改进型卡塞格林光学系统的设计

合集下载

基于某卡塞格林系统地望远物镜设计ZEMAX

基于某卡塞格林系统地望远物镜设计ZEMAX

工程光学课程设计报告班级:姓名:学号:成绩:指导教师:报告日期:目录摘要 (i)第一章绪论 (1)1.1课程设计题目 (1)1.2 设计要求 (1)第二章望远物镜的设计与相关参数 (2)2.1 望远物镜的主要参数 (2)2.2 望远物镜结构类型 (3)2.3 物镜的光学特性 (4)2.3 卡塞格林光学系统 (4)2.4 ZEMAX中的像质评价方法 (5)第三章设计与优化 (9)3.1设计过程 (9)3.2优化过程 (12)第四章运用Solid works对镜片进行绘制 (16)第五章新得与体会 (18)主要参考文献 (19)摘要由薄透镜组的初级像差理论入手,根据初级像差参量PW与透镜折射率n、孔径半径r、厚度d等关系,求出了满足初始设计的结构参数的透镜折射率n、孔径半径r、厚度d、形状系数Q、曲率p。

用光学设计软件ZEMAX对所求的结构参数进行了优化。

光学设计要完成的工作包括光学系统设计和光学结构设计。

所谓光学设计就是根据系统所提出的使用要求,来决定满足各种使用要求的数据,即设计出光学系统的性能参数、外形尺寸、各光组的结构等。

大体可以分为两个阶段。

第一阶段根据仪器总体的要求,从仪器的总体出发,拟定出光学系统原理图,并初步计算系统的外形尺寸,以及系统中各部分要求的光学特性等。

第二阶段是根据初步计算结果,确定每个透镜组的具体结构参数,以保证满足系统光学特性和成像要求。

这一阶段的设计成为“相差设计”,一般简称光学设计。

评价一个光学系统的好坏,一方面要看它的性能和成像质量,另一方面要系统的复杂度。

一个系统设计的好坏应该是在满足使用要求的情况下,结构设计最简单的系统。

第一章绪论1.1课程设计题目基于卡塞格林的望远物镜设计1.2 设计要求(1)入瞳直径:D=20mm;(2)相对孔径D/f’=1/6.15;(3)视场角2ω=7°;(4)在可见光波段设计(取d、F、C三种色光。

d为主波长);(5)MTF值在67lp/mm处大于0.40;(6)要求给出用ZEMAX优化减小球差和轴向色差的方法。

Zemax光学设计:一个带校正器的卡塞格林望远镜的设计实例

Zemax光学设计:一个带校正器的卡塞格林望远镜的设计实例

Zemax光学设计:一个带校正器的卡塞格林望远镜的设计实例引言:折反射系统相比于折射系统的主要优点有:1.由于光路折叠而更紧凑;2.可以做到很大口径;3.可以很好校正色差,因为大多数的光焦度在反射镜而不是在透镜上。

4.可以做到从紫外到红外非常宽的波段。

5.反射镜与透镜的佩兹瓦尔曲面的曲率相反,可以实现较平的视场。

在两反射镜系统中,次镜构成的孔径的中心拦光(Central Obscuration),这不仅会造成能量的损失,也会使MTF的低频至中频部分随着中心拦光面积的增大而显著减小。

同时,因为两反射镜系统像的位置很接近于主镜位置,所以几乎所有的主镜都需要挖一个洞。

这个洞的大小限制了最大的像面尺寸,而且洞的大小必须远小于主镜的口径。

例如,通常中心拦光或洞的大小是主镜直径的30%,即线性拦光比为0.3,有效口径减小了0.09(0.32),此时MTF的中低频端变化不明显。

一般拦光比不要大于0.3。

典型的牛顿望远物镜仅用一个抛物凹面作为主反射镜,它可以形成一个直接用眼睛看的像。

在此基础上,添加一个凸双曲面的次反射镜,就成了卡塞格林望远镜(Cassegrain Telescope)。

由于主镜和次镜都是圆锥曲面,每个面上都没有球差,但是每个面都有彗差和像散,而这限制了可用的视场角。

另外,由于两个反射镜的半径不一样,还存在场曲。

设计仿真:.1.建立一个简单的卡塞格林望远镜系统.首先输入系统特性参数,如下:在系统通用对话框中设置孔径。

在孔径类型中选择“Entrance Pupil Diameter”,并根据设计要求输入“3800”;在视场设定对话框中设置3个视场,要选择“Angle”,如下图:在波长设定对话框中,设定0.365um、0.5876um和0.850um共3个波长,如下图:查看LDE:2D Layout:查看点列图:查看Ray Fan:从点列图和Ray Fan可以看出,这个系统有明显的彗差和像散。

