:设分点P (x,y ),∵P 1=―22PP , =―2 ∴ x=
2
1)
2(24---=―8,
y=
2
16
23-⨯--=15, ∴ P(―8,15)
解法三:设分点P (x,y )
= ∴ ―2=24x
+, x=―8, 6=2
3y
+-, y=15, ∴ P(―8,15)
10
=22
,
=
2 , cos <a ,b >=―2
1, ∴<a ,b >= 1200
, 11,解:(1),k=-1; (2), k=9; (3), k <9, k ≠-1 12,解:(1),设点P (x ,0), =(3,2), ∵=+t ,∴ (x,0)=(2,2)+t(3,2),
⎩⎨⎧+=+=,22032,t t x 则由 ∴ ⎩⎨⎧-=-=,
11
t x 即
(2),设点P (x,y ),假设四边形OABP 是平行四边形, 则有∥, y=x ―1, ∥
2y=3x ∴⎩⎨⎧-=-=3
2
y x 即 …… ①,
又由=+t ,
(x,y)=(2,2)+ t(3,2),
得 ∴ ⎩
⎨⎧+=+=t y t
x 2223即 …… ②,
由①代入②得:⎪⎪⎩
⎪⎪⎨
⎧
-=-=2534t t , 矛盾,∴假设是错误的, ∴四边形OABP 不是平行四边形。
13,,解:(1)已知向量))3(,5(),3,6(),4,3(m m +--=-=-=
若点A 、B 、C 能构成三角形,则这三点不共线, 3分
),1,2(),1,3(m m --== 故知m m -≠-2)1(3.
∴实数2
1
≠
m 时,满足的条件. 5分
(2)若△ABC 为直角三角形,且∠A 为直角,则AC AB ⊥, 7分
∴3(2)(1)0m m -+-=,解得4
7
=
m . 10分 14, .解:(1)令⎩⎨⎧-==⎩⎨⎧=-=⇒⎪⎩
⎪
⎨⎧-=+⋅-=+=1001143cos 21
),(2
2y x y x y x y x y x 或则π )1,0()0,1(-=-=∴或 3分
(2))1,0(0
),0,1(-=∴=⋅= 4分
)1sin ,,(cos -=+x x 6分
=222)1(sin cos -+x x =x sin 22-=)sin 1(2x -; 8分
∵ ―1≤sinx ≤1, ∴ 0
+≤2, 10分。