高三数学圆的方程

合集下载

圆系方程 高三数学复习圆系方程及教案 高三数学复习圆系方程及教案

圆系方程 高三数学复习圆系方程及教案 高三数学复习圆系方程及教案

圆系方程在平面解析几何直线与圆的教学中,向学生介绍圆系方程可为解题提供便利。

这里主研究常用的一类圆系方程。

定理1 过直线L:y=kx+b及圆C:x2+y2+Dx+Ey+F=0的两个交点的圆系方程为:x2+y2+Dx+Ey+F+λ(kx-y+b)=0 ①(其中λ为待定常数)。

首先证明方程①表示圆。

由于直线l与圆C交,故方程组:;有两组不同的实数解,消去y整理得:(k2+1)x2+(D+kE+2kb)x+b2+bE+F=0 ;Δ=(D+kE+2kb)2-4(k2+1)(b2+bE+F)>0 ;整理得: D2+k2E2+2kDE+4kbD-4k2F>4(b2+bE+F) ②将方程①变形为:x2+y2+(D+kλ)x+(E-λ)y+λb+F=0.要证此方程表示圆,即证:(D+kλ)2+(E-λ)2-4(λb+F)>0,即:(k2+1)λ2+(2kD-2E-4b)λ+D2+E2-4F>0.将它看作是关于λ的一元二次不等式,要证其成立,只需证明:Δ=(2kD-2E-4b)2-4(k2+1)(D2+E2-4F)<0 ③而此式等价变形为: D2+k2E2+2kDE+4kbD-4k2F>4(b2+bE+F).它与②完全一致,由于原方程组有两组不同的实数解,所以②式成立,故③式恒成立,方程①表示圆。

其次,证明圆①一定经过直线L与圆C的两个交点。

设两交点分别为A(x1,y1) ,B(x2,y2),∵点A既在直线L上又在圆C上,∴kx1-y1+b=0, x12+y12+Dx1+Ey1+F=0,∴x12+y12+Dx1+Ey1+F+λ(kx1-y1+b)=0,即点A在圆①上,同理点B亦在此圆上。

故圆①经过A、B两点。

综上,定理1得证。

定理2 经过两圆C1:x2+y2+D1x+E1y+F1=0,C2:x2+y2+D2x+E2y+F2=0,的交点的圆系方程为:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(包括圆C1,不包括圆C2,其中λ为常数且λ≠-1)特别地,当λ=-1时,即(D1-D2)x+(E1-E2)y+F1-F2=0表示两圆公共弦所在直线方程。

高三数学圆的切线方程课件(新编2019教材)

高三数学圆的切线方程课件(新编2019教材)
优游,成经营理念,以客户满意足为唯一服务宗旨,现已成为中国公认最活跃的场所 ;
四载于兹 少仕州郡 朝廷疑之 十岁而孤 尝诣虞家 士业闻蒙逊南伐秃发傉檀 后复为西阳太守 端本正源者 重华厚宠之 齐王冏既辅政 三贤进而小白兴 年六十一 六府孔修 高会曲宴 且吾不执笔已四十年矣 [标签:标题] 其夕 积二十馀年孜乃更娶妻 其后来转数 非贤达之心 帝以恭等为 当时秀望 宁康初 又监兖青二州诸军事 南开朱门 谯王宗室之望 恢惧玄之来 顷之 无并兼之国 其名为洲 惠钱五千 杀之 凭之与裕各领一队而战 多不同 遐母妻子参佐将士悉还建康 创甲乙之科 秋叹其忠节 恭五男及弟爽 曹真出督关右 死犹生也 望亦被召 辍哭止哀 彼必自系于周室 自 取夷灭 散资财 不以世利婴心 恒就夷谘访焉 玄从兄修告会稽王道子曰 当其同时 父老曰 佺期无状 光启霸图 以逸监交广州 雄曰 苻坚先为天锡起宅 禀之图籍 文武将佐咸当弘尽忠规 前杀庾珉辈 表略韵于纨素 而桑濮代作 人神涂炭 永嘉中 皆如周言 当为尊公作佳传 又数同东讨 及中 诏用雅 心害鼎功 因葬于狄道之东川 以为参军 浩令逌击之 帝甚亲昵之 延事亲色养 以侃侃为先 庾阐 时或欲留含领荆州 而疾笃 前有劲虞 臣亡兄温昔伐咸阳 美垂干祀 加邮亭险阂 屡登崇显 二州刺史 典校秘书省 殷仲堪等 钻之愈妙 秋三月居之 不克 吴郡吴人也 好谋而成者 夫命世 之人正情遇物 人笑其三字 注《庄子》 硕发兵距机 东序西胶 大而言之 今数万之军已临近境 子不闻乎终军之颖 亦宜说之 枋头之役 将军何辱 清尚自修 战而不捷 惟陛下图之 辞疾 推锋以临淮浦 悝复为乂所执 在三者臣子 未若诸庾翼翼 诏曰 若委以连率之重 顷虽见羁录 加侍中 人 多爱悦 夫飞鸮 南郡刘尚公同志友善 累迁散骑常侍 孝惠以立 窃以人君居庙堂之上 犹思猛士以守四方 贱有常辱 乃谓其妻曰 芝率馀众犯门斩关 悠悠三千 汝若