.2.在卡塞格林望远镜中加入像面校正器.临近焦面的双片式透镜可以校正彗差和像散。

施密特-卡塞格林系统的优化设计

施密特-卡塞格林系统的优化设计

施密特-卡塞格林系统的优化设计本次实验将使用到:polynomial aspheric surface, obscurations,apertures, solves, optimization, layouts, MTF plots。

本次实验是完成Schmidt-Cassegrain 及polynomial aspheric corrector plate。

这个设计是要在可见光谱中使用,需要一个10 inches的aperture 和10 inches 的back focus。

开始,先把primary corrector, System, General, 在aperture value 中键入10。

同在一个screen 把unit “Millimeters”改为“Inches”。

再把Wavelength 设为3个,分别为0.486,0.587,0.656,且0.587定为主波长。

也可以在wavelength 的screen 中按底部的select 键,选默认波长。

默认的field angle value,其值为0。

依序键入如下LED 表的相关数据,此时the primary corrector为MIRROR 球镜片。

2D图如下:现在加入第二个corrector,并且决定imagine plane 的位置。

输入如下的LDE,注意到primary corrector 的thickness 变为-18,比原先的-30小,这是因为要放second corrector 并考虑到其size 大小的因素。

在surface4 的radius 设定为variable,通过optimization, Zemax可以定下他的值。

先看看他的layout,应如下图所示。

调出merit function, reset 后,改变“Rings” option 到5。

The rings option 决定光线的sampling density(采样密度), default value 为3,此实验要求为5。

光学设计实验四卡塞格林系统设计

光学设计实验四卡塞格林系统设计

实验四:卡塞格林系统一.实验目的熟悉卡塞格林系统设计的原理过程,学习如何使用多项式的非球面,掌握设计系统的的方法及过程。

二.系统结构性能要求1)孔径值10英寸;2)视场角为0︒;3)相对波长为可见光;4)玻璃材料BK7 、MIRROR ;三.实验步骤1.系统参数的设置:孔径值10英寸;(单位是英寸)视场角为0︒;工作波长为可见光;2.结构参数的设置:平面镜的厚度为1英寸,玻璃材料BK7;反射镜的焦距为60英寸,厚度为30英寸,玻璃材料为MIRROR;如下图所示:3.加辅助镜面,并安放像平面。

让ZEMAX为辅助面计算恰当的曲率。

玻璃材料为mirror。

(注意:已将主反射面的距离减小到-18,这将使辅助镜面的尺寸减小。

像平面的距离现在是28,实际上,是在主反射面后10英寸)如下图所示:四.光学望远系统优化过程1.将三环六臂改为五环六臂(菜单栏Editors一Merit Function一Tools一Default Merit Function一Reset一Rings)如下图所示:2.设置变量,将曲率半径设为优化变量,权重设为1。

将新面(即第3面)的厚度从0改为20。

往上移一行,将第2面的厚度由60改为40。

对于主反射面来说,校正器与它的距离就是60;3,。

将光阑面(STO)的表面类型换为“EVEN ASPHERE”。

这种面型允许为非球面校正器指定多项式非球面系数。

并将第一面的“4th Order Term” 6th Order Term”和“8th Order Term”列设为变量,当前为0,如下图所示:4.打开视场角,调整设计。

从主菜单,选System,Fields,并将视场角的个数设置为3,输入y角0.0,0.35和0.7。

如下图所示:优化即可得到MTF,如下图所示:5双击第三面的第一列,从孔径类型列中选圆形“Circular Aperture”,到Min Radius中输入1.7。

