推挽开关电源

合集下载

反激式正激式推挽式半桥式全桥式开关电源优缺点

反激式正激式推挽式半桥式全桥式开关电源优缺点

反激式正激式推挽式半桥式全桥式开关电源优缺点反激式开关电源是一种常见的开关电源拓扑结构,其工作原理是利用电感储能和电容滤波器来实现电压变换。

以下是反激式、正激式、推挽式、半桥式和全桥式开关电源的优缺点分析。

1.反激式开关电源:优点:-体积小,结构简单,成本较低。

-输出电流大,适用于一些高功率应用。

-效率较高,在负载率低时仍能提供稳定的输出电压。

缺点:-输出电压稳定性较差,容易受到输入电压波动的影响。

-输入电流波形不纯净,含有较高的谐波成分。

-输出电流变化较大时容易产生振荡和噪音。

2.正激式开关电源:优点:-输出电压稳定性较好,能够提供较为纯净的输出电流。

-输出电流较大,适用于一些高负载应用。

-效率较高,在大部分负载条件下都能保持较高的效率。

缺点:-体积较大,结构相对复杂。

-成本较高。

-在负载率低时效率较低。

3.推挽式开关电源:优点:-输出频率较高,适用于一些高频应用。

-输出电压稳定性较好。

-体积相对较小,结构简单。

缺点:-输出电流相对较小。

-效率较低,在大负载条件下会有较大的功率损耗。

-容易受到电容和电感等元器件的损耗影响,导致输出电压不稳定。

4.半桥式开关电源:优点:-输出电压稳定性较好。

-输出电流较大。

-效率较高。

-结构简单,成本相对较低。

缺点:-输入电流波形较复杂,含有较高的谐波成分。

-输出电流较小负载时容易出现振荡。

-适用负载范围较窄。

5.全桥式开关电源:优点:-输出电压稳定性较好。

-输出电流较大。

-效率较高。

-结构简单,成本相对较低。

缺点:-输入电流波形较复杂,含有较高的谐波成分。

-输出电流较小负载时容易出现振荡。

-适用负载范围较窄。

总结:根据以上分析,不同的开关电源拓扑在不同应用场景中具有不同的优缺点。

在选择开关电源时,应根据具体应用需求,综合考虑输出电压稳定性、输出电流、效率、结构复杂性、成本等因素,选择最适合的拓扑结构。

推挽开关电源原理讲解

推挽开关电源原理讲解

推挽开关电源原理讲解1.输入直流电源:推挽开关电源的输入电源为直流电源,通常是12V或24V的电压。

这个直流电源是通过电池或者直流电源适配器提供的。

2.方波发生器:推挽开关电源中有一个方波发生器,它通过以一定频率和占空比产生高频方波信号。

这个方波信号的频率通常在几十kHz到几百kHz之间。

3.驱动电路:方波信号通过驱动电路传递给弹簧刷式直流电机的转子。

当方波信号为高电平时,转子朝一个方向旋转;当方波信号为低电平时,转子朝另一个方向旋转。

这样,方波信号的高低电平变化使得转子不断地旋转,进而形成交流电信号。