第8章第3讲 圆的方程

第8章第3讲 圆的方程

第3讲 圆的方程[考纲解读]1.掌握确定圆的几何要素,圆的标准方程与一般方程,能根据不同的条件,采取标准式或一般式求圆的方程.(重点)2.掌握点与圆的位置关系,能求解与圆有关的轨迹方程.(难点)[考向预测] 从近三年高考情况来看,本讲为高考中的热点.预测2021年将会考查:①求圆的方程;②根据圆的方程求最值;③与圆有关的轨迹问题.试题以客观题的形式呈现,难度不会太大,以中档题型呈现.1.圆的定义及方程 定义 平面内与□01定点的距离等于□02定长的点的集合(轨迹)标准方程□03(x -a )2+(y -b )2=r 2(r >0) 圆心:□04(a ,b ),半径:□05r 一般方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)圆心:□06⎝ ⎛⎭⎪⎫-D 2,-E 2,半径:□0712D 2+E 2-4F 平面上的一点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2之间存在着下列关系: 设d 为点M (x 0,y 0)与圆心(a ,b )的距离(1)d >r ⇔M 在圆外,即(x 0-a )2+(y 0-b )2>r 2⇔M 在□01圆外; (2)d =r ⇔M 在圆上,即(x 0-a )2+(y 0-b )2=r 2⇔M 在□02圆上; (3)d <r ⇔M 在圆内,即(x 0-a )2+(y 0-b )2<r 2⇔M 在□03圆内.1.概念辨析(1)确定圆的几何要素是圆心与半径.( )(2)方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆心为⎝ ⎛⎭⎪⎫-a 2,-a ,半径为12-3a 2-4a +4的圆.( )(3)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( )(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()答案(1)√(2)×(3)√(4)√2.小题热身(1)圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1 B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2 D.(x-1)2+(y-1)2=2答案 D解析由已知,得所求圆的圆心坐标为(1,1),半径r=12+12=2,所以此圆的方程是(x-1)2+(y-1)2=2.(2)若方程x2+y2+mx-2y+3=0表示圆,则m的取值范围是()A.(-∞,-2)∪(2,+∞)B.(-∞,-22)∪(22,+∞)C.(-∞,-3)∪(3,+∞)D.(-∞,-23)∪(23,+∞)答案 B解析若方程x2+y2+mx-2y+3=0表示圆,则m应满足m2+(-2)2-4×3>0,解得m<-22或m>2 2.(3)若原点在圆(x-2m)2+(y-m)2=5的内部,则实数m的取值范围是________.答案(-1,1)解析因为原点在圆(x-2m)2+(y-m)2=5的内部,所以(0-2m)2+(0-m)2<5.解得-1<m<1.(4)圆心在y轴上,半径为1,且过点(1,2)的圆的方程为________.答案x2+(y-2)2=1解析由题意,可设所求圆的方程为x2+(y-b)2=1,因为此圆过点(1,2),所以12+(2-b)2=1,解得b=2.故所求圆的方程为x2+(y-2)2=1.题型一 求圆的方程1.经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上的圆的标准方程为________.答案 (x -4)2+(y +3)2=25解析 解法一:(待定系数法)设圆的标准方程为(x -a )2+(y -b )2=r 2,则有⎩⎪⎨⎪⎧a 2+b 2=r 2,(1-a )2+(1-b )2=r 2,2a +3b +1=0,解得⎩⎪⎨⎪⎧a =4,b =-3,r =5.所以圆的标准方程是(x -4)2+(y +3)2=25.解法二:(直接法)由题意,知OP 是圆的弦,其垂直平分线为x +y -1=0.因为弦的垂直平分线过圆心,所以由⎩⎪⎨⎪⎧2x +3y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =4,y =-3,即圆心坐标为(4,-3),半径为r =42+(-3)2=5,所以圆的标准方程是(x -4)2+(y +3)2=25.2.一圆经过P (-2,4),Q (3,-1)两点,并且在x 轴上截得的弦长等于6,求此圆的方程.解 设圆的方程为x 2+y 2+Dx +Ey +F =0,将P ,Q 两点的坐标分别代入,得⎩⎪⎨⎪⎧2D -4E -F =20, ①3D -E +F =-10. ②又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根,由|x 1-x 2|=6有D 2-4F =36,④由①②④解得D =-2,E =-4,F =-8或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.求圆的方程的两种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.见举例说明1解法二.(2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值.见举例说明1解法一.②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.见举例说明2.1.圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4 答案 D解析 设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ),则有⎩⎨⎧b a -2·33=-1,b 2=33·a +22,解得a =1,b =3,从而所求圆的方程为(x -1)2+(y -3)2=4.故选D.2.(2018·天津高考)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.答案 x 2+y 2-2x =0解析 解法一:设圆的一般方程为x 2+y 2+Dx +Ey +F =0,又因为圆经过三点(0,0),(1,1),(2,0),所以⎩⎪⎨⎪⎧F =0,1+1+D +E +F =0,22+02+2D +0E +F =0,解得D =-2,E =0,F =0, 所以圆的方程为x 2+y 2-2x =0.解法二:记O (0,0),A (1,1),B (2,0),线段OB 的垂直平分线方程为x =1,线段OA 的垂直平分线方程为y -12=-⎝ ⎛⎭⎪⎫x -12,即x +y -1=0.解方程⎩⎪⎨⎪⎧x =1,x +y -1=0,得圆心坐标为(1,0).所以半径r =1,圆的方程为(x -1)2+y 2=1.解法三:在平面直角坐标系中,画出圆上的三点,另证这三个点构成直角三角形,显然圆心坐标为(1,0),半径为1,所以圆的标准方程为(x -1)2+y 2=1.题型二 与圆有关的最值问题角度1 建立函数关系求最值1.