这表示所有的光线穿过表面时离轴距离必须要大于1.7英寸,这就是主反射面的缺口“Hole”。

密特—卡塞格林望远镜系统

密特—卡塞格林望远镜系统

实验四施密特—卡塞格林望远镜系统(Schmidt-Cassegrain)一、实验目的1.掌握Zemax中非球面镜面的定义与输入方法2.掌握Zemax中利用非球面镜的优化像差;3.熟悉Zemax中MTF的使用。

二、实验内容1.设计一个带多项式非球面矫正器施密特—卡塞格林系统;2.优化该系统的色球差。

三、实验器材1.p c机一台2.Z emax软件3.Z emax Manual一册(英文版)四、实验过程施密特-卡塞格林望远镜是在1931年由德国光学家施密特发明的优秀广视野望远镜。

在镜筒最前端的光学元件是施密特修正板,这块板是经过研磨接近平行的非球面薄透镜,可以确实的改正与消除主镜造成的球面像差。

自从1960年代,星特朗(Celestron)公司介绍了这一型的望远镜之后,数以万计的业余天文学家已经购买和使用过施密特-卡塞格林望远镜,直径从20厘米(8英寸)到48厘米(16英寸)都有。

本次实验是设计一个带多项式非球面矫正器施密特—卡塞格林系统 (Schmidt-Cassegrain) 。

设计的使用范围为可见光谱。

我们将采用10英寸的孔径,10英寸的后焦距(从主镜的后面到焦点)。

输入数据:由于只有矫正板和主反射面,进行这个设计是比较简单的,因此我们开始时先在光阑后插入两个面。

选择“SYSTEM”,“GENERAL”,输入10作为孔径值。

在同一个屏幕上,将单位“毫米(Millimeters)”改为“英寸(Inches)”。

选择“SYSTEM”,“WAVELENGTHS”,得到“波长数据”屏幕,设置3个波长:486,587,和656,其中587为主波长。

现在,我们将使用缺省的视场角0度,在Lens Data Editor中输入数据,如下表。

光阑被放在主面曲率半径的中心,这是为了排除视场像差(如彗差),它是Schmidt设计的特点。

我们可以选择2D Layout演示一下图形以验证一切是否就绪。

现在我们将加入辅助镜面,并安放像平面。

施密特-卡塞格林望远镜的设计(一)

施密特-卡塞格林望远镜的设计(一)

施密特-卡塞格林望远镜的设计(一)摘要 ZEMAX光学设计程序是一个完整的光学设计软件,包括光学设计需要的所有功能,可以在实践中对所有光学系统进行设计,优化,分析,并具有容差能力,所有这些强大的功能都直观的呈现于用户界面中。

ZEMAX功能强大,速度快,灵活方便,是一个很好的综合性程序。

ZEMAX能够模拟连续和非连续成像系统及非成像系统。

关键字:光学,模拟1.Zmax软件的介绍 ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起。

ZEMAX 不只是透镜设计软件而已,更是全功能的光学设计分析软件,具有直观、功能强大、灵活、快速、容易使用等优点,与其他软件不同的是 ZEMAX 的 CAD 转档程序都是双向的,如 IGES 、 STEP 、 SAT 等格式都可转入及转出。

而且 ZEMAX可仿真 Sequential 和 Non-Sequential 的成像系统和非成像系统, ZEMAX 当前有: SE 及 EE 两种版本。

序列性( Sequential )光线追迹大多数的成像系统都可由一组的光学表面来描述,光线按照表面的顺序进行追迹。

如相机镜头、望远镜镜头、显微镜镜头等。

ZEMAX 拥有很多优点,如光线追迹速度快、可以直接优化并进行公差计算。

ZEMAX 中的光学表面可以是反射面、折射面或绕射面,也可以创建因光学薄膜造成不同穿透率的光学面特性;表面之间的介质可以是等向性的,如玻璃或空气,也可以是任意的渐变折射率分布,折射率可以是位置、波长、温度或其它特性参数的函数。

同时也支持双折射材料,其折射率是偏振态和光线角度的函数。

在 ZEMAX 中所有描述表面的特性参数包括形状、折射、反射、折射率、渐变折射率、温度系数、穿透率和绕射阶数都可以自行定义。

非序列性( Non-Sequential )光线追迹很多重要的光学系统不能用 Sequential 光线追迹的模式描述,例如复杂的棱镜、光机、照明系统、微表面反射镜、非成像系统或任意形状的对象等,此外散射和杂散光也不能用序列性分析模式。

