机载预警雷达发展趋势分析

合集下载

机载激光雷达的应用现状及发展趋势

机载激光雷达的应用现状及发展趋势

机载激光雷达的应用现状及发展趋势摘要:机载激光雷达是一种应用越来越广泛的对地观测系统,本文简要介绍了机载LIDAR系统及其测量原理,并重点综述了机载LIDAR的应用现状最后对其发展趋势进行了展望。

关键字:激光;激光器;激光技术;激光雷达一、机载LIDAR的技术原理机载激光雷达(Light Detection And Ranging,LIDAR)是将激光用于回波测距和定向,并通过位置、径向速度计物体反射特性等信息来识别目标。

它体现了特殊的发射、扫描、接收和信号处理技术。

机载激光雷达技术起源于传统的工程测量中的激光测距技术,是传统雷达技术与现代激光技术结合的产物,是遥感测量领域的一门新兴技术。

自20世纪60年代末世界第一部激光雷达诞生以来,机载激光雷达技术作为一种重要的航空遥感技术,已经被越来越多的学者所关注。

迄今为止,机载激光雷达的研究与应用均取得了相当大的进展,虽然机载激光雷达无法完全取代传统的航空摄影测量作业方式,但可以预见,在未来的航空遥感领域,机载激光雷达将成为主流之一。

进入90年代,机载激光雷达系统进入实用化阶段,并成为雷达遥感发展的重要方向之一。

机载LIDAR系统是一款高速度、高性能、长距离的航空测量设备,该系统由激光测高仪、GPS定位装置、IMU(惯性制导仪)和高分辨率数码照相机组成,实习对目标的同步测量。

测量数据通过特定方程解算处理,生成高密度激光点云数值,为地形信息的提取提供精确的数据源。

其应用已超出传统测量,遥感,以及近景测量所覆盖的范围,成为一种独特的数据获取方式。

与普通光波相比,激光具有方向性好、单色性好、相干性好等特点,不易受大气环境和太阳光线的影响。

使用激光进行距离测量可大大提高了数据采集的可靠性抗干扰能力。

当来自激光器的激光射到一个物体的表面时,只要不存在方向反射,总会有一部分光会反射回去,成为回波信号,被系统的接收器所接收,当仪器计算出光由激光器射出返回到接收器的时间为2t后,那么,激光器到反射物体的距离d=光速c×t\2 。

