开关电源入门基本知识
开关电源学习介绍

开关电源学习介绍开关电源是一种转换电压类型和/或电流大小的电源,其工作原理是通过使用开关管和其他电子元件来实现定期切换电源输入和输出的方式。
相较于传统的线性电源,开关电源具有高效率、小体积、轻重量等优点,在现代电子设备中应用广泛。
接下来将介绍开关电源的基本原理、工作方式、应用领域以及相关的学习内容。
一、开关电源的基本原理:开关电源的工作原理是利用了开关管的开关特性,通过改变电源输入电压形式和周期,来实现变换输出电压类型和/或电流大小。
开关管将输出电流连续地开关导通和截断,通过调制开关周期和占空比来控制输出电压和电流。
二、开关电源的工作方式:开关电源工作原理分为两种方式,分别为单端工作和双端工作。
单端工作方式是通过一段纯电感元件和一个存储元件来实现,而双端工作方式则需要两段纯电感元件和两个存储元件。
三、开关电源的应用领域:开关电源广泛应用于各种电子设备和系统中,例如计算机、通信设备、电视机、音响、工业自动化、医疗器械等。
由于其效率高、可靠性好、稳定性强,因此成为现代电子设备不可或缺的供电方式。
四、开关电源学习内容:1.开关电源的基本原理和工作方式:学习开关电源的工作原理和基本电路结构,掌握开关管、电感、电容、二极管等元件的使用方法和特性。
2.开关电源的设计和调试方法:学习开关电源的设计流程和方法,了解开关电源的电路布局、元件选型和组装技巧,掌握开关电源的调试和故障排除方法。
3.开关电源的应用与实践:学习开关电源在各种电子设备中的应用技术和实践经验,了解开关电源在不同应用领域的设计要求和特点,掌握根据实际需求设计和优化开关电源的能力。
4.开关电源的性能测试与评估:学习开关电源的性能指标和测试方法,掌握开关电源输出电压、电流、效率等性能参数的测试技术和评估方法。
在学习开关电源的过程中,可以通过相关教材、网络资源、实验等多种途径进行学习和实践。
同时,了解电力电子学、模拟电路和数字电路等相关知识也是深入学习开关电源的基础。
零起点学开关电源设计基础篇

零起点学开关电源设计基础篇
开关电源是一种高效、稳定、小型化的电源供应器,广泛应用于现代电子设备中。
想要学习开关电源设计基础知识,需要掌握以下几个方面的内容:
1. 开关电源的基本原理
开关电源是一种能够将交流电转化为直流电的电源供应器。
它通过开关管对输入电压进行开关控制,使交流电的平均值变为直流电。
整个开关电源由输入滤波电容、整流电路、开关变换器、输出滤波电容、稳压电路等部分组成。
2. 开关电源的分类
开关电源可以根据输入电压的不同,分为交流输入型和直流输入型;根据输出功率的不同,分为低功率(小于100W)、中功率(100W-1KW)和高功率(大于1KW);根据拓扑结构的不同,分为Buck型、Boost型、Buck-Boost型、Cuk型、Sepic型、Flyback型、Forward 型等。
3. 开关电源的主要元器件
开关电源的主要元器件包括开关管、二极管、电感、电容、变压器、稳压管等。
4. 开关电源的设计步骤
开关电源的设计步骤主要包括:计算输入电容、整流电路的设计、选择开关变换器拓扑结构、计算开关变换器元器件参数、稳压电路的设计、确定滤波电容电感的参数、进行仿真和优化。
5. 开关电源的性能指标
开关电源的主要性能指标包括输出电压、输出电流、输出功率、效率、稳定性、负载调整能力、温度特性等。
以上是零起点学开关电源设计基础的一些内容,希望对初学者有所帮助。
开关电源基础知识

开关电源基础知识
1. 你知道开关电源到底是啥玩意儿吗?就好比家里的电灯开关,一按就亮,开关电源也是这样控制电流的呀!比如手机充电器就是个典型的开关电源。
2. 开关电源的工作原理复杂吗?其实也没那么难理解啦!就像人吃饭消化提供能量一样,它把电处理好给设备供能呢!像电脑主机里的电源就是这样工作的。
3. 开关电源有哪些重要的组成部分呢?嘿,这就像搭积木,每个部分都不可或缺呀!像变压器,不就像个大力士在帮忙变魔法嘛!比如一些电器里的变压器。
4. 开关电源的效率能有多高呢?哇塞,那可高得很呢!就如同跑步冠军一样,快速又高效地完成任务!像一些高效节能的灯具用的就是高效率的开关电源。
5. 开关电源的稳定性重要不?当然啦,这可关系重大呀!就好像走钢丝,得稳稳当当的才行呢!像一些精密仪器就需要稳定的开关电源来保障。
6. 开关电源的体积能做很小吗?能呀,小得惊人呢!就像小魔术一样把大东西变小了。
像现在很多便携设备里的电源就超小的。
7. 开关电源在生活中有多常见呢?哎呀,那可太常见啦!简直无处不在呀!像电视、冰箱,到处都有它的身影呢!