基于卡塞格林系统的红外制冷型长焦分档变倍光学系统的设计

基于卡塞格林系统的红外制冷型长焦分档变倍光学系统的设计
第 7卷
第 2期
中 国光 学
C h i n e s e Op t i c s
Vo 1 . 7 No. 2
Ap r . 2 01 4
2 0 1 4年 4月
文章编 号
2 0 9 5 — 1 5 3 1 ( 2 0 1 4 ) 0 2 - 0 2 9 3 08 -
基 于 卡 塞格 林 系统 的 红外 制冷 型 长 焦 分 档 变 倍 光 学 系统 的设 计
De s i g n o f c o o l e d i n f r a r e d s wi t c h- z o o m o p t i c a l s y s t e m wi t h l o n g e fe c t i v e f o c a l l e n g t h b a s e d o n R— C s y s t e m
Ab s t r ac t:Ba s e d o n t h e R— C s y s t e m a c o o l e d i n f r a r e d s wi t h- z o o m o p t i c a l s y s t e m wi t h l o ng e f f e c t i v e f o c a l l e n g t h i s d e s i g n e d.Th e i n i t i a l pa r a me t e r s a r e c a l c ul a t e d a n d t h e c o mp o n e n t s f o c a l p o we r i s d e d u c e d.S e c o n d a r y i m。
C h i n e s e A c a d e m y f o S c i e n c e s , X i a n 7 1 0 0 6 8 , C h i n a )

卡塞格林望远物镜设计报告

卡塞格林望远物镜设计报告

卡塞格林望远物镜设计报告1. 引言卡塞格林望远物镜是一种常用于天文观测的光学系统。

本报告旨在介绍卡塞格林望远物镜的设计原理和关键参数,并给出一个实际设计案例。

2. 设计原理卡塞格林望远物镜是一种反射式望远镜,其基本原理是通过反射光学,将被观测的光线从主镜反射至副镜,再通过副镜反射至焦平面。

主要由主镜和副镜组成。

- 主镜:是卡塞格林望远物镜的核心元件,一般采用抛物面形状,其作用是将光线反射至副镜。

- 副镜:位于主镜焦点处,用于反射光线至焦平面。

副镜一般采用凹球面或椭球面形状。

3. 关键参数卡塞格林望远物镜的性能与以下关键参数密切相关:- 主镜直径:直径越大,光收集能力越强,分辨率越高。

- 主镜焦距:焦距决定物镜的放大倍数和视场大小。

- 副镜曲率半径:副镜曲率半径与主镜焦距、视场大小等参数相互关联。

- 副镜直径:副镜直径要足够大,以保证充分接收主镜反射的光线。

4. 设计案例我们以设计口径为200mm的卡塞格林望远物镜为例进行设计。

4.1 主镜设计根据经验公式,我们选择主镜直径为200mm,焦距为1000mm。

接着,我们根据主镜直径和焦距计算主镜的曲率半径。

根据抛物面公式,我们得到主镜曲率半径为2000mm。

进一步,我们可以绘制光线追迹图,校验主镜的设计是否能将光线反射到副镜。

4.2 副镜设计根据主镜焦距和视场要求,我们选择副镜焦距为200mm。

根据凹球面公式,我们可以计算出副镜的曲率半径为400mm。

我们还需要确定副镜直径,保证副镜能够接收到主镜反射的光线。

根据实际经验,我们可以将副镜直径设定为主镜直径的一半,即100mm。

4.3 光学系统检查在设计完成后,我们需要对整个卡塞格林望远物镜的光学系统进行检查。

可以通过光路追迹和MTF(调制传递函数)等方法,评估物镜的成像能力、分辨率、畸变等性能指标。

5. 结论本报告介绍了卡塞格林望远物镜的设计原理和关键参数,并给出了一个实际的设计案例。

卡塞格林望远物镜以其紧凑、高分辨率的特点,在天文观测领域得到了广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

收稿日期:2011-09-12基金项目:国家863计划项目资助作者简介:张磊(1981-),男,博士,讲师,主要从事光学设计、光电设计、光电检测及光通信等研究,E-mail :zhangl@ 。