(2019·厦门模拟)设点P (x ,y )是圆:x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0),则P A →·PB→的最大值为________.答案 12解析 ∵P A →=(2-x ,-y ),PB →=(-2-x ,-y ),P (x ,y )在圆上,∴P A →·PB→=x 2-4+y 2=6y -8-4=6y -12,∵2≤y ≤4,∴P A →·PB →≤12.角度2 借助几何性质求最值2.(2019·湖南师大附中模拟)已知点A (-2,0),B (0,1),若点C 是圆x 2-2ax +y 2+a 2-1=0上的动点,△ABC 面积的最小值为3-2,则a 的值为________.答案 1或-5解析 由题意,知圆的标准方程为(x -a )2+y 2=1,则圆心为(a,0),半径r =1,又A (-2,0),B (0,2)可得直线AB 的方程为x -2+y2=1,即x -y +2=0.所以圆心到直线AB 的距离d =|a +2|2,则圆上的点到直线AB 的最短距离为d -r =|a +2|2-1,又|AB |=4+4=22,所以△ABC 面积的最小值为12|AB |·(d -r )=2⎝ ⎛⎭⎪⎫|a +2|2-1=3-2,解得a =1或-5.求解与圆有关的最值问题的两大规律(1)建立函数关系式求最值.如举例说明1.根据题目条件列出关于所求目标式子的函数关系式;然后根据关系式的特征选用参数法、配方法、判别式法等,利用基本不等式求最值是比较常用的.(2)借助几何性质求最值.如举例说明2.1.圆:x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( ) A .1+ 2 B .2 C .1+22 D .2+2 2答案 A解析 将圆的方程化为(x -1)2+(y -1)2=1,即圆心坐标为(1,1),半径为1,则圆心到直线x-y=2的距离d=|1-1-2|2=2,故圆上的点到直线x-y=2距离的最大值为d+1=2+1,故选A.2.(2019·兰州模拟)若直线ax+by+1=0(a>0,b>0)把圆(x+4)2+(y+1)2=16分成面积相等的两部分,则12a+2b的最小值为()A.10 B.8C.5 D.4答案 B解析由已知,得圆心C(-4,-1)在直线ax+by+1=0上,所以-4a-b+1=0,即4a+b=1,又因为a>0,b>0,所以12a +2b=⎝⎛⎭⎪⎫12a+2b(4a+b)=b2a+8ab+4≥2b2a·8ab+4=8,当且仅当b2a=8ab时,等号成立,此时b=4a,结合4a+b=1,知a=18,b=12.所以当a=18,b=12时,12a+2b取得最小值8.题型三与圆有关的轨迹问题1.已知Rt△ABC的斜边为AB,且A(-1,0),B(3,0).求直角顶点C的轨迹方程.解解法一:设C(x,y),因为A,B,C三点不共线,所以y≠0.因为AC⊥BC,所以k AC·k BC=-1,又k AC=yx+1,k BC=yx-3,所以yx+1·yx-3=-1,化简得x2+y2-2x-3=0.因此,直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).解法二:设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).2.设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹.解 如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN的中点坐标为⎝ ⎛⎭⎪⎫x 0-32,y 0+42.因为平行四边形的对角线互相平分,所以x 2=x 0-32,y 2=y 0+42,整理得⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又点N (x +3,y -4)在圆x 2+y 2=4上,所以(x +3)2+(y -4)2=4. 所以点P的轨迹是以(-3,4)为圆心,2为半径的圆⎝ ⎛⎭⎪⎫因为O ,M ,P 三点不共线,所以应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285.1.掌握“三方法”2.明确“五步骤”(2019·潍坊调研)已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q 为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4,故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|.设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.组 基础关1.设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是( )A .原点在圆上B .原点在圆外C .原点在圆内D .不确定答案 B解析 将圆的一般方程化成标准方程为(x +a )2+(y +1)2=2a ,因为0<a <1,所以(0+a )2+(0+1)2-2a =(a -1)2>0,即(0+a )2+(0+1)2>2a ,所以原点在圆外.2.圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程为( ) A .x 2+(y -2)2=5 B .(x -2)2+y 2=5 C .x 2+(y +2)2=5 D .(x -1)2+y 2=5答案 B解析 因为所求圆的圆心与圆(x +2)2+y 2=5的圆心(-2,0)关于原点(0,0)对称,所以所求圆的圆心为(2,0),半径为5,故所求圆的方程为(x -2)2+y 2=5.故选B.3.若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3答案 B解析 方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,∴仅当a =0时,方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,故选B.4.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43 B .-34 C. 3 D .2答案 A解析 圆的方程可化为(x -1)2+(y -4)2=4,则圆心坐标为(1,4),圆心到直线ax +y -1=0的距离为|a +4-1|a 2+1=1,解得a =-43.故选A.5.(2019·合肥二模)已知圆C :(x -6)2+(y -8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( )A .(x -3)2+(y +4)2=100B .(x +3)2+(y -4)2=100C .(x -3)2+(y -4)2=25D .(x +3)2+(y -4)2=25 答案 C解析 由圆C 的圆心坐标C (6,8),得OC 的中点坐标为E (3,4),半径|OE |=32+42=5,则以OC 为直径的圆的方程为(x -3)2+(y -4)2=25.6.