4.变压器:向弹簧刷式直流电机的转子加上一个变压器,可以将直流电转换为交流电。

变压器中的绕组将转子产生的信号隔离开来,从而将信号输出到负载端。

5.输出负载:推挽开关电源的输出端连接到负载,负载可以是无线电设备、汽车电子设备等。

当交流信号通过负载时,可以起到提供相应功能的作用,例如无线电接收天线的放大。

推挽开关电源的主要优点包括效率高、输出稳定、结构简单等。

它可以根据输入信号的变化迅速调整输出功率,从而适应不同负载要求。

此外,推挽开关电源可以轻松实现高效率的电能转换,例如将12V的直流电源转换为220V的交流电源。

不过,推挽开关电源也存在一些缺点。

例如,在使用时,可能会产生电磁干扰,需要采取相应的屏蔽措施。

另外,由于其工作频率较高,需要使用高速开关元件和驱动电路,增加了系统的复杂性和成本。

总之,推挽开关电源是一种常用的电源变换电路,通过转换直流电为交流电实现了电能的高效转换。

其工作原理简单,并且具有高效率、输出稳定等优点,因此被广泛应用于各种电子设备中。

3.推挽式开关电源的实际电路

3.推挽式开关电源的实际电路

3.2他激型推挽式开关电源电路
3.2.4他激型推挽式开关电源电路中的PWM/PFM电路 应用最为广泛的双端他激型推挽式开关电源PWM集成驱动器: UC3525A/UC3527A (P.202-207)
(1).主要性能 p.203
(2).技术参数 p.203 (3).引脚与外形 p.204-206 (4).内部原理方框图 p.206 (5).应注意的问题 p.20-206
(U i U ces ) 108 Ui NP 108 4 fBS SC 4 fBS SC
2.基极绕组匝数的计算
Nb N P
U be I b Rb U R 2 Ui
3.次级绕组匝数的计算
Ns NP
UO Ui
4.功率变压器磁芯材料的选择
3.1自激型推挽式开关电源电路
3.2.2他激他激型推挽式开关电源电路中的双管共态导通问题(P.196)
3.2他激型推挽式开关电源电路(P.193)
3.2.3他激型推挽式开关电源电路中的双管共态导通问题
1.采用RC电路延迟导通来避免双管共态导通现象 (1).缩短关断功率开关管的存储时间(P.197)
3.2他激型推挽式开关电源电路
3.2.3他激型推挽式开关电源电路中的双管共态导通问题
1.采用RC电路延迟导通来避免双管共态导通现象 (2).延迟功率开关管导通(P.197-198)
2.采用延迟导通脉冲来避免双管共态导通现象(P.198-199) 3.减小功率开关管存储时间的有效方法(P.200-202)
4、输入电压与输出电压之 间的关系:(P.181)
NS UO Ui NP
5、输出阻抗:(P.182) 0.1~0.01Ω 6、工作频率:(P.183)

