砂土液化判别教学文稿

合集下载

砂土液化的判别及处理建议

砂土液化的判别及处理建议

砂土液化的判别及处理建议前言:本文就目前的国内外的研究成果和实验方法作了一个总体的概括,指出现阶段对砂土液化研究中存在的一些问题。

并对砂土液化问题研究的趋势提出了一些观点。

饱和的松散砂土在动荷载作用下丧失其原有强度而急剧转变为液体状态,即所谓振动液化现象。

这种振动液化现象是一种特殊的强度问题,它以强度的大幅度骤然丧失为特征。

砂土地层液化使得地基失效从而导致房屋开裂。

因此判断砂土地基与否以及对可能液化砂土地基进行处理,是非常有必要的。

1 振动液化的机理和影响因素1.1 饱和砂土的液化机理饱和砂土是砂和水组成的两相复合体系——砂粒堆积成土的骨架,而砂粒孔隙间充满了水。

饱和砂土的液化机理有三种:(1) 砂沸是指当一个饱和砂沉积体中的孔隙水压力由于地下水头变化而上升到等于或超过它的上覆有效压力时,该饱和砂沉积体就会发生上浮或“沸腾”现象,并且全部丧失承载力。

(2) 流滑是饱和松砂的颗粒骨架在单程或剪切作用下,呈现出不可逆的体积压缩,在不排水的条件下,引起孔隙水压力增大和有效应力剪小,最后导致“无限度”的流动变形。

(3) 循环活动性主要曾被发现于相对密度较大的(中密以上到紧密)饱和无粘性土的固结不排水循环三轴或循环单剪和循环扭剪和循环试验中[1]。

为了浅显地说明问题,假定振前砂土骨架是一些均匀圆颗粒砂堆积成的松散结构,如图1-a所示,当其受到水平方向的动剪应力作用后,显然,土骨架由不稳定的堆积状态趋向稳定的堆积状态,颗粒靠紧,体积缩小,如图1-c。

在由松变密过程中,孔隙间充满的水在振动中受颗粒挤压,短时间内无法排出,故瞬间孔隙水压力上升,颗粒间有效压力减小,砂粒间相互脱离接触,处于悬浮状态,原来的砂水复合体系变为砂水的悬液体系。

通常地基内部的砂层首先发生液化,随之在砂层内产生很高超静水压力,为了消散水压力,在一定条件下就会引起地下水自下向上的渗流。

当水在上覆土层的渗流水力梯度超过流线上的临界水力梯度时,原来在振动中没有液化的上覆土层,在渗透水流作用下发生浮扬现象,也产生了“液化”,上涌的水带着砂粒冒出地面,即“喷水冒砂”现象。

岩土工程中的砂土液化判别

岩土工程中的砂土液化判别

岩土工程中的砂土液化判别摘要:简要介绍岩土工程勘察中,砂土掖化判别与原位测试关键词:砂土液化;原位测试;试验引言与河流冲洪积有关的地貌,地基土层均可能有粉土、粉砂等组成,各土层物理性质差异较大。

现今,城区的建筑越来越多,结构复杂、荷载大,对地基土层的粉土、粉砂承掖化判别要求严格,岩土工程勘察工作就显得尤为重要。

以下按勘察工作(详勘)的地基土层的粉土、粉砂承掖化判别各个环节应注意的问题。

1原位测试河流冲洪积地貌有明显的沉积韵律,往往有卵石、砾砂、粗砂、中砂、细砂、粉土、粉质黏土,粘土。

且砂土常有互层、隔层出现。

多数地下水较浅。

1.1标准贯入试验粉土、砂土层试验目的(用途)是判别地基液化可能性及液化等级,在粉土、粉砂层中试验时应对标贯器内的扰动土取样,做颗粒分析试验,以求得粘粒含量进行液化判别;在进行标准贯入试验时,如有卵石、砾砂塌孔应及时下如套管,确认无井内无掉块和无扰动下做实验。

若多次采取率较低时也不易做试验,否则易使试验结果失真,室内试验与测试结果差异大。

粉土、粉砂实验深度可根据其他钻孔编录资料确定。

1.2静力触探试验静力触探试验已是不可缺少的测试手段,无卵石、砾砂层均适宜进行静力触探试验,试验目的(用途)包括判别土层均匀性和划分土层、选择桩基持力层、估算单桩承载力、估算地基土承载力和压缩模量、判断沉桩可能性、判别地基土液化等。