8. 开关电源的质量怎么判断呢?这可得好好研究研究呀!就像挑水果,得看外表又得看内在。
比如有些电源用起来就特别靠谱。
9. 开关电源未来会发展成啥样呢?那可不好说呀,也许会像科幻电影里一样厉害呢!说不定以后的电源都超级智能啦!
10. 学习开关电源基础知识有趣吗?当然有趣啦!就像探索一个神秘的世界一样让人兴奋呢!等你了解了就知道啦!。
开关电源知识

开关电源知识一、开关电源的概念和分类开关电源是一种将交流电转换为直流电供给电子设备使用的电源。
按照输出功率的大小,可以分为小功率开关电源和大功率开关电源。
按照工作方式的不同,可以分为单端开关电源和双端开关电源。
二、开关电源的工作原理1.整流滤波:将输入的交流电通过整流桥变成直流信号,再通过滤波器去除掉残留的交流成分,得到平滑的直流信号。
2.功率因数校正:由于负载变化导致输入功率因数不稳定,需要进行校正。
3.逆变:将直流信号通过高频变压器转换成高频交流信号。
4.输出整形:将逆变后得到的高频交流信号通过输出整形器转换成稳定的直流输出。
三、开关管1. MOSFET(金属氧化物半导体场效应晶体管):具有低导通阻抗、高速度等优点,常用于低压、小功率开关电源中。
2. IGBT(绝缘栅双极性晶体管):具有大功率承载能力、可靠性好等优点,常用于大功率开关电源中。
3. 晶闸管:具有低导通阻抗、高稳定性等优点,常用于直流电机控制中。
四、开关电源的优缺点1. 优点:效率高、体积小、重量轻、稳定性好。
2. 缺点:噪音大、EMI(电磁干扰)严重,需要进行滤波处理。
五、开关电源的应用1. 通讯领域:手机充电器、路由器、交换机等。
2. 工控领域:PLC(可编程逻辑控制器)、伺服驱动器等。
3. 家用电器领域:LED灯带驱动器、音响等。
六、开关电源的故障及维修1. 故障表现:输出电压不稳定,有杂音或噪声等。
2. 维修方法:(1)检查输入端是否接触良好;(2)检查整流桥是否损坏;(3)检查滤波器是否失效;(4)检查输出整形器是否正常工作。
开关电源培训资料

03
开关电源电路分析和常见故障排 查
开关电源电路分析
电路组成
开关电源电路通常由输入滤波电路、整流电路、功率因数校正电路、逆变电路、输出整流 滤波电路等部分组成。对于不同的应用需求和设计目标,电路的组成可能会有所变化。
工作原理
开关电源通过高频开关管的开关动作,将直流电压变换为高频脉冲电压,再经过变压器、 整流滤波等元件实现电压的变换和输出。其工作效率高、体积小、重量轻等特点使其在电 子设备中得到广泛应用。
控制策略
开关电源的控制策略常见的有PWM(脉冲宽度调制)和PFM(脉冲频率调制)等。控制 策略的选择会影响到电源的效率、稳定性、响应速度等性能。
常见故障排查
无输出或输出电压低:可能 的原因包括输入电压过低、 开关管故障、变压器故障、 整流滤波电路故障等。排查 方法包括检查输入电压、测 量开关管驱动波形、检查变 压器及整流滤波元件等。
• 家用电器
开关电源也广泛应用于各种家用 电器中,如电视机、音响等。
02
开关电源主要技术和设计要点
开关电源主要技术
脉宽调制技术
脉宽调制技术是开关电源中最常 用的技术,通过调节开关管的导 通时间来控制输出电压。具有响
应速度快、输出稳定等特点。
谐振变换技术
谐振变换技术利用谐振元件的特 性进行能量转换,具有高效率和 高功率密度的优势。在开关电源 中常用于高压、大功率应用场合
防水防潮
保持开关电源工作环境干 燥,避免长时间暴露在潮 湿环境中。潮湿可能导致 电气短路、绝缘性能下降 等问题。
THANKS