天线阵列在雷达系统中的应用研究案例分析

天线阵列在雷达系统中的应用研究案例分析

天线阵列在雷达系统中的应用研究案例分析一、引言雷达系统作为一种重要的探测和监测工具,在军事、民用等领域都发挥着关键作用。

天线阵列技术的引入,为雷达系统的性能提升带来了新的机遇和挑战。

二、天线阵列的基本原理天线阵列是由多个天线单元按照一定的规则排列组成的系统。

通过合理控制每个天线单元的激励电流或电压,可以实现波束的形成、扫描和控制。

其基本原理基于电磁波的干涉和叠加。

在天线阵列中,每个天线单元都会辐射出电磁波。

当这些电磁波在空间中相遇时,会发生干涉现象。

通过调整天线单元之间的间距、相位和幅度等参数,可以使得电磁波在特定方向上相互增强,形成较强的波束;而在其他方向上相互削弱,从而实现波束的指向性控制。

三、天线阵列在雷达系统中的优势(一)提高分辨率天线阵列可以通过增加天线单元的数量和优化排列方式,有效地提高雷达系统的角度分辨率和距离分辨率。

这使得雷达能够更精确地分辨目标的位置、形状和尺寸。

(二)增强抗干扰能力通过灵活调整波束的方向和形状,天线阵列可以有效地抑制来自特定方向的干扰信号,提高雷达系统在复杂电磁环境下的工作能力。

(三)实现快速波束扫描与传统的机械扫描雷达相比,天线阵列可以通过电子控制方式实现快速的波束扫描,大大缩短了雷达对目标的搜索和跟踪时间。

(四)增加系统的可靠性天线阵列中的多个天线单元可以互为备份,当部分单元出现故障时,系统仍能保持一定的工作性能,提高了雷达系统的可靠性和稳定性。

四、应用案例分析(一)机载预警雷达在机载预警雷达中,天线阵列通常安装在飞机的机头或机背上。

通过采用相控阵技术,可以实现对大范围空域的快速扫描和多目标跟踪。

例如,美国的 E-3 预警机上的 AN/APY-1/2 雷达,其采用的天线阵列能够同时监测数百个目标,并引导己方战机进行作战。

在这种应用中,天线阵列需要克服飞机飞行时的振动、气流影响以及对低可观测目标的探测等难题。

通过采用先进的信号处理算法和优化的天线设计,有效地提高了雷达的性能。

机载预警雷达概论

机载预警雷达概论

机载预警雷达概论机载预警雷达概论一、预警机在现代信息化战争中的地位和作用1. 预警机是一种装有远距离搜索雷达、数据处理、敌我识别以及通信导航、指挥控制、电子对抗等完善的电子设备,集预警、指挥、控制、通信和情报于一体,用于搜索、监视与跟踪空中和海上目标,并指挥、引导己方飞机执行作战任务的作战支援飞机[1]。

2. 预警机于第二次世界大战结束时问世,曾被用于越南战争,但直到上世纪八十年代初中东战争中的“贝卡谷地”之战,预警机创造了一边倒的军事奇迹,才受到世界军事强国的密切关注。

1982年6月6日,以色列90架战斗机在E-2C预警机的指挥下,向黎巴嫩贝卡谷地发起进攻。

E-2C预警机先敌发现前来支援的近百架叙利亚战斗机,适时干扰、遮断它们与地面指挥部的联系,以损失1架战斗机的代价,一举击落、击伤叙利亚战斗机79架和7架。

3. 预警机已成为军队信息化的重要标志,是现代战争整个作战体系的神经中枢。

1991年海湾战争期间,美国动用了27架E-2C和11架E-3预警机参战。

E-2C预警机出动1183架次,飞行4700小时,用于预警和通信中继。

E-3预警机共出动448架次,飞行5546小时,指挥控制各型飞机9万架次的飞行。

由于空战中有预警机指挥控制,以美国为首的多国部队未损失1架参战飞机,伊拉克飞机则被击落40余架[1]。

二、世界现役主要预警机及其机载雷达介绍4. 美国E-2C ,中高空目标探测距离480km,低空目标探测距离270km,可在复杂背景中同时跟踪300个目标,引导己方数十架飞机实施拦截。

︒“鹰眼”预警机。

它是目前世界上最先进的舰载预警机,1968年开始研制,1973年交付使用,主要任务是掌握空情,对进犯的战斗机和导弹进行预警,配合航空母舰或地面指挥所完成对己方战斗机的作战指挥。

E-2C预警机先后使用了AN/APS-138、139和145三种型号的监视雷达,工作在超高频(UHF)波段,具有对空、对海、对地三种工作方式,方位覆盖3605. 美国E-3 ,小型低空目标探测距离300km,大型高空目标探测距离600km,可在复杂背景中同时跟踪600个目标,引导己方上百架飞机实施拦截,并具有良好的对抗各种人为干扰的能力。