(2020·黄冈市高三元月调研)已知圆x 2+y 2+2k 2x +2y +4k =0关于直线y =x 对称,则k 的值为( )A .-1B .1C .±1D .0答案 A解析 化圆x 2+y 2+2k 2x +2y +4k =0为(x +k 2)2+(y +1)2=k 4-4k +1.则圆心坐标为(-k 2,-1),∵圆x 2+y 2+2k 2x +2y +4k =0关于直线y =x 对称,∴-k 2=-1,得k =±1.当k =1时,k 4-4k +1<0,不符合题意,∴k =-1.故选A.7.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1答案 A解析 设圆上任意一点为(x 1,y 1),中点为(x ,y ),则⎩⎨⎧x =x 1+42,y =y 1-22,即⎩⎪⎨⎪⎧x 1=2x -4,y 1=2y +2,代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.故选A.8.(2019·太原二模)若圆x 2+y 2+2x -2y +F =0的半径为1,则F =________. 答案 1解析 由圆x 2+y 2+2x -2y +F =0得(x +1)2+(y -1)2=2-F ,由半径r =2-F =1,解得F =1.9.已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为________.答案 (0,-1)解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=-34k 2+1.所以当k =0时圆C 的面积最大,此时圆的方程为x 2+(y +1)2=1,圆心坐标为(0,-1).10.已知实数x ,y 满足(x +2)2+(y -3)2=1,则|3x +4y -26|的最小值为________.答案 15解析 解法一:|3x +4y -26|最小值的几何意义是圆心到直线3x +4y -26=0的距离减去半径后的5倍,|3x +4y -26|min =5⎝ ⎛⎭⎪⎪⎫|3a +4b -26|32+42-r ,(a ,b )是圆心坐标,r 是圆的半径.圆的圆心坐标为(-2,3),半径是1,所以圆心到直线的距离为|3×(-2)+4×3-26|5=4,所以|3x +4y -26|的最小值为5×(4-1)=15.解法二:令x +2=cos θ,y -3=sin θ,则x =cos θ-2,y =sin θ+3,|3x +4y -26|=|3cos θ-6+4sin θ+12-26|=|5sin(θ+φ)-20|,其中tan φ=34,所以其最小值为|5-20|=15.组 能力关1.方程|y |-1=1-(x -1)2表示的曲线是( ) A .一个椭圆 B .一个圆 C .两个圆 D .两个半圆答案 D解析 由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2+(y -1)2=1(y ≥1),其表示以(1,1)为圆心,1为半径的上半圆;当y ≤-1时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心,1为半径的下半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆.选D.2.(2019·南昌二模)唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为x 2+y 2≤1,若将军从点A (2,0)处出发,河岸线所在直线方程为x +y =3,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )A.10-1 B .22-1 C .2 2 D.10答案 A解析 设点A 关于直线x +y =3的对称点为A ′(a ,b ),则AA ′的中点为⎝ ⎛⎭⎪⎫a +22,b 2,k AA ′=b a -2, 故⎩⎨⎧b a -2·(-1)=-1,a +22+b2=3,解得⎩⎪⎨⎪⎧a =3,b =1,则从点A 到军营的最短总路程,即为点A ′到军营的距离,则“将军饮马”的最短总路程为32+12-1=10-1.3.(2019·贵阳模拟)已知圆C :(x -1)2+(y -1)2=9,过点A (2,3)作圆C 的任意弦,则这些弦的中点P 的轨迹方程为________.答案 ⎝ ⎛⎭⎪⎫x -322+(y -2)2=54解析 设P (x ,y ),圆心C (1,1).因为P 点是过点A 的弦的中点,所以P A →⊥PC →.又因为P A →=(2-x,3-y ),PC →=(1-x,1-y ).所以(2-x )·(1-x )+(3-y )·(1-y )=0.所以点P 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+(y -2)2=54.4.(2020·柳州摸底)在平面直角坐标系xOy 中,经过函数f (x )=x 2-x -6的图象与两坐标轴交点的圆记为圆C .(1)求圆C 的方程;(2)求经过圆心C 且在坐标轴上截距相等的直线l 的方程.解 (1)设圆C 的方程为x 2+y 2+Dx +Ey +F =0.由f (x )=x 2-x -6得,其图象与两坐标轴的交点为(0,-6),(-2,0),(3,0),将交点坐标代入圆的方程得⎩⎪⎨⎪⎧36-6E +F =0,4-2D +F =0,9+3D +F =0,解得⎩⎪⎨⎪⎧D =-1,E =5,F =-6,所以圆的方程为x 2+y 2-x +5y -6=0.(2)由(1)知,圆心坐标为⎝ ⎛⎭⎪⎫12,-52,若直线经过原点,则直线l 的方程为5x +y =0;若直线不过原点,设直线l 的方程为x +y =a ,则a =12-52=-2,即直线l 的方程为x +y +2=0.综上,直线l 的方程为5x +y =0或x +y +2=0.5.已知圆O :x 2+y 2=1,点A (-1,0),点B (1,0).点P 是圆O 上异于A ,B 的动点.(1)证明:k AP ·k BP 是定值;(2)过点P 作x 轴的垂线,垂足为Q ,点M 满足2PQ →=-PM →,求点M 的轨迹方程C ;(3)证明:k AM ·k BM 是定值.解 (1)证明:由已知,直线AP ,BP 的斜率存在,AB 是圆O 的直径,所以AP ⊥BP ,所以k AP ·k BP =-1是定值.(2)设P (m ,n ),M (x ,y ),则Q (m,0), 则PQ→=(0,-n ),PM →=(x -m ,y -n ), 因为2PQ→=-PM →, 所以2(0,-n )=-(x -m ,y -n ), 得⎩⎪⎨⎪⎧0=-x +m ,-2n =-y +n ,即⎩⎨⎧m =x ,n =13y ,①因为点P 在圆O 上,所以m 2+n 2=1, ② 将①代入②,得x 2+y 29=1,又点P 异于A ,B ,所以x ≠±1,即点M 的轨迹方程C 为x 2+y 29=1(x ≠±1).(3)证明:由已知,直线AM ,BM 的斜率存在, k AM =y x +1,k BM =yx -1,由(2)知,x2-1=-y29,所以k AM·k BM=yx+1·yx-1=y2x2-1=-9,即k AM·k BM是定值.。