感谢观看
能和寿命。
维护方法
清洁散热系统
定期清理开关电源散热系 统中的灰尘和杂物,保持 散热良好。可以使用吸尘 器、压缩空气或软刷等工 具进行清洁。
开关电源培训资料

开关电源培训资料开关电源培训资料【第一篇】开关电源是一种常见的电源供应器件,被广泛用于各种电子装置中。
它具有高效率、小体积和轻量化的特点,因此在现代电子设备中得到了广泛的应用。
本篇文章将介绍开关电源的基本工作原理和一些常用的开关电源类型。
1. 基本工作原理开关电源的基本工作原理是利用开关管实现电源输入电压的高效率转换。
通常,开关电源有以下几个基本组成部分:(1) 输入滤波电路:用来对输入电压进行滤波,防止高频噪声对电源的影响。
(2) 整流电路:将交流电源输入转换为直流电压。
(3) 稳压调整电路:对直流电压进行稳压调整,以确保输出电压的稳定性。
(4) 开关转换电路:通过开关和控制电路实现输入电压的高效率转换。
(5) 输出滤波电路:对开关电源输出电压进行滤波处理,提供干净稳定的输出电压。
2. 常用的开关电源类型根据不同的应用需求和输出功率的大小,开关电源可分为多种类型。
以下是一些常见的开关电源类型:(1) 开环开关电源:这种类型的开关电源不具备反馈控制回路,输出电压不稳定且容易受到输入电压变化的影响。
它适用于一些对电源质量要求较低的应用场景。
(2) 闭环开关电源:闭环开关电源通过反馈控制回路对输出电压进行稳定控制,能够有效地抑制输入电压的波动对输出电压的影响。
它适用于对电源质量要求较高的应用场景。
(3) 开关电源的调整方式:开关电源的输出电压可以通过直接改变变压器的变比或通过在控制回路中加入调整电路来实现。
前者适用于输出电压变化范围较大的场景,后者适用于输出电压变化范围较小的场景。
(4) 开关电源的拓扑结构:开关电源的拓扑结构有很多种,如反激式、降压式、升压式、反激降压式等。
不同的拓扑结构适用于不同的输出功率和电源输入条件。
以上只是对开关电源的基本工作原理和一些常用类型的简要介绍,如果想深入了解开关电源的设计和应用,还需进一步学习相关领域的知识。
下一篇将继续介绍开关电源的设计方法和一些要注意的问题。
开关电源培训资料
开关电源利用电力电子器件进行电能转换,通过控制开关管的工作状态,实现电能的转换和调节。在开关电源中 ,输入的电能首先经过整流和滤波,转换为直流电,然后通过开关管的控制,将直流电进行高频开关,再经过变 压器和整流滤波,最终输出稳定的直流电。
开关电源的分类与特点
总结词
开关电源可以根据不同的分类标准进行分类,如按输 入输出类型、按电路结构、按控制方式等。不同类型 的开关电源具有不同的特点和应用场景。
替换法
通过替换可疑元件来判断故障 。
分割法
通过将电源分割成两部分或多 部分,逐一检查来判断故障。
明确电源的输入输出参数、负载 类型和可靠性要求。
方案选择
根据需求选择合适的电路拓扑和 控制方式。
元器件选择
选择合适的电子元器件,如开关 管、电容、电感等。
调试与测试
对电源进行功能和性能测试,调 整参数以满足要求。
PCB设计
将原理图转化为PCB图,进行布 局和布线。
原理图设计
根据方案设计电路原理图。
开关电源的优化技巧
02
开关电源设计与优化
开关电源的基本电路
01
02
03
04
整流电路
将交流电转换为直流电,常用 二极管或可控硅实现。
滤波电路
平滑输出电压,常用电容和电 感组成。
开关管
控制电源的通断,常用晶体管 或MOSFET实现。
控制电路
调节输出电压和电流,常用 PWM或PFM控制方式。