4二极管推挽式开关电源工作原理详解

4二极管推挽式开关电源工作原理详解

一、概述二极管推挽式开关电源是一种常见的电源供应电路,具有高效率、稳定性好等特点。

本文将对二极管推挽式开关电源的工作原理进行详细解析,希望能对读者有所帮助。

二、二极管推挽式开关电源的概念二极管推挽式开关电源是指采用二极管和开关管构成的推挽结构来实现电源的开关控制。

其工作原理是利用开关管周期性地导通和截止来实现电源输出的控制,从而达到稳定、可靠的电源输出。

三、二极管推挽式开关电源的结构二极管推挽式开关电源通常由输入滤波电路、整流电路、开关管驱动电路、开关管组成,其中开关管驱动电路起到了至关重要的作用。

1. 输入滤波电路:用于对输入电压进行滤波和稳压处理,以保证输入电源的稳定性和可靠性。

2. 整流电路:将交流输入电压经过整流处理转换为直流电压,并对其进行滤波,以得到稳定的直流电压。

3. 开关管驱动电路:用于对开关管的控制,通过精确的脉冲信号来控制开关管的导通和截止。

4. 开关管:负责将输入电压转换为需要的输出电压,并通过控制其导通和截止来实现电源的稳定输出。

四、二极管推挽式开关电源的工作原理二极管推挽式开关电源的工作原理主要包括两个方面,一是整流电路的工作原理,二是开关管的工作原理。

1. 整流电路的工作原理整流电路通过将交流输入电压转换为直流电压,同时进行滤波处理,以得到稳定的直流电压。

其主要工作原理是利用二极管的导通和截止来实现正负半周电压的整流和滤波。

2. 开关管的工作原理开关管是二极管推挽式开关电源中至关重要的部件,其主要工作原理是周期性地通过控制其导通和截止来实现稳定的电源输出。

当开关管导通时,输入电压通过变压器传递到输出端,当开关管截止时,输出端电压得到稳定。

五、二极管推挽式开关电源的优缺点二极管推挽式开关电源作为一种常见的电源供应电路,其优缺点也是显而易见的。

1. 优点:(1)高效率:相比传统的线性稳压电源,二极管推挽式开关电源具有更高的转换效率,能够节省能源。

(2)稳定性好:开关控制能够精确地控制输出电压,使得电源的稳定性更高。

推挽电路原理开关电源

推挽电路原理开关电源

推挽电路原理开关电源推挽电路是一种常用于驱动直流电机的电路,它通过两个互补的开关管(一般是NPN型和PNP型晶体管)控制电机的正反转。

推挽电路可以提供较大的电流输出,并且具有较好的工作效率和响应速度,因此广泛应用于各种电机驱动和开关功率放大电路中。

推挽电路的原理如下:1.基本结构:推挽电路由两个互补的开关管组成,一般一个为NPN型晶体管和一个为PNP型晶体管。

两个开关管交替工作,通过控制它们的导通和截止状态来实现电机的正反转。

2.工作原理:推挽电路有两种工作状态:正转状态和反转状态。

在正转状态下,NPN晶体管处于导通状态,PNP晶体管处于截止状态。

这时电流从电源经过NPN管流向电机,电机开始正转。

在反转状态下,PNP晶体管处于导通状态,NPN晶体管处于截止状态。

这时电流从电源经过PNP管流向电机,电机开始反转。

推挽电路通过两个开关管的交替工作,实现了电机的正反转,并且其中一条开关管工作时另一条开关管处于截止状态,大大降低了功率损耗和热量。

3.控制电平:推挽电路的控制电平是通过控制NPN和PNP晶体管的基极电压来实现的。

当NPN的基极电压为高电平,PNP的基极电压为低电平时,电路处于正转状态;当NPN的基极电压为低电平,PNP的基极电压为高电平时,电路处于反转状态。

4.保护电路:为了防止电机在正反转过程中产生反电动势以及反冲电流对驱动电路造成损害,推挽电路通常还配备了反电势保护电路,如二极管并联等。

总结:推挽电路通过控制NPN和PNP晶体管的导通和截止状态来实现电机的正反转。

它具有较大的电流输出、较好的工作效率和响应速度,广泛应用于各种电机驱动和开关功率放大电路中。

推挽式开关电源变压器参数的计算

推挽式开关电源变压器参数的计算

0.4.推挽式开关电源变压器参数的计算推挽式开关电源使用的开关变压器有两个初级线圈,它们都属于励磁线圈,但流过两个线圈的电流所产生的磁力线方向正好相反,因此,推挽式开关电源变压器属于双激式开关电源变压器;另外,推挽式开关电源变压器的次级线圈会同时被两个初级线圈所产生的磁场感应,因此,变压器的次级线圈同时存在正、反激电压输出;推挽式开关电源有多种工作模式,如:交流输出、整流输出、直流稳压输出,等工作模式,各种工作模式对变压器的参数要求会有不同的要求。

1-8-1-4-1.推挽式开关电源变压器初级线圈匝数的计算由于推挽式变压器的铁心分别被流过变压器初级线圈N1绕组和N2两个绕组的电流轮流进行交替励磁,变压器铁心的磁感应强度B,可从负的最大值-Bm,变化到正的最大值+Bm,因此,推挽式变压器铁心磁感应强度的变化范围比单激式变压器铁心磁感应强度的变化范围大好几倍,并且不容易出现磁通饱和现象。

推挽式变压器的铁心一般都可以不用留气隙,因此,变压器铁心的导磁率比单激式变压器铁心的导磁率高出很多,这样,推挽式变压器各线圈绕组的匝数就可以大大的减少,使变压器的铁心体积以及变压器的总体积都可以相对减小。