长春理工大学学报(自然科学版)Journal of Changchun University of Science and Technology (Natural Science Edition )第34卷第4期2011年12月Vol.34No.4Dec.2011改进型卡塞格林光学系统的设计张磊,刘智颖,胡源,高天元(长春理工大学光电工程学院,长春130022)摘要:普通的卡塞格林光学系统,其主次镜分别由抛物面和双曲面组合而成,非球面镜的加工难度大、成本高,针对这些特点对卡塞格林光学系统进行了改进。

改进型的卡塞格林光学系统与传统的卡塞格林光学系统对比具有加工难度小、成本低等特点,通过在系统最前面附加前校正组,使得主次镜可以由球面面型实现,通过在像面前设置后校正组使视场也得到了提高,与传统的卡塞格林光学系统20'相比,它的视场可以拓宽到1.3°。

系统设计结果通过传递函数与点列图的分析与衍射极限非常接近,为中等口径卡塞格林光学系统的设计提供了一个新的思考方法。

关键词:改进型卡塞格林光学系统;球面;遮拦比;视场;传递函数中图分类号:TH706文献标识码:A文章编号:1672-9870(2011)04-0030-03Improved Design of Cassegrain Optical SystemZHANG Lei ,LIU Zhiying ,HU Yuan ,GAO Tianyuan(School of Opto-electronic Engineering ,Changchun University of Science and Technology ,Changchun ,130022)Abstract :The traditional cassegrain system is generally composed of the parabolic primary mirror and the hyperbolic secondary mirror.The difficulty and cost of the manufacturing of the aspherical surface is very high.And the image quality is easy to be effected by the manufacture error and environment variation.Based on these characteristic ,the im-proved cassegrain system is designed with preference of lower difficulty and cost manufacturing.The primary mirror and the secondary mirror are both spherical surface instead of the aspherical surface.The image quality is analyzed related to not only the optical component radius ,thickness and the material but also secondary mirror central obscuration.The central obscuration ratio is chose reasonably based on the theory of annular diffraction.The field of view of the im-proved cassegrain system is enlarged from 20'to 1.3°.It is shown that the system assessed by optical transfer function and spot diagram is much closed to the diffraction limit.The successful improved cassegrain system design is demon-strated.It provides meaningful view for reflected optical system design.Key words :improved cassegrain system ;spherical surface ;obscuration ratio ;field of view ;optical transfer function随着空间光通信的发展对其所使用的光学系统的分辨率也提出了更高的要求,所使用的光学系统主要有卡塞格林、格里高利和牛顿式系统等,其中应用最广泛的就是卡塞格林光学系统。

传统的卡塞格林光学系统属于反射式系统,没有色差,口径可以做得较大,尽可能接收多的能量。

从消除像差的角度上看,卡塞格林光学系统可以在减少光学元件个数的同时消除球差,其系统具有体积小、重量轻、结构紧凑等特点。

传统的卡塞格林光学系统虽然具有上述优点,也同时存在一些弊端,其缺点之一是其主镜和次镜都是非球面,其制造比球面困难得多;其缺点之二是没有满足正弦条件,像质优良的视场太小,当视场增大时,其轴外像差也会加大,为此,Ritchey 和Cretien 提出了所谓R-C 系统,但是R-C 系统的视场也不过20′左右是比较好的。

对于实验室中的平行光管设计可以,但是这对于空间光通信的系第四期张磊,等:改进型卡塞格光学系统的设计统来讲是非常不利的。

1传统的卡塞格林光学系统经典的卡塞格林光学系统是最广泛的两镜系统之一,只消除球差,主镜为凹的抛物面,次镜为了将主镜焦距放大所以是凸的双曲面。

该类系统所产生的彗差为定值,其与视场与系统的相对孔径关系如下:δ′g=316A2θf′(1)A—相对孔径;θ—半视场角;f′;—系统焦距。

图1传统的卡塞格林光学系统Fig.1Traditional cassagrain optical system2改进型卡塞格林光学系统结构形式改进型卡塞格林光学系统分为三种结构形式。