应选择双桥探头,同时测出锥尖阻力qc、侧壁摩阻力fs及摩阻比Rf,利用qc值进行液化判别,据公式ps=qc+0.00641×fs计算出比贯入阻力,利用ps 值进行估算地基土承载力。

2用标准贯入试验判别砂土掖化按规范 4.3.4条需进一步进行液化判别时,用标准贯入试验法判别, 标准贯入试验实际锤击数与临界值小于或等于临界值时,应判为液化。

液化判别式:Ncr=N0β[㏑﹙0.6 ds +1.5﹚-0.1dw]√3/ρc β=1.05在粉土、粉砂层中试验时,记录标准贯入试验锤击数后,还应对标贯器内的扰动土取样,做颗粒分析试验,以求得粘粒含量进行液化判别。

沙土地震液化判别方法

沙土地震液化判别方法

地震液化的判别方法砂土地震液化的判别,从工程的抗震设计要求考虑,需要解决的问题首先是正确判定砂土能否液化,其次是采用什么措施预防或减轻液化引起的层害。

工程设计需要的判别内容应该包活:1估计液化的可能性②估计液化的范围;③估计液化的后果。

砂土地震液化的判别思路如下:一、初判按照地震条件、地质条件、埋藏条件、土质条件的一些限界指标进行初判。

地震条件方面,一般来说,震级在5级以上的才可以产生液化;也就是液化最低烈度为Ⅵ度。

地质条件方面,发生液化的多为全新世乃至近代海相及河湖相沉积平原、河口三角洲,特别是洼地、河流的泛滥地带、河漫滩、古河道、滨海地带及人工填土地带等。

埋藏条件方面,一般液化判别应在地下15m的深度范围进行,最大液化深度可达20m。

最大地下水埋深一般不超3m,《工业与民用建筑抗震设计规范》(TJ11-85)修订稿将液化最大地下水位埋深定位8m。

土质条件方面,液化土有许多特性指标的界限值。

比如回龙河水库全风化花岗岩坝基地震液化的初判,全风化花岗岩因母岩具混合岩化现象,风化后砂土粒度不均匀,细粒黑云闪长岩全风化砂土粒度较细,中粒黑云花岗岩全风化砂土粒度稍粗,其主要物理指标:粒径大于 5 mm的平均颗粒含量(3.3%)小于70%,平均粘粒含量(6.9%)小于18%,平均塑性指数ΙP(12.2)小于15,属少粘性土。

工程区为强震区,地震动峰值加速度为0.15 g、动反应谱特征周期为0.65 s,地震基本烈度为Ⅶ度,依据《水利水电工程地质勘察规范》,初判存在地震液化的可能性。

为此,有必要对全风化花岗岩坝基地震液化可能性进行复判。

二、复判砂土地震液化复判方法种类繁多,大致可分为 2 种:①是依据室内试验;②是依据现场测试的经验方法。

但由于影响砂土液化问题的复杂性;每种方法都有一定的运用范围和局限性。

常用判别方法大致可归纳为现场试验、室内试验、经验对比、动力分析4 大类:(1)现场试验方法。

其判别法基本原理:在宏观地震液化和非液化区域,依据现场试验测得判别指标的数据,通过分析、统计和总结,建立与宏观地震灾害资料之间的关系,得出经验公式或液化分界线来判别液化与否。

砂土液化的判别方法

砂土液化的判别方法

砂土液化的判别方法
嘿,朋友们!今天咱来聊聊砂土液化这个事儿。

你说砂土液化像啥呢?就好比是砂土突然得了一场“怪病”,变得稀里哗啦的!
砂土液化可不是开玩笑的事儿啊!那怎么判别它呢?咱先看看砂土本身呀。

就像挑水果一样,得看看这砂土“长得”咋样。

如果它松松垮垮的,好像没什么精神头,那可得多留意了。

然后呢,再看看周围的环境。

要是这地方老是晃来晃去,比如地震频发,那砂土可就危险啦!这就好像一个人总在动荡的环境里,也容易出问题呀。

还有啊,砂土的含水情况也很重要。

要是水太多了,就像给砂土洗了个“大水澡”,那它能不变得奇怪吗?就好比面团和多了水,稀稀的。

咱再想想,如果在这片砂土上盖房子,房子会不会摇摇晃晃的呢?要是会,那很可能就是砂土液化在捣乱呢!这就像你走在路上,突然地变得软绵绵的,那还不吓人啊!
砂土液化有时候还挺会隐藏的呢,你可得睁大双眼仔细瞧。