开关电源的设计流程
需求分析
电源输出纹波过大
原因可能包括滤波电容失效、电感器开路等 。
电源输出电压过高或过低
原因可能包括取样电阻损坏、误差放大器损 坏等。
开关电源培训资料
1 2
遵守相关安全规定
在使用开关电源时,应遵守相关安全规定,如 设备操作指南、安全守则等。
确保电源已关闭
在开始工作前,必须确保开关电源已经关闭, 以避免电击危险。
3
佩戴防静电手环
在操作开关电源时,应佩戴防静电手环,以避 免静电放电影响。
开关电源的维护保养
定期检查
01
应定期检查开关电源的外观及散热风扇是否正常工作,如有异
分类
根据不同的转换类型,开关电源可分为正激式、反激式、推 挽式、半桥式和全桥式等。
开关电源的基本原理
工作原理
开关电源通过将市电转换为高频脉冲,再通过变压器和整流电路将脉冲转换 为直流电输出。
优点
效率高、体积小、重量轻、输出电压可调等。
开关电源的主要组成部件
输入电路
包括滤波器、保险丝、输入整流器等,用 于接收市电并将其转换为直流电。
输出特性
包括输出电压精度、负载效应、纹波电压 等。
过载能力
测试电源在过载情况下的稳定性和温升。
效率与散热性能
通过实测功率和温升评估电源效率与散热 性能。
故障排除的基本步骤
功能测试
初步检查电源的输入、输出、 保护等功能是否正常。
电路板维修
检查电路板上的电子元件是否 有烧坏、断裂、脱焊等现象, 逐一修复。
外观检查
观察电源外壳、散热器、电路 板等是否有明显损坏或异常现 象。
电源故障码读取
如有故障码显示,先读取并记 录故障码,以便后续分析。
其他维修
检查电源的其他部件,如变压 器、滤波器、整流器等,进行 相应维修。
常见故障分析与处理
无输出电压
可能原因是电源未接入市电、保险 丝熔断、电源变压器损坏等,可逐 一排查解决。
开关电源基础
详细描述
为了提高开关电源的功率密度,研究者们不断优化磁性元件和散热设计,减小产品的体 积和重量。同时,采用宽输入电压范围设计,使电源能够在较宽的电压范围内稳定运行, 提高了电源的适应性和可靠性。高功率密度与宽输入电压范围的开关电源能够更好地满
04 开关电源的性能指标
输入特性
输入电压范围
表示开关电源可以在一定范围内正常工作的 输入电压值。
电磁兼容性(EMC)
表示开关电源对电磁干扰的抑制能力,以确 保稳定运行。
输入电流
表示开关电源输入端允许的最大电流值。
浪涌电流
表示开关电源在启动时可以承受的电流峰值。
输出特性
01
02
03
04
输出电压范围
开关电源的效率与损耗
效率
开关电源的效率是指输出功率与 输入功率的比值,效率越高,表 示能量转换越充分。
损耗
开关电源的损耗包括开关管损耗 、磁性元件损耗、整流二极管损 耗等,这些损耗都会导致电源效 率降低。
03 开关电源的电路设计
输入滤波电路设计
输入滤波电路的主要功能是滤除电网 中的谐波和干扰,同时防止开关电源 产生的高频噪声对电网造成影响。
输出电压不稳定
问题2
分析
可能是反馈环路增益不足或负载变化剧烈。
解决
调整反馈环路增益;优化负载变化剧烈的情况。
06 开关电源的发展趋势与展 望
高效率与高可靠性
总结词
随着能源资源的日益紧张,高效利用能源已成为社会的共识。开关电源作为能源转换的重要设备,其 高效率和可靠性是未来发展的必然趋势。
详细描述
开关电源培训资料
开关电源培训资料开关电源是一种常见的电力转换设备,广泛应用于工业、通信、家电等领域。
本文将介绍开关电源的原理、分类、工作特点及常见故障处理等内容,为读者提供相关培训资料。