《机载气象雷达》课件

《机载气象雷达》课件

军事应用
战场气象监测
在军事领域,机载气象雷达可用于战场气象监测,为军事行动提供实时、准确的 气象数据。
目标识别与定位
机载气象雷达还可以结合其他传感器,对地面目标进行识别和定位,为打击和作 战计划提供支持。
03
机载气象雷达的发展历程
早期发展
雷达技术的起源
雷达技术的起源可以追溯到20世纪初 ,当时主要用于军事侦察和目标跟踪 。
气象雷达的初步探索
机载气象雷达的萌芽
随着航空工业的发展,机载气象雷达 开始进入人们的视野,但技术尚不成 熟。
在早期,气象雷达主要用于气象观测 和天气预报,而并非用于航空领域。
现代技术进步
硬件设备的改进
现代机载气象雷达采用了更先进的雷达发射和接收系统,提高了 探测精度和范围。
软件算法的提升
通过不断优化软件算法,机载气象雷达能够更准确地识别和解析气 象目标。
数据保护
采取加密措施,防止雷达数据被非法获取和篡改 。
物理防护
对雷达硬件进行加固和保护,以应对极端天气和 机械冲击等安全威胁。
05
机载气象雷达的未来趋势
技术融合
雷达技术与通信技术融合
01
实现雷达数据的高速传输和实时共享,提高气象预报的准确性
和时效性。
雷达技术与人工智能技术融合
02
利用人工智能算法对雷达数据进行自动化处理和解析,提高气
工作原理
01
02
03
发射信号
机载气象雷达通过发射高 频电磁波信号,遇到目标 物(如降水区、云层等) 后反射回来。
接收反射信号
雷达接收器接收反射回来 的信号,并对其进行处理 。
数据分析
处理后的数据经过分析, 可以生成气象图像和相关 数据,供飞行员参考。

论雷达技术的发展与应用及未来展望5篇

论雷达技术的发展与应用及未来展望5篇

论雷达技术的发展与应用及未来展望5篇第一篇:论雷达技术的发展与应用及未来展望论雷达技术的发展与应用及未来展望摘要:雷达是用无线电的方法发现目标并测定它们的空间位置的装置。

雷达的发展与使用过程,正是电子技术在军事中应用的缩影,而雷达的未来,更与电子技术息息相关。

本文介绍了雷达的发展与应用的历史,重点介绍了相控阵雷达与激光孔径雷达两类雷达的原理与特点,并指出雷达的弱点及未来发展方向关键词:雷达;发展;实战应用;种类;弱点;未来雷达主要用于对远距离物体的方位、距离、高度做精确检测,可以说是现代军事电子技术的代表。

随着不断的发展,雷达在战区的警戒、各种新式武器威力的发挥、协同作战的指挥中的地位愈发重要。

1雷达的发展与应用雷达的基本工作原理是靠发射探测脉冲和接受被照射目标的回波发现目标。

百年的时间里,随着新技术的发展和应用,雷达也在不断发展。

1.1雷达的发展史下面是雷达出现前夜相关理论的一系列突破:1842年多普勒(Christian Andreas Doppler)率先提出利用多普勒效应的多普勒式雷达。

1864年马克斯威尔(James Clerk Maxwell)推导出可计算电磁波特性的公式。

1886年赫兹(Heinerich Hertz)展开研究无线电波的一系列实验。

1888年赫兹成功利用仪器产生无线电波。

1897年汤普森(JJ Thompson)展开对真空管内阴极射线的研究。

这些与电磁波相关的科技是雷达的最基本理论。

1904年克里斯蒂安•豪斯梅耶(Christian Hulsmeyer)宣称他的“电动镜”可以传输音频,并能够接受到运动物体的回应。

可以说,就是这位德国人奠定了这项技术。

然而,在一战期间,德国军官们所注意的是无线电通讯。

接下来雷达的出现就显得顺理成章了。

1933年,鲁道夫•昆德(Rudolf Kunhold)提出毫米波长可能可以探测出水面船只及飞船的位置。

两年后,威廉•龙格(Wilhelm Runge)已经能够根据飞机自身所发出的信号计算出50公里以外的飞机位置所在,即使是在夜晚或者有雾的时候。

世界各国空中预警系统发展现状

世界各国空中预警系统发展现状

世界各国空中预警系统发展现状一、前言1940年,在“不列颠空战”期间,英军的地面雷达在有效使用截击机来确保英国安全方面发挥了重要作用。

如今,许多国家则更多地依靠装在空中平台上的监视与跟踪雷达系统来完成这项任务。

这些雷达系统不仅用于对付来犯敌机,而且还越来越多地用于地面目标搜索。

二、概述空中预警和控制系统( airborne warning and control system) ,是利用飞机和以监视雷达为主的机载电子设备探测目标和执行指挥使命的系统。