高三数学圆的方程

高三数学圆的方程

群散去的差不多了,她依旧在充当吃瓜群众。看着正在相互交涉的买卖双方,她又凑近了一些。(古风一言)剑指山河兵临城下,不为夙愿,只为 守护你的安然。第076章 嫌弃这马真是可爱,慕容凌娢对马的了解很少,自然不敢妄下断言,但等到人群散去的差不多了,她依旧在充当吃瓜群 众。看着正在相互交涉的买卖双方,她只是更仔细的观察着这匹黑马。正在她肆无忌惮的观察时,那匹黑马突然一扭头,她们一人一马四目相对, 时间仿佛停顿了下来……一切都变得很慢很慢……“噗~”那马看着慕容凌娢,打了一个响鼻,然后嫌弃的翻了一个白眼,满满地都是怨气摇摇 脑袋,甩甩尾巴,便再也不理睬她了。这……这也太尴尬了,慕容凌娢居然会被一只马嫌弃!简直是受到了1000点的暴击!慕容凌娢感觉整个人 都不好了,生无可恋啊~“算了算了,还是去别处看看吧。”慕容凌娢回过神来,发现围观的人都已经走光了。“唉!”那大汉重重的叹了口气, 摸了摸马的鬃毛,“如今这般落魄,留着你也是受罪,还不如给你个痛快……”他说着便要解开拴在木桩上的绳子,那黑马似乎也明白了什么, 开始焦躁不安的挣扎,无奈被绳子束缚,再怎么用力拽也无用。这是要杀马的套路啊!当慕容凌娢脑子转过来弯时,大汉已经准备把马迁走了。 “等等!”慕容凌娢拦住了他,大义凌然的挡在黑马身边,“这马我要了。”“二十两银子,不能再少了!”在醉影楼呆了那么久,慕容凌娢已 经搞清楚了这个年代的物价,一两银子差不多是500RMB,二十两银子……大概就是1WRMB。这也太贵了!自己这回出来,总共就带了四两银子,可 是这马,要是没人要,就要惨死在街头了……怎么办?这个年代又没有动物保护协会这样的组织,她实在不想看见这只马就这样死 掉……“我……”情急之下,慕容凌娢摸到了自己挂在脖子上的那块血玉,就是穿越时拿着的那块。“我用这块玉来换可以吗?”“这是……” 大汉接过慕容凌娢的玉,摆弄了几下,又丢了回来,“我又不知道这东西是真是假,万一你给我个假的,我不就亏大了吗!”“这个绝对是真 的!”慕容凌娢着急着想解释,可是那大汉始终不为所动。“二十两银子是吗?”“韩哲轩!”慕容凌娢惊喜的回过头,“你刚才跑哪里去了! 找你半天,还以为你丢了呢……”“方蛤蟆?慌什么?,人多,被挤掉线了而已,看来该换网了。”韩哲轩依旧是不紧不慢态度,没有想要认真回 答慕容凌娢。他脸上带着常有的笑意,把钱袋递给了大汉,“这么多够了吧?”“够了够了!”“那马我带走了。”韩哲轩把马的缰绳接下来, 交到了慕容凌娢手里,“归你了,不用谢我。”“公子您慢走!”……“老哥(稳),这回坑了不少钱吧!”等韩哲轩