一、开关电源的原理开关电源是利用开关器件(如晶体管、MOSFET等)以开关的方式进行电能的变换,实现从交流电或直流电到稳定的、规定电压或电流的直流电的转换。
其基本原理是通过调节开关电源的电流开关周期,控制输入电流的导通或截止,从而实现电能的转换。
二、开关电源的分类根据输入电源的不同,开关电源可分为交流输入型和直流输入型两种。
1. 交流输入型开关电源交流输入型开关电源主要采用变压器对输入的交流电进行降压或升压,然后经过整流电路、滤波电路进行整流和滤波,得到直流电。
接下来,通过开关器件(如MOSFET)控制输出电流,经过变压器和滤波电路,最终得到稳定的直流电。
2. 直流输入型开关电源直流输入型开关电源是将直流电输入经过滤波电路后,再经过开关电源控制器进行开关控制,最后得到稳定的直流输出电压。
直流输入型开关电源结构简单,功率密度高,广泛应用于电子设备中。
三、开关电源的工作特点1. 高效性:开关电源采用开关控制方式,具有高效转换能力,相比传统的线性电源效率更高。
2. 稳定性:开关电源通过负反馈控制,能够实现稳定输出,抵御输入电压和负载的波动。
3. 调节性:开关电源具有调节输出电压或电流的能力,可以根据实际需求进行调节。
4. 尺寸小:开关电源体积小,占用空间少,适用于一些小型电子设备中的应用。
四、开关电源的常见故障处理1. 过载保护:当开关电源的输出电流超过额定值时,应及时采取措施降低负载,防止损坏。
2. 短路保护:当开关电源输出端出现短路情况时,应立即切断电源以避免故障扩大。
3. 过温保护:开关电源在工作过程中会产生一定的热量,当温度超过安全范围时,应停止使用并等待冷却。
4. 过电压保护:当开关电源的输出电压超过额定值时,应采取措施降低电压或更换合适的设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录:整流与滤波 (3)132:并联稳压电路 (20):串联稳压电路 (31)3串联稳压电路314:集成稳压电路 (44)5:BUCK电路 (51)6:BOOST电路 (65)7:反激变换器 (75):正激变换器 (118)81181:整流与滤波1.1:直流稳压电源的构成基本概念1.2:基本概念交流电压(电流):幅值与方向均随时间作周期性变化的交流电压(电流)。
1:整流与滤波正弦交流电压(电流):幅值与方向均随时间作正弦周期性变化的交流有效值电压(电流)称为正弦交流电压(电流)。
我们常说的交流电就是正弦交流电压或电流的简略称呼。
有效值:与交流电压(电流)热等效的直流电压(电流)直称为该交流电压(电流)的有效值。
值交流电压(电流)所达到的最大瞬时值峰值:交流电压(电流)所达到的最大瞬时值。
频率:交流电压(电流)每秒做周期性变化的次数。
直流电压(电流):数值大小与方向均不随时间变化的电压(电流)称为直流电压(电流)实际上方向安全可以保证不随时间而为直流电压(电流),实际上,方向安全可以保证不随时间而变化,但数值不可能做到一直恒定,因此,对于方向不变、数值随时间而变的交流电压(电流)可以用一个直流电压(电流)与一个幅值、方向随时间变化的交流电压(电流)叠加。