这种系统用于防空和战术指挥,能与地面系统配合或独立完成战略和战术的预警、指挥和控制任务,还可担负交通管制和空中监视等非军事使命。

空中预警和指挥系统能在数百公里的范围内监视上、下和周围的情况,凭借飞机的高度和速度而免受敌方攻击。

它由空中监视雷达与自动计算、数据处理和通信设备构成防御中心,并能随时转移到局势需要的空域,提供有效的空中监视、指挥和控制防空武器等防御或攻击任务。

三、世界各国预警机系统概况1、预警机发展概况全球第一架专用空中预警与控制飞机是由格鲁曼公司研制的双涡轮螺旋桨E-2“鹰眼”预警机。

这种飞机装有一个直径7.3米的背式天线罩和一套通用电气公司生产的APS-96雷达。

1964年美国海军开始装备E-2A预警机,刚好在越南战场上派上了用场。

此后,装有APS-120雷达的E-2C“鹰眼II”预警机于1973年开始服役。

该型飞机重23.6吨,机上有两名飞行员、一名雷达操作员、一名任务指挥官和一名空中控制官。

这种飞机可在500千米半径范围内飞行4小时,巡航高度为25,000至31,000英尺(约7600-9400米)。

E-2C预警机除了装备美国海军(约75架)外,还出口到了埃及(7架)、法国(3架)、以色列(4架,现已退役)、日本(13架)、新加坡(4架)和台湾(6架)。

墨西哥海军也从以色列购买了3架退役的E-2C。

到2010年,美国海军所有的E-2C都将升级为目前的“鹰眼2000”标准,装上汉胜公司的8叶螺旋桨发动机和现代化的驾驶舱。

雷达技术的最新应用趋势

雷达技术的最新应用趋势

雷达技术的最新应用趋势雷达技术是现代科技中不可或缺的一部分,它具有多种应用场景,包括军事、民用、空间探测、气象预报、移动通信等诸多领域。

随着技术的不断发展,雷达的应用越来越广泛,而且不断出现新的应用趋势。

本文将探讨雷达技术的最新应用趋势。

一、毫米波雷达毫米波雷达是近年来发展起来的一种新型雷达技术,主要用于近距离测量和成像。

相比于传统的雷达技术,毫米波雷达具有更高的分辨率和更广泛的应用范围。

毫米波雷达可以用于成像、人体监测、无人驾驶车辆等应用中,尤其是在无人驾驶领域中,毫米波雷达可以更好地识别路面障碍物,提高车辆的自主行驶能力。

二、人工智能应用雷达技术在人工智能领域中的应用也越来越广泛。

利用雷达技术可以实现人机交互、目标检测、行为识别等多项功能。

在视觉识别无法完成的场景下,如雾霾天气、低照度环境、粒子污染等情况下,雷达技术的应用可以更好地识别和定位目标物,为智能化设备提供更多可能。

三、多传感器融合多传感器融合是指结合多个传感器对目标进行识别和定位,以达到更高的准确率和可靠性。

除了雷达技术之外,多传感器融合还需要结合声学、光学、红外等多种传感器技术。

多传感器融合可以在多种应用中得到应用,特别是在军事、安防、智能交通等领域中,它可以提高命中率、识别率以及识别准确度,从而更好地保障社会安全和人民生命财产。

四、3D图像雷达3D图像雷达是近年来发展起来的一种新型雷达技术。

它利用激光波浪对目标进行扫描,可以实现目标的三维成像和定位。

相比于传统的雷达技术,3D图像雷达可以提供更多的信息,包括目标的大小、形状、距离、速度、方向等等。

这种技术可以应用在机器人导航、无人机探测和军事情报等多种场景中。

五、基于雷达的无线充电基于雷达技术的无线充电是目前新兴的一个应用领域。

它可以通过射频波浪向目标传输电能,实现对目标设备的无线充电。

在多种无法传输电能的场景下,包括雨雾天气、远距离无法进行有线充电的场合等等,基于雷达技术的无线充电可以提供便利和实用性,并将为人们的生活和工作带来极大的便利。

预警侦察系统的发展现状及趋势

预警侦察系统的发展现状及趋势

在现代战争中,随着现代技术的发展,特别是信息技术的迅速发展,信息的作用越来越重要,拥有信息优势成为夺取战场优势的关键因素,预警侦察系统也已成为夺取战争胜利不可或缺的手段。