利用圆的参数方程解决最值问题课件-2025届高三数学一轮复习

利用圆的参数方程解决最值问题课件-2025届高三数学一轮复习

= −1 + 2cos ,
1.(2024 ·宜春模拟)已知曲线ቊ
( 为参数)上任意一点 0 , 0 ,
= 1 + 2sin
[2 2, +∞)
不等式 ≥ 0 + 0 恒成立,则实数的取值范围是__________.
解析 根据题意,曲线ቊ
= −1 + 2cos ,
( 为参数),
利用圆的参数方程解决最值问题
一 利用圆的参数方程求代数式的最值
二 利用圆的参数方程求范围
三 利用圆的参数方程求距离等最值
06 利用圆的参数方程解决最值问题
2
= 0 + cos ,
1. 圆的方程有标准方程、一般方程、参数方程,一般我们把方程ቊ
(
= 0 + sin
是参数)称为圆 − 0 2 + − 0 2 = 2 的参数方程.
当sin = 1时,取得最大值,最大值为1.
5
4
故实数的取值范围是[− , 1].
1 2
+
2
5
4
− .
06 利用圆的参数方程解决最值问题
10
利用圆的参数方程,采用代入法把求实数的取值范围问题转化为求三角函数的值域问
题,使问题迅速获解,可谓转化巧妙.
06 利用圆的参数方程解决最值问题
11
12
磨尖点三 利用圆的参数方程求距离等最值
06 利用圆的参数方程解决最值问题
典例3 (2024 ·上海模拟)已知动圆 −
2
+ −
14
2
= 1经过原点,则动圆上的
2+2
点到直线 − + 2 = 0距离的最大值是_______.

圆的方程课件-2025届高三数学一轮复习

圆的方程课件-2025届高三数学一轮复习

解析:由题设知 = , = , = ,所以
< < ,要使,,三点中的一个点在圆内,一个点在圆上,
一个点在圆外,所以圆以 为半径,故圆的方程为


+ + ��

= .
求圆的方程的两种方法
1.(多选)(2024·重庆模拟)设圆的方程是 −
= ,故 = − −
⋅ = − −
+ −



+ ,所以
+ + − = − .由圆的方程
= ,易知 ≤ ≤ ,所以,当 = 时, ⋅ 的值最大,
最大值为 × − = .
建立函数关系式求最值
所以点到两点的距离相等且为半径,
所以



+ −
=
+ −

= ,
即 − + + − + = ,解得 = ,
所以 , − , = ,
所以⊙ 的方程为 −

+ +

= .
方法三:设点 , , , ,⊙ 的半径为,则 =
10
则 + 的最大值为____.
2.设点 , 是圆 −

解析:由题意知 = −, − , = −, − − ,
所以 + = −, − ,由于点 , 是圆上的点,故其坐标满足方
程 −

+ = ,
故 = − −


+ = ,即表示以点 , 为圆心, 为半径
的圆.

高三数学知识点之圆的方程

高三数学知识点之圆的方程

高三数学知识点之圆的方程下面整理了高三数学知识点之圆的方程,期望大伙儿能把觉得有用的知识点摘抄下来,在空余时刻进行复习。

1、圆的定义平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程(x-a)^2+(y-b)^2=r^2(1)标准方程,圆心(a,b),半径为r;(2)求圆方程的方法:一样都采纳待定系数法:先设后求。

确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一样方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必通过原点,以此来确定圆心的位置。

3、直线与圆的位置关系直线与圆的位置关系有相离,相切,相交三种情形:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。