平均值:-t R U i o ωsin 22=0~π:L=o i π~2π:2102t td R U I LAV ωωππsin 202)(0∫=LL R U R U 2245.≈=π2)(0)(045.0U R I U L AV AV ==1:整流与滤波1.4:全波整流全波整流的电路图波形见下图右图全波整流的电路图及波形见下图、右图D1T220V/50HzRo+-Uou 2aD2u 2b2平均值:tR Ui Lao ωsin 2=0~π:U 2π~2π:tR i Lao ωsin 2=1:整流与滤波1.5:桥式整流桥式整流的电路图及波形见下图和右图BG220V/50Hz+u 2TRo-Uo2平均值:tR Ui Lo ωsin 2=0~π:2U 2π~2π:tR i Lo ωsin 2=滤波原理T-a~b :,电容C 按正弦波进行充电02u u u c ==滤波原理:弦波进行充电。
b ~c :,电容C 按指数曲线进行放电但的弦波基02u u u c =≈数曲线进行放电,但u 2的正弦波基本重和。
c ~d :,电容C 继续按指数曲线进行放电,u 2继续按正02u u u c =<弦波下降。
1:整流与滤波流与滤波R L与C对滤波的影响见右图1:整流与滤波流与滤波输出电压:将滤波后的电压波形线性化处理后,可得到如下的近似波形:R T U U 2/min 0max 0=−CU L max 0依据相似三角形的关系,而min 0max 0max 0min 0max 00U U U U U U av −−=+=当取时)41(220CR TU U L av −=T22故U 时,25C R L ≥202.1~15.1U av ≈电容滤波电路中整流二极管的电流及导通角见右下图1:整流与滤波整流二极管:电容滤波电路中整流二极管的电流及导通角见右下图:其中i D 为整流二极管的电流导通时的电流。
其中i o 为负载中的电流。
右下图从能量的角度看,电感滤波与电容滤波的效果是一样的故电感右下图:容滤波的效果是一样的,故电感滤波外特性曲线与电容滤波外特性曲线相似,见右图。
电感滤波的定量分析比较复杂,可借用电容滤波的分析结果:L 当取时,25TR L ≥200.1U U av ≥21.1U 电感电压波形Io电感电流波形整流二极管电流的波形动态)1,能量方程:22LIW L =-基本方程:,。
O R C U U U +=O Z R I I I +=稳压极管关键参数稳压二极管关键参数:稳定电压Uz :稳定电流Iz :最大稳定电流Izmax :最小稳定电流Izmin :动态电阻r z :温度系数α:并联稳压路2:并联稳压电路三:当三极管Q处于放大状态时,从其输出特性曲线上可以看出,三极管放大区的曲线都很平,故c-e间的动态电阻r ce是很小的,是很小的大多数三极管的动态电阻r ce都能达到10-4,即r ce为毫欧级。
毫欧级四:因效率等方面的因素,并联稳压电路很少使用,特别是输出电流较大的场合。
别是输出电流较大的场合从的原框图上以看出2:并联稳压电路TL431:TL431的原理框图上可以看出,TL431就是一个集成的并联稳压电路,其中2.5V 的基准是能带间隙稳压基准基准源,输出端是处于放大状态的三极管。
U 25~36V 主要参数:KA :2.536VI KA :1~100mA Uref :2.5V I R :<4uA Z KA :<0.5ΩUo :2.5~35V3:串联稳压电路3.3:串联稳压电路实例:Uo=6V,Io=50mA,u1=220V±15%。
调整管Q在Ucmin时不能处于饱和状态,既Ucmin-Uo≥Vces,取则Vces=2.5V,则Ucmin=8.5V。
根据P14电容滤波的结论,在Ucmin=8.5V时,u2=7.4V,外加整流桥上的两个二极管的管压降2.2V,取u2=9.6V,故工频变压器按匝比19:1,22V取=96V故工频变压器按匝比5W来选取。