在1982年的叙以冲突中,以方出动多架E-2C预警机进行空中巡逻并实施引导任务,成功击落叙方80多架飞机;在上个世纪90年代的几场局部战争中,预警侦察系统的部署更是全方位、多样化。

1991年的海湾战争中,多国部队动用了全方位、立体化、全天候的预警侦察系统,预警侦察卫星多达几十颗;1999年的科索沃战争中,北约共动用了十几颗侦察卫星,投入了50多架各种类型的有人侦察机,部署了七种类型、200多架无人侦察机,飞行时间达4000多小时。

全方位、多层次的天基、空基、地基、舰载侦察探测装备发挥着各自优势,实现战场态势感知,为远程精确打击提供了有力保证。

研究当前预警侦察系统的特点及其发展趋势不仅可以为我军对抗敌预警侦察系统提供依据,而且也能为我国研制自己的预警侦察系统提供有益的借鉴。

一、典型预警侦察系统随着预警侦察技术的发展,预警侦察系统的覆盖面已十分广泛。

地面上有各种电子侦察站组成的地面侦察系统;海上的各种舰载雷达系统、声呐系统、电子侦察设备、水声侦察仪、磁异探测仪和潜望镜等侦察设备组成海基预警侦察系统;低空中有电子侦察飞机、无人侦察飞机等组成的战术侦察系统;高空中有战略侦察飞机、空中预警指挥机组成的战略侦察系统;太空中有各种类型的卫星侦察系统。

这些系统互联互通构成范围广、立体化、多手段、自动化的侦察预警网络。

现代预警侦察系统主要包括陆基、海基、空基和天基四大类预警侦察系统。

1. 陆基预警侦察系统广义的陆基预警侦察系统主要由各种地面固定和机动式雷达、电子侦察装备、光电探测装备和声呐系统等组成,包括地面弹道导弹相控阵雷达、超视距雷达、监视雷达、固定信号情报侦察站、车载无线电侦察/测向系统、战场侦察雷达、战场光学侦察系统、战场传感器侦察系统、装甲侦察车等各种侦察装备,用于侦察探测空中、地面、水上及水下目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程设计作业—机载预警雷达发展趋势分析班级:020831学号:02083052姓名:王得帅摘要经过几十年的发展, 机载预警雷达技术取得了很大进步文中介绍了国外典型机载预警雷达的发展现状,并针对新的作战环境下机载预警雷达面临的技术问题,分析了机载预警雷达的发展趋势,最后对机载预警雷达的发展提出了一些建议。