第一种为附加前校正组,即在前面附加两片球面透镜,可以对与孔径有关的球差进行校正,从而可以实现将主次镜由球面镜代替,此种结构形式适用于口径中等的光学系统。

第二种为附加后校正组,即在像面前附加后校正组可以对场曲与像散等像差进行平衡,从而实现光学系统视场的扩大,此种结构形式可以适用于口径较大的光学系统,后校正组可以在像面前位置与主次镜之间位置进行相应的调整,从而适应不同应用场合的结构要求。

第三种为同时在前后均附加校正组的结构形式,可以实现在主次镜均为球面面型的前提下增大所能承担的视场,此种结构形式适用于口径中等的光学系统。

第三种结构形式的光学系统见图2所示。

图2改进型卡塞格林光学系统图Fig.2Improved cassagrain optical system3改进型卡塞格林光学系统分析设计过程以第三种结构形式为例进行分析。

以前报道的附加后校正组的结构形式视场达到0.8°,本文改进设计的系统视场增大到了1.3°,而且像质仍然与衍射极限非常接近。

为了避免问题的片面化。

分别针对F=3,F=10两种情形进行了设计与分析,传递函数曲线均接近衍射极限。

在该系统中只存在球面镜,从而大大地降低了加工的难度与成本。

可以在任意的光学车间均可完成对其的加工。

在设计过程中综合考虑次镜遮拦所造成的像质影响,对像质进行了更加实际的评价。

在F=3与F=10两种光学系统中次镜的遮拦比分别达到37%与31.4%。

光学系统的评价结果具体见图3~8。

由于受到遮拦比的环形衍射的影响,F= 3光学系统传递函数在100lp/mm处由0.71降到0.58;F=10光学系统传递函数在100lp/mm由0.42降到0.32。

可以看出中心遮拦对光学系统的传递函图3F=3不考虑次镜遮拦影响的光学传递函数Fig3.MTF Without considering the effect of obscuration for F=3图4F=3考虑次镜遮拦影响的光学传递函数Fig.4MTF with considering theeffect of obscuration for F=3图5F=3点列图Fig.5Spot Diagram for F=331长春理工大学学报(自然科学版)2011年数影响还是较大的,所以在设计过程中需要综合考虑其对像质产生的影响,从而对中心遮拦进行合理的选择。

由图3~图8可以看出综合这些因素,改进光学系统的传递函数和点列图均与衍射极限非常接近,达到了很好的设计效果。

4结论本文在经典的反射式卡塞格林光学系统的基础上提出了三种改进型结构形式,分别适用于不同口径场合。

可以分别实现将非球面改为球面镜代替,降低加工的难度与成本,增大所能承担的视场等优点。

通过对改进型的光学系统的分析,可以看出改进后光学系统的像质与衍射极限非常接近。

参考文献[1]张玉侠,艾勇.基于空间光通信卡塞格林天线弊端的探讨[J ].红外与激光工程,2005,34(5):560-563.[2]潘君骅.光学非球面的设计、加工与检验[M ].苏州大学出版社,2004:22-26.[3]王治乐,张伟,龙夫年.衍射受限光学合成孔径成像系统像质评价[J ].光学学报,2005,25(1):35-39.[4]Stamnes J J.Heier H ,Ljunggren S.Encircled energyfor systems with centrally obscured circularpupils.Applied Optics ,1982,21(9):1628-1633.[5]刘铁安.合理地选取双反射光学系统的遮拦比[J ].红外与激光工程,1997,26(1):45-50.[6]刘智颖.基于环形衍射理论的反射式光学系统研[J ].光子学报,2009,38(9):2265-2269.[7]康玉思.Cook 结构补偿镜的球面折反型望远系统[J ].光学精密工程,2007,15(3):303-307.[8]袁健男,付跃刚,郭俊,等.改进型卡塞格林望远光学系统的优化设计[J ].长春理工大学学报:自然科学版,2010,33(3):8-10.图6F=10不考虑次镜遮拦影响的光学传递函数Fig.6MTF without considering theeffect of obscuration for F=10图7F=10考虑次镜遮拦影响的光学传递函数Fig.7MTF with considering the effectof obscuration for F=10图8F=10点列图Fig.8Spot diagram for F=10(上接第39页)5结论修改后的彩虹编码,能够较好地适应红外测量图像的灰度分布特性。

相关文档
最新文档