什么缘故?依旧没有完全“记死”的缘故。

要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。

能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟专门貌,属句有夙性,说字惊老师。

2020高三数学一轮复习(人教版理):圆 的 方 程

2020高三数学一轮复习(人教版理):圆 的 方 程

解析 (1)由题意设圆心坐标为(a,-a),则有|a--a|=|a--a-4|
2
2
即|a|=|a-2|,解得 a=1。故圆心坐标为(1,-1),半径 r= 2 = 2,所以 2
圆 C 的标准方程为(x-1)2+(y+1)2=2。故选 B。
答案 (1)B
(2)(2019·河南豫西五校联考)在平面直角坐标系 xOy 中,以点(0,1)为圆心 且与直线 x-by+2b+1=0 相切的所有圆中,半径最大的圆的标准方程为 ()
答案 48
微考点·大课堂
考点例析 对点微练
考点一 圆的方程 【例 1】 (1)过点 A(4,1)的圆 C 与直线 x-y-1=0 相切于点 B(2,1),则 圆 C 的方程为________。
解析 (1)由已知 kAB=0,所以 AB 的中垂线方程为 x=3①。过 B 点且 垂直于直线 x-y-1=0 的直线方程为 y-1=-(x-2),即 x+y-3=0②, 联立①②,解得xy= =30, , 所以圆心坐标为(3,0),半径 r= 4-32+1-02 = 2,所以圆 C 的方程为(x-3)2+y2=2。
一、走进教材
1.(必修 2P124A 组 T1 改编)圆 x2+y2-4x+6y=0 的圆心坐标是( )
A.(2,3)
B.(-2,3)
C.(-2,-3)
D.(2,-3)
解析 故选 D。
答案
圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3)。 D
2.(必修 2P120 例 3 改编)过点 A(1,-1),B(-1,1),且圆心在直线 x+y -2=0 上的圆的方程是( )
解析
设圆心的坐标为(a,0)(a>0),根据题意得|2a|=4 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次构造柱泵https:///product/list_7.html [填空题]各类油泵吊至检修平台过程中应注意油泵内的()。不得在运输途中发生漏油。如在途中有漏油,应及时做好(),防止人员()。 [单选]以下哪种药物抑制胃酸分泌最弱A.奥美拉唑B.法莫替丁C.兰索拉唑D.雷尼替丁E.硫糖铝 [单选,A2型题,A1/A2型题]下列血液成分中,适用于血友病A的是()。A.冷沉淀B.全血C.冰冻红细胞D.浓缩红细胞E.洗涤红细胞 [多选]瓦斯抽采钻孔施工过程中,操作人员要(),确保钻孔施工过程顺利进行。A.按照操作规程要求操作钻机B.按钻孔施工参数要求精心施工C.严格控制钻进速度D.全程值守 [判断题]银行卡既可由发卡机构独立发行,也可由其他机构或团体联合发行。A.正确B.错误 [单选]混凝土是()。A、完全弹性体材料B、完全塑性体材料C、弹塑性体材料D、不好确定 [单选]操作中上升管盖关闭与高压氨水打开应先做()A.前者B.后者C.同时 [单选]关于普查的目的,以下哪项不正确()A.早期发现病例B.了解人群的健康水平C.了解疾病的分布D.为卫生决策提供依据E.验证病因假设 [单选,A1型题]患儿男,8个月。羊乳喂养,未加辅食。为预防营养性巨幼红细胞性贫血的发生,最好多食下列哪种食物()A.瘦肉B.蛋类C.干果类D.海产品E.绿色新鲜蔬菜 [单选,A2型题,A1/A2型题]尿沉渣检查时,应在下列哪种细胞观察有无含铁血黄素颗粒()。A.红细胞B.中性粒细胞C.鳞状上皮细胞D.肾小管上皮细胞E.移行上皮细胞 [填空题]空压机一级安全阀开启压力范围是(),二级开启范围是()。 [问答题,简答题]请举例描述旅客服务人员在实际工作中如何发挥自己的能力品质、劝说能力? [填空题]高层建筑结构的竖向承重体系有(),(),(),(),()。 [单选,A2型题,A1/A2型题]下面关于MRI检查技术的适应证,不合理的是()A.感染B.肿瘤C.肺间质疾病D.寄生虫病E.中毒 [单选,A2型题,A1/A2型题]营养不良患儿皮下脂肪消减的顺序是()。A.躯干-臀部-四肢-腹部-面颊B.面颊部-腹部-躯干-臀部-四肢C.腹部-躯干-臀-四肢-面颊D.四肢-躯干-腹部-面颊E.躯干-臀部-腹部-面颊 [单选]脑膜炎双球菌是()A.严格需氧的革兰阳性双球菌B.严格需氧的革兰阴性双球菌C.厌氧的革兰阴性双球菌D.厌氧的革兰阳性双球菌E.革兰阴性双球菌,兼性厌氧菌 [单选]利用浮标导航,下列哪些方法可判断本船是否行驶在航道内或计划航线上()。A.查看前后浮标法B.前标舷角变化法C.舷角航程法D.