关键词机载预警雷达; 杂波抑制; 反隐身; 抗干扰; 相控阵0引言预警机将雷达装上飞机, 利用飞机平台的飞行高度克服地球曲率对观测视距的限制, 消除雷达盲区,扩大低空和超低空探测距离,发现更远的敌机和导弹,为防空系统提供更多的预警间其雷达称为机载预警雷达预警机不仅具有全空域的远距离探测能力, 还具有机动性好,生存能力强, 布防灵活等特点, 因此成为现代高技术信息化战争不可缺少的战略装备由于机载预警雷达架设在高空飞行的飞机上, 因而其优越性是地基雷达所无法比拟的然而, 雷达升空后, 下视工作加平台运动带来了地杂波频谱扩展问题,雷达安装在飞机上对雷达系统也出了许多限制(如对雷达体积重量和功耗的限制), 技术难度很大,能够自主研制高性能机载预警雷达的国家屈指可数美国经过几十年的发展, 形成了E 2 E 3 2个系列的预警机,并在多次战争中发挥重要作用根据在使用中出现的问题,美国还在不断对这两种型号的雷达进行改进以提高性能此外,随着现代电子技术和飞行器隐身技术的迅速发展,机载预警雷达未来的主要作战对象将是隐身性能和飞行性能俱佳的第4代战机, 以及低空高速飞行的低雷达散射截面(RCS)巡航导弹,而实际电子战环境中还存在着多种形式的干扰等, 对下一代机载预警雷达技术的发展提出了更高的要求1国外典型机载预警雷达美国海军是最早使用预警机的军种, 由于在194年珍珠港事件中蒙受重大损失,美国海军认识到地面舰载雷达的局限性, 决定把当时较先进的AN /APS 2雷达安装在复仇者鱼雷轰炸机上, 这就是著名的Cadillac计划, AN /APS 20也就成为了现代机载预警雷达的雏形,它基本相当于把普通的地面脉冲雷达搬到飞机平台上雷达升空可以解决视线受地球曲率遮挡,而在高速飞行的条件下,随之带来的就是地杂波频谱扩展问题,采用动目标显示(MTI)技术的普通脉冲雷达的探测性能受到极大的限制,而多普勒( PD)技术可用来解决机载雷达强杂波背景下检测空中运动目标,它通常发射一组较高重复频率( PRF)的相参脉冲信号,每个距离门设置一组滤波器,对接收到的回波信号进行多普勒滤波,从而对地杂波进行有效的抑制,以提高目标的检测能力。

然而随着预警观测区域的不断扩大和地形环境的复杂程度加剧,机载预警雷达面临的杂波问题更加严重和多样化,为了检测远距离的弱小目标,必须提高机载预警雷达的杂波处理能力PD技术是要在距离/多普勒的杂波清晰区和较弱的副瓣杂波区进行目标检测首先,雷达发射的信号应具有高纯频谱特性,即低相位噪声和低杂散谱线;其次在主瓣杂波信号很强的情况下,接收系统不能饱和,以保证信号不出现虚假频率信号,因此需要接收系统要有很大的动态;另外雷达天线的副瓣电平要尽可能低美国E 3 望楼预警机(如图1所示)的预警雷达AN /APY 1/2就使用了超低副瓣天线(波导裂缝阵列)及高性能天线罩,其最大副瓣电平可达-50 dB,与副瓣杂波电平直接关联的平均副瓣电平更低,极大地降低了副瓣杂波和提高检测处于副瓣杂波区的目标的能力美国海军的E 2C舰载预警机(如图2所示)最新配置的机载预警雷达为AN /APS 145, 发射P波段电磁信号由于载机体积和重量的限制, 天线采用小型化双层八木阵列天线,副瓣电平不是很低,但主要用于海上, P波段海杂波相对较弱, 因而仍能较好地工作另外, AN /APS 145雷达还采用了机载雷达动目标检测(AMTD)技术来改善雷达的杂波抑制能力,利用了时间平均杂波相关机载雷达(TACCAR)技术来补偿径向速度和移动相位中心天线(DPCA)技术来补偿切向速度但在大海情以及陆海交界甚至陆上使用时, 就需要进一步抑制其副瓣杂波, E 2C主要采取信号处理的方法来不断改进被称为E 2C预警机的下一步发展计划的E 2D 高级鹰眼预警机(如图3所示), 在雷达现代化计划(RMP)中拟研制的下一代雷达AN /ADS 18将采用多通道相控阵天线和数字式接收机等新体制,利先进的空时自适应信号处理( STAP)技术,来改进杂波抑制能力E 2D是目前唯一采用了这一先进技术的装备,将在2011年交付使用。

以色列发展的费尔康预警机(如图4所示), 因其机载预警雷达采用固态有源相控阵体制,因而备受业界关注,其天线共有6个固定天线阵面固态有源相控阵具有以下2个优点:( 1)分布式发射和接收, 进一步提高了系统的能量效率灵敏度和可靠性;(2)波束扫描灵活,可以不同扇区扫描,速度可变,搜索和跟踪的要求可以通过合理地分配资源来满足但是相控阵雷达也存在一些问题例如, 天线的副瓣电平不如波导裂缝阵列做得低, 扫描过程中天线副瓣电平还会抬高,且增益随扫描角增大而降低,虽然主瓣宽度扩展了,可以通过增加目标驻留时间来弥补,但性能仍有较大的降低。