推挽式开关电源变压器的计算方法与前面正激式或反激式开关电源变压器的计算方法大体相同,只是对变压器铁心磁感应强度的变化范围选择有区别。

对于具有双向磁极化的变压器铁心,其磁感应强度B的取值范围,可从负的最大值-Bm变化到正的最大值+Bm。

关于开关电源变压器的计算方法,请参考前面“1-6-3.正激式变压器开关电源电路参数计算”中的“2.1 变压器初级线圈匝数的计算”章节中的内容。

根据(1-95)式:(1-150)式和(1-151)式就是计算双激式开关电源变压器初级线圈N1绕组匝数的公式。

式中,N1为变压器初级线圈N1或N2绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯);Ui为加到变压器初级线圈N1绕组两端的电压,单位为伏;τ = T on,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒);F为工作频率,单位为赫芝,一般双激式开关电源变压器工作于正、反激输出的情况下,其伏秒容量必须相等,因此,可以直接用工作频率来计算变压器初级线圈N1绕组的匝数;F 和τ取值要预留20%左右的余量。

推挽开关电源工作原理

推挽开关电源工作原理

推挽开关电源工作原理推挽开关电源是一种常用的电源供电方式,它的工作原理可以简单概括为将输入电压通过推挽电路转换为输出电压的过程。

推挽开关电源具有高效率、稳定性好、输出电压范围广等优点,被广泛应用于各种电子设备中。

推挽开关电源的工作原理如下:首先,输入电压通过输入端进入推挽电路。

推挽电路由两个开关管组成,一个是NPN型晶体管,另一个是PNP型晶体管。

这两个晶体管分别被驱动,使其交替导通和截止。

当NPN晶体管导通时,输出端与输入端相连,此时输出端的电压与输入电压相等;当PNP晶体管导通时,输出端与地相连,此时输出端的电压为零。

通过这种交替导通和截止的方式,可以实现输出电压的转换。

推挽开关电源的工作过程可以分为两个阶段:导通阶段和截止阶段。

在导通阶段,NPN晶体管导通,输入电压通过NPN晶体管传递到输出端,输出端的电压与输入电压相等。

在截止阶段,PNP晶体管导通,输出端与地相连,输出端的电压为零。

通过不断交替进行导通和截止,可以实现输出电压的稳定转换。

推挽开关电源的输出电压可以通过调节驱动两个晶体管的信号波形的占空比来实现。

占空比是指晶体管导通时间与总周期之比。

通过改变占空比,可以改变导通阶段和截止阶段的时间比例,从而改变输出电压的大小。

当占空比增大时,导通时间增加,输出电压也增大;当占空比减小时,导通时间减少,输出电压也减小。

推挽开关电源还可以通过添加滤波电路来提高输出电压的稳定性。

滤波电路可以滤除电源中的噪声和纹波,使输出电压更加稳定。

常用的滤波电路包括电容滤波和电感滤波。

电容滤波通过将电容与输出端相连,利用电容的充放电特性来平滑输出电压;电感滤波通过将电感与输出端相连,利用电感的储能和释能特性来平滑输出电压。

通过合理选择和设计滤波电路,可以使输出电压的纹波系数降低到很小的水平,提高输出电压的稳定性。

推挽开关电源是一种高效、稳定的电源供电方式,其工作原理是通过推挽电路将输入电压转换为输出电压。

通过调节晶体管的导通和截止时间,可以实现输出电压的转换。

4个二极管推挽式开关电源

4个二极管推挽式开关电源

4个二极管推挽式开关电源
四个二极管推挽式开关电源是一种常用的直流电源,它通过将交流电转换为直流电来提供稳定的电压输出。

这种电源通常用于电子设备、计算机和通信系统等需要直流电源的场合。

四个二极管推挽式开关电源的工作原理如下:
首先,交流电通过输入滤波器进行滤波,以去除干扰信号。

然后,交流电被送入整流器,整流器将交流电转换为直流电。

整流后的直流电经过滤波器进一步滤波,以去除纹波和杂散信号。

接着,直流电被送入推挽式开关电路。