以上都是 [问答题,简答题]口罩的应用指征 [单选]当AP1和AP2末接通,FD1和FD2接通,自动油门工作时:()A、FMGC1控制1号发动机,FMGC2控制2号发动机B、FMGC1控制两台发动机C、FMGC2控制两台发动机D、飞行控制和发动机仅由一台FMGC控制 [单选]关于书刊装订样式的说法,错误的是()。A.平装也称简装,分普通平装和勒口平装两种B.精装的封面质地较硬,包括软精装和半精装C.按照成品的书脊形状,精装还可分为圆脊精装和平脊精装D.勒口平装的勒口宽度一般不少于30毫米,且可增大变为"拉页" [单选]一侧提睾反射消失常提示()A.胸1~2损害B.腰1~2损害C.骶1~2损害D.骶4~5受损E.脊髓横贯性损害 [单选]渗出、变性和增生是下列哪种病变的基本病理变化()A.肿瘤B.炎症C.视神经萎缩D.青光眼E.白内障 [单选]鄱阳湖生态经济区建设第一个阶段重点规划期中要实现鄱阳湖水质稳定在几类以上的目标?()A、I,B、Ⅱ,C、Ⅲ [多选]应与消化道出血相鉴别的疾病有()A.急性糜烂性胃炎B.胃底静脉破裂出血C.胃癌D.胃黏膜脱垂症E.咯血 [单选,A1型题]《母婴保健法》规定,在新生儿期进行筛查的遗传代谢内分泌疾病是()A.21-三体综合征、苯丙酮尿症B.21-三体综合征、先天性甲状腺功能减低症C.先天性甲状腺功能减低症、苯丙酮尿症D.先天性甲状腺功能减低症E.苯丙酮尿症 [单选]Denis三柱理论中,后柱不包括()A.后纵韧带B.棘间韧带C.横突D.椎板E.黄韧带 [单选]下列不属于分娩期保健“五防”内容的是()。A.防滞产B.防感染C.防新生儿窒息D.防产后出血E.以上都不对 [问答题,简答题]区间线路发生故障,如不知来车方向时如何防护? [单选]环境污染物对人体健康产生慢性危害的根本原因是A.低浓度的环境污染物对机体损害D.低浓度的环境污染物可经口吸收E.低浓度的环境污染物可经呼吸道吸收 [单选,A2型题,A1/A2型题]实验室管理者的最主要职责是()。A.决策与筹划,技术与业务B.组织和控制,处理与协调C.技术与业务,影响与号召D.决策与筹划,组织和控制E.影响与号召,处理与协调 [填空题]中国的许多发明由阿拉伯人介绍给欧洲人,在欧洲获得了广泛的应用,并产生了()。 [问答题,案例分析题]病例摘要:闫某,男,32岁,市民,已婚,于2013年6月23日上午9时就诊。患者自述昨晚与朋友在市区露天就餐,并饮白酒半斤,其间感觉有一菜有酸腐之味,食下少量,今日凌晨3时许出现腹痛,泻下稀便两次,腹部坠胀不安,里急后重,肛门灼热,此后欲便不能,仅排出 如冻腥臭物,遂来就诊。现症见:微发热,腹痛,里急后重,肛门灼热,小便短赤,口渴不欲饮。舌苔黄腻,脉滑数。无呕吐及异常汗出等。既往体健,无肝炎、结核病史及药物过敏史,平素喜食肥甘,嗜烟酒。查体:T37.6℃,P82/min,R18/min,BP110/70mmHg。痛苦病容。下腹部压痛明显,肠 跃。血常规:WBC12.0&times;109/L,N82%。L18%。尿常规未见异常。大便常规:外观脓血便,镜检:脓细胞(++++),红细胞(++);肝胆脾胰B超:未见异常。 [填空题]私人课程大多采用()的上课形式。 [名词解释]无菌罐装 [单选]王某以其传家之宝六四手枪一把为张某的债权设定了2000元的担保,此担保合同的效力如何?()A.效力待定B.有效C.效力有瑕疵D.无效 [单选]捻转补泻法中的补法是()。A.捻转角度大,频率慢,用力轻B.捻转角度小,频率快,用力重C.捻转角度大,频率快,用力重D.捻转角度小,频率慢,用力轻E.捻转角度小,频率慢,用力重 [单选,A1型题]关于良性前列腺增生症的药物治疗,选择以下哪一项是最恰当的()A.适用于轻、中度症状的前列腺增生症的患者B.&alpha;受体阻滞药作用于前列腺腺细胞上,抑制前列腺增生C.5-&alpha;还原酶抑制药抑制而降低前列腺内平滑肌张力D.5-&alpha;还原酶抑制药抑制睾酮生成而降低 平滑肌张力E.5-&alpha;还原酶抑制药抑制双氢睾酮生成而使前列腺部分萎缩 [单选]增值税一般纳税人生产销售特定的货物或提供应税服务,向税务机关申请采用简易办法计算缴纳增值税时,对于符合条件的,当场予以办理,办税服务厅签收纳税人的《增值税一般纳税人简易征收备案表》后,()。A、转认定部门审批。B、根据纳税人报送的资料,制作《一般纳税人简易 审批表》,交纳税人签字确认,纳税人予以填写表单。C、1份返还纳税人,相关资料信息1个工作日内转下一环节按规定程序处理。D、相关资料信息1个工作日内转下一环节按规定程序处理。 [单选,A1型题]患儿,4岁。胸骨左缘3~4肋间Ⅲ级收缩期杂音,肺动脉第二音亢进,胸片示左、右心室扩大。应诊断为()A.室间隔缺损B.房间隔缺损C.动脉导管未闭D.肺动脉狭窄E.法洛四联症 [单选]在系统性红斑狼疮发病的病因中不包括以下哪项内容()。A.环境因素B.饮食因素C.性激素D.遗传因素E.免疫功能紊乱
相关文档
最新文档