2面临的技术问题2. 1 隐身技术机载预警雷达必须有足够的预警时间和探测距离,一般约300 km 以机载预警雷达AN /APY 2为例,当载机高度为9 600m时,对高空轰炸机类大型目标的探测距离为667 km,对战斗机的探测距离为445 km,对巡航导弹的探测距离为324 km 可以看出, AN /APY 2对以上各类目标的探测距离基本满足设计要求然而,随着现代隐身技术的快速发展, 新一代战斗机的前视RCS越来越小,使机载预警雷达面临着严重威胁美国已确定的下一代主力战斗机F 22兼顾了隐身性能与作战效能,其前视RCS在微波波段小于0. 05 m ,通常在对预警机雷达的探测威力进行指标预计与检验时,目标机RCS是以5m 为标准,如以这些雷达对付下一代隐身战斗机时, 因目标RCS下降约为20dB,探测距离将下降到原指标的30%,如原来探测距离指标为300 km,则对隐身飞机将降到约100 km,显然不能满足对敌机的警戒距离要求因此,提高机载预警雷达的反隐身能力将是下一步提高预警雷达技术需要首先考虑的问题。

2. 2杂波由于机载预警雷达架设在很高的平台上,雷达下工作时,地面杂波的影响十分严重,尤其在丘陵和山地带,杂波强度相对目标信号达60 dB~ 90 dB, 在这强杂波背景下, 加上载机运动带来的杂波谱扩展,使雷达检测性能下降很快, 给雷达检测目标带来很大胁另外,随着社会发展,各国城市化建设日益加快,载预警雷达在包含有城市块的区域上空工作时,可能面临强弱动态范围很大的杂波回波,这类杂波的产生一些情况下会引起雷达接收机的饱和,一般设计时雷接收机会采取自动增益控制来避免这种饱和,但这样能会降低弱小目标的检测概率,因而需进一步提高雷接收系统的动态范围,以及采用先进的杂波处理方法以便更好地检测强杂波背景下的弱小目标。

2. 3 干扰随着电子干扰技术的飞速发展, 机载预警雷达面临的干扰也越来越复杂, 且不易抑制这类有意干扰主要包括压制性干扰和欺骗干扰其中压制式干扰是使强功率进入雷达接收机,尽可能降低信噪比,使雷达难于检测的一种干扰形式压制式干扰按照干扰信号中心频率相对于雷达接收机中心频率可分为瞄准式干扰阻塞式干扰和扫频式干扰; 按干扰信号样式可分为噪声干扰噪声调幅和调频(噪声调相)干扰等与压制性干扰不同,欺骗性干扰不是在功率上压制雷达,而是模拟雷达目标信号的特征,制造假目标信号,使雷达获得虚假信息,从而实施欺骗, 以破坏雷达的工作欺骗性干扰的特点是干扰信号与雷达目标信号具有基本相同的形式,并附加上各种假信息的调制,以达到欺骗的目的,主要包括速度和距离欺骗干扰机载预警雷达工作时,除了受到来自敌方的各种有意干扰外,还常受到工作环境中的各种无意干扰因为雷达升空, 地面很大范围的辐射都在视线范围里环境电磁辐射信号,包括各种同频通信设备和同频雷达的辐射信号对雷达性能影响很大。