推挽式开关电路由两个开关管组成,它们交替地导通和截止,以在输出端产生方波电压。

在开关管导通时,电流通过开关管流向输出端,输出端的电压升高;在开关管截止时,电流停止流动,输出端的电压下降。

为了使输出电压稳定,推挽式开关电源通常采用反馈控制电路。

反馈控制电路通过监测输出电压,并根据输出电压的变化来调整开关管的导通和截止时间,从而使输出电压保持稳定。

四个二极管推挽式开关电源具有效率高、输出电压稳定、纹波小等优点,但也存在一些缺点,如开关噪声大、电磁干扰严重等。

因此,在设计和使用四个二极管推挽式开关电源时,需要考虑这些因素,并采取相应的措施来减少其负面影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

推挽式开关电源
开关电源的推挽拓扑结构
★新手入门拓扑结构推挽篇
推挽式开关电源设计中基础拓扑结构之一
推挽电路就是两个不同极性晶体管连接的输出电路。

推挽电路采用两个参数相同的功率BJT管或MOSFET管,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率管每次只有一个导通,所以导通损耗小效率高。

推挽输出既可以向负载灌电流,也可以从负载抽取电流。

如果输出级有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三极管推挽相连,这样的电路结构称为推挽式电路或图腾柱(Totem-pole)输出电路。

上图为推挽变换器原理图。

推挽变压器有两个三极管在交替开关,已达到比单管工作电路的输出功率,由于初级线圈的中心抽头接在输入电源的正极,这样当一边三极管导通时,另一边的三极管要承受耐压与两倍的电源电压,这对晶体管要求较高。

优点:
结构简单,开关变压器磁芯利用率高,推挽电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小。

缺点:
变压器带有中心抽头,而且开关管的承受电压较高;由于变压器原边漏感的存在,功率开关管关断的瞬间,漏感极会产生较大的电压尖峰,另外输入电流纹波较大,因而输入滤波器的体积较大。

★主流IC
SG3525是美国硅通用半导体公司推出的一种性能优良、功能齐全和通用性强的单片集成PWM控制芯片,它简单可靠、方便灵活,输出驱动我推拉输出形式,增加了驱动能力;内部含有欠压锁定电路、软启动控制电路、PWM锁存器,有过流保护功能,频率可调,同时能限制最大占空比。

IR2110 是美国IR公司生产的一款驱动器。

它兼有光耦隔离(体积小)和电磁隔离(速度快)的优点,是中小功率变换器装置中驱动器件的首选品种。

UC3846 采用定频电流模式控制,改善了系统的线电压调节率和负载响应特性,简化了控制环路的设计。

IR2112S 是IR公司一款推挽式驱动器,它是高电压、高放大率MOSFET和带独立的推挽放大器,为了自举工作方式,门驱动器供电范围从10V到20V。

★工程师推荐:电流馈电推挽式逆变电路图设计
电流馈电推挽式逆变电路如图1所示,图中直流电压经电感L1送到变压器Tr的中心抽头,L1与跨接余Tr初级绕组两端的电容C2组成手续谐振电路,R1、R2、C1组成启动电路,其原理同图2,由于Np与Nb的正反馈作用,驱动VT1、VT2轮流交替导通。

图一
在这个电路中,开关晶体管集电极所承受的最高电压约为直流电压VDC的π倍。

对于市电压为110V/120V/127V的地区,采用这种电路是合适的。

本电路晶体管输出亦为正弦电压。

即使负载开路式短路,负载变化很大,逆变器任然可以连续工作,如图1、2中即使一个灯管失效,电路仍能正常工作。

Motorola公司1996年生产的一带二灯的电子整流器就是采用这种电路模式,器具体电路如图2所示。

图二
图中C1、R1及VD组成启动电路,高频逆变电路由VT1、VT2、变压器Tr、C2等组成,由变压器提供正反馈,使得VT1、VT2轮流交替导通与截止。

相关文档
最新文档