比如说,有些地方表面上看起来好好的,没啥异样,可说不定下面已经在悄悄变化了呢。

这就跟有些人表面看着挺正常,实际心里不知道在琢磨啥呢。

你说要是没发现砂土液化,后果会咋样?哎呀,那可不得了!房子可能会倒,路可能会塌,这可不是闹着玩的呀!所以咱得重视起来,不能马虎。

咱可以通过一些专业的方法来判别砂土液化呀。

就像医生给病人看病似的,各种检查都来一遍。

看看砂土的物理性质呀,分析分析它的成分呀。

总之呢,砂土液化这事儿不能小瞧。

咱得像个侦探一样,仔细去观察、去判别。

可别等出了问题才后悔莫及呀!砂土液化关系到我们的生活和安全,大家都要上心呀!咱得把砂土液化这个“小怪兽”给牢牢抓住,不能让它捣乱!。

广州地铁砂土层液化判别

广州地铁砂土层液化判别

摘要: 在广州地铁工程砂土地震液化判别过程中,考虑了地铁结构与液化土层的相互作用。

通过大量的现场实验、室内动三轴实验,总结了水平场地、区间、车站土层液化分布情况和液化特点; 为了提高液化判别精度,进一步详细地对比和检验了现场和室内的判别结果,分析了液化土层与结构的空间相对位置以及结构对液化势的影响,所采用的多参数和多手段的液化判别技术为合理的抗液化设计提供帮助。

关键词: 广州地铁; 砂土; 地震液化判别引言有建筑物地基的地震液化问题至今研究得很少,原因可能是没有明确区分开场地和地基的差异,另一方面由于建筑物的存在使得问题变得更加复杂。

有建筑物存在的饱和砂土和粉土地基,其液化情况无疑地还应与建筑物的存在情况有关,不是能和场地液化情况等同的。

特别是对重大建筑又无法避免地必须修建在可液化地基上时,如有些地铁的地基位于砂层中,所以必须给予足够的重视。

重点建筑物地基的液化判别及危害性分析与预测与场地不同,应考虑上部结构存在的影响和土体与结构体的相互作用,上部结构存在首先使地基中动、静应力发生较大变化,不仅正应力发生变化,而且剪应力也发生变化,总之,不像场地那样简单。

广州地铁二号线东部砂层地震液化判别问题是一个目前抗震规范中尚未完全解决的问题,关键在于已有的抗震规范都是针对自由场地,对于广泛存在的有建筑物或构筑物的场地液化判别不适用 [1-8]。

1 现有液化判别方法的分析影响液化的因素主要有土壤的松散程度、土壤介质结构、颗粒特性、侧压力系数和固结状态、土壤的地质年代、应变历史等等。

自由场地的液化判别方法主要有 Seed 简化法、经验公式法、概率与统计方法和土层反应分析法 [10]。

( 1) Seed 简化法是最早提出的自由场地液化判别方法,也是目前普遍接受的方法之一,其判别的主要步骤为: A) 给定的最大地面加速度下的饱和砂土承受的水平地震剪应力; B) 饱和砂土单元发生液化所需的剪应力,由试验确定; C) 比较上述两种剪应力的大小,从而判别是否发生液化。

砂土液化的工程地质判别法

砂土液化的工程地质判别法

砂土液化的工程地质判别法说到砂土液化,嘿,大家听起来可能有点陌生,但要是我跟你说,它就像一只“潜伏在地下的炸弹”,说不定哪天它就会“嘭”一下,把你辛辛苦苦建起来的房子给震塌了,大家就不那么淡定了吧?别着急,我慢慢给你讲,听懂了你就能发现,其实这事儿并没有想象的那么可怕,关键是咱得学会怎么判断,提前发现问题。

好了,扯远了,咱还是从头说。

砂土液化呢,说白了就是地面上的砂土在受到强烈外力,比如地震、爆炸或者是大规模建筑施工震动时,水分被挤出,砂土就会像变魔术一样,失去固体状态,变成了液体那种感觉。

你想象一下,一片看起来很坚固的沙地,突然变成了“沙泥浆”,在上面建的高楼大厦就“嘎嘣”一声掉进去了,吓得人心慌慌。

所以,砂土液化的判断,简直是建筑行业的“头等大事”。

要判断砂土会不会液化,首先得看它的“家底”。

什么是家底?那就是地基的基本情况,简单来说,地底下的土壤啥样?如果地下是松软的沙土,而且水位又特别高,这时候就容易发生液化了。

想象一下,如果这块土层就像一碗沙拉,浑浑噩噩的加上一点水分,它就有可能失去原本的形态,一触即溃。

所以说,液化危险最喜欢找那些“松软的土层”,它就像是沙滩上的海浪,一不小心就会把上面的东西给冲垮了。

就是土壤颗粒的“心态”了。

你有没有注意到,某些沙子特别细,像面粉一样,粘性弱,颗粒松散,这种土壤最容易液化。

反过来说,颗粒大、紧密的土壤,它们的“凝聚力”强,就不容易液化。

所以,咱在判断砂土会不会液化的时候,不仅得看它是不是沙子,更得看它的颗粒啥样。

细沙松散,颗粒粗大,稳得很,不容易出事。

接下来就是水文条件的事儿。

地下水太高,简直就是“火上加油”。

你想,地下水位一旦上升,土壤的水分就被加持,土壤的“浮力”也变得更强。

特别是遇到地震或其他震动,这时候那一层沙子就像是加了弹簧的弹力床,随时准备弹起来,没地方去的水分又会像泄洪一样被挤出去,砂土液化的风险就一下子增加。

这个道理就像是你往盆里倒水,水位高了,水就开始溢出来,土壤被水撑起来,自然就没了稳固性。

砂土液化的判别

砂土液化的判别

砂土液化的判别什么是砂土液化?砂土是一种常见的构造材料,在地质工程中具有广泛的应用。

然而,在地震、爆破或振动等外力作用下,砂土可能会发生液化现象,丧失原有的承载力和稳定性。

砂土液化是指砂土在振动作用下部分或全部失去固结状态,变成类似流体的状态的一种现象。

砂土液化的危害砂土液化对工程造成的危害主要表现在以下几个方面:•土体稳定性降低:砂土液化后,土体的稳定性会大大降低,可能导致工程物体的失稳,如建筑物、桥梁等。

•土压力减小:砂土液化后,土体的相对密度减小,土压力也会随之减小。

这可能导致基础和土体受到更大的荷载,从而引发更严重的问题。

•土体下沉变形加剧:液化的砂土受到外力作用后,会表现出像液体一样的行为,沉降会比普通土体更加严重,这也可能影响到工程物体的稳定性。

因此,对砂土液化的判别十分重要,能够预测砂土的液化风险和采取相应的防治措施,保障工程的安全运行。

如何判别砂土液化砂土液化的判别是通过分析砂土的地震反应特征来实现的。

根据国际上一般的砂土液化判别标准,判别的参数主要有以下几个:1.土的含水率2.土的相对密度3.震动加速度4.应力状态5.地震波的强度和持续时间为了更加准确地进行砂土液化的判别,一般需要对这些参数进行探测和监测。

特别是在工程建设项目中,需要对砂土的液化特征进行精确分析和预测,才能有效地防止液化发生。

在实际应用过程中,砂土液化的判别可以通过各种试验和模拟手段进行。

例如,可以通过地震模拟器来模拟不同强度的地震,以探测砂土在地震作用下的反应情况;还可以通过人工加荷试验、标准贯入试验和直接剪切试验等方法来研究土体的特性和变形规律。

这些方法可以辅助砂土液化的判别,使得工程运行更加稳定安全。

砂土液化的防治措施对于砂土液化的预防和