3技术发展趋势3. 1 反隐身隐身目标的RCS一般较常规目标要小很多,为了补偿由于目标RCS下降带来雷达探测距离缩短的影响,最直观的方法就是提高雷达的威力,也就提高功率孔径积,即提高发射机的功率和加大天线孔径来实现对于机载雷达,由于平台物理空间和供电能力的限制,提高功率孔径积有限在给定的功率孔径积的情况下, 尝试利用先进的信号处理算法,如检测前跟踪(TBD),是提高机载预警雷达检测隐身目标一个较好的途径利用TBD技术能够在较低信噪比条件下进行目标检测跟踪从能量利用的观点出发,检测后跟踪采用脉冲串相参积累和非相参积累,都只是解决单次扫描脉冲串之间的能量积累检测前跟踪不但利用单次扫描脉冲串进行积累,而且进行扫描间能量的积累,从而提高了雷达的探测能力利用TBD技术进行雷达数据处理, 有望提高现有条件下机载预警雷达对隐身目标的探测距离其次,还可以从隐身目标的隐身机理出发,从探测原理上和雷达体制上来探讨机载预警雷达的反隐身途径有研究表明,在米波附近隐身目标的电磁谐振最强,其RCS变大,因而为了反隐身, 选用低频段电磁波信号作为发射信号然而在低频段下, 为了获得符合要求的分辨率和精度,天线直径需要做得很大,这样的设计受到飞机平台的限制, 因而频段的选择要结合实际情况,综合考虑还可以从隐身飞机的外形上来进行反隐身目前,隐身飞机所采取的赋形设计主要集中在正前方仰角30 方位45 范围内的后向散射,而其双站RCS减小不多,甚至还可能增大图5给出了某隐身飞机缩比模型的双站RCS曲线值(该结果仅供参考),电磁信号从鼻锥方向迎头入射, 发射频率为1. 5 GHz 由图中曲线可以看到,当双站角增加时,隐身飞机的双站RCS明显变大因此,利用双站或多站机载平台进行目标探测,就可以提高机载预警雷达探测隐身目标的能力至于双站或多站机载平台的形式,可以采用台预警雷达发射另外1部预警雷达接收,也可以利用1部预警雷达发射1部或多部战斗机雷达接收, 还可以采用1部预警雷达发射1部或多部无人机平台接收等多接收站的信号还可以传到其中1个平台上进行融合处理,特别是多接收站信号相参处理,可以显著提高探测能力要实现多平台接收信号的相参处理,首先解决各平台之间的3同步(空间时间相位)问题。

3. 2 杂波抑制为了能够在强杂波地区工作, 必须提高雷达处理杂波的能力除了增加接收系统的动态和降低雷达天线的副瓣电平外,要发展更为先进的处理方法和支持这些先进方法的雷达硬件系统空时二维自适应处理( STAP)技术正是在这种情况下应运而生的, 它可以有效提高机载相控阵雷达的地杂波抑制能力机载预警雷达AN /ADS 18已采用STAP技术来提高抑制杂波的能力由于机载雷达地杂波的空时耦合性,杂波在空时二维平面内成斜线分布(如图6所示) PD技术是一种空时级联处理技术,先在空域实现滤波,即形成天线的方向图,然后进行频域滤波,即PD处理为了进一步消除杂波的影响,天线阵列的方向图先不合成,而是分成多个通道进行模/数(A /D)采样, 输入到计算机里进行空时联合处理, 形成与杂波匹配的斜凹口(如图7所示),有效地抑制地杂波并大大改善系统的检测性能STAP的原理可以更加直观地解释如下:根据机载雷达杂波谱分析可知,运动目标所对抗的杂波必然在其他方向上,因此可以对每个距离多普勒检测单元估计出杂波方向,而使天线的方向图在该方向置零点,消除杂波的影响这就要求对每个距离多普勒检测单元进行实时自适应的方向图综合由于非均匀性地形引起的非平稳性将导致杂波协方差矩阵估计误差, 进而导致杂波抑制性能下降因而在非均匀杂波环境下均匀性样本是一个非常重要的研究课题最近, 美国空[2]军的KASSPER计划所倡导的知识辅助STAP (如图8所示)具有解决这一问题的潜力他们认为, 传统的SATP方法基本上没有利用可以预计到的地面杂波的回波结构,也没有利用地貌数据库和数字地形高程数据中的地面环境信息等先验知识, 处理器只是使用了工作频率脉冲重复间隔和每个相位中心的位置,对给定的目标多普勒频率和空间频率计算理想的空时指向矢量利用这些先验知识可以提高STAP算法在非均匀环境下的检测性能。

相关文档
最新文档