在时整流桥上的二极管所承受的反向电压最大达到u2max=253V时,整流桥上的二极管所承受的反向电压最大,达到358V,外加40%的降额,整流桥BG选用DF-S封装的DF06S(V RRM=600V,Io=1A,V F=1.1V),电压、电流都有充足余量。
调整管Q的c-e间最大电压≤16.8V,外加一些振荡尖峰及40%的降额,调整管Q的Icmax=50mA,故选用SOT-89封装的FCX619(Vceo=50V,)做调整管可见电压电流都能满足Ic=2.75A,Ptot=2W)做调整管,可见电压、电流都能满足。
3:串联稳压电路在u 2max =253V 时,调整管Q 的功率P max ≈0.53W ,故FCX619的Ptot=2W 是有充足余量的。
但要注意:Ptot=2W PCB 稳压管选用SOT-23封装的MMBZ5235B (Vz=6.8V ,Izmax=50mA ,是有充足余的但要注意的条件是板不能小于40×40×0.8。
P d =350mW )。
在Io=0,u 2max =253V 时,稳压管中的Iz ≤50mA ,故R ≥220Ω。
在Io=50mA ,u 2min =187V 时,要保证稳压管Dz 电流Iz ≥1.5mA ,调整管Q 的基极电流I b ≥0.25mA (因调整管的h FE ≥200,I C =10~200mA ),故R ≤1k 。
先选定R=470Ω。
额定输入时稳压管中的Iz ≈9.5mA 。
Uo=Uz-V be ,要想获得6V 的输出电压,必须针对V be 调节Uz ,Uz 会随同Iz 的增加而上升,在R 的许可范围内,改变R 的阻值,适当调节Iz 的大小,使微调Uz ,使Uo=6V 。
3:串联稳压电路根据P14电容滤波所述,输入电容C1越大,Uc越高,u2min=187V时的Ucmin也越高,对保证稳压管Dz电流Iz在稳压工作范围有利。
Uc越高,调整管Q的功率损耗也越大,效率也就越低。
所以,在保证调整管Q处于线性放大区、稳压管Dz处于稳压工作区的条件下,输入电容C1要尽量小。
据此估算,输入电容C1≥330uF,在考虑容量偏差、温度变化等因素之后,输入电容C1选用470uF/35V的电解电容。
输出电容C2主要作用是滤波,与输出纹波、保持时间等要求有关,但不是越大越好,因为输出电容C2越大,输出的脉冲特性越差。
在此,先选用100uF/16V的电解电容。
如对高频干扰噪声有更为严格的要求,可在输出电容C2上并联贴片的陶瓷电容,如0805的0.11u/10V的电容。
01~4:集成稳压电路将串联稳压电路予以集成化,且只引出三个引脚,分别为输入端、输出端、公共端,就是我们常用的三端稳压器。
按功能划分,可分为固定式端公共端就是我们常用的三端稳压器按功能划分可分为固定式集成稳压器(如uA7800系列)和可调式集成稳压器(如LM317)。
4.1:7800系列:右图是固定式集成稳压器的电路图(uA7800系列):简略分析,可以看出,用达林顿复合管作为调整管,用能带顿复合管作为调整管用能带间隙稳压源作为基准源,比较放大用共集-共射放大电路,以及过流、过功率、过温等保护功能。
4:集成稳压电路4.2:LM317:可调式集成稳压器LM317的方框图见右图。
从方框图可以看出,与7800系列构成是类同的,仍是用达林顿复合管作为调整管,用能带顿复管作为调管用能带间隙稳压源作为基准源,比较放大用共集-共射放大电路,以及过流、过功率、过温等保护功能。
与7800系列的不同点是:采用特殊的电路架构,使调整端的输出电流很小,只有50u A,而7800系列的静态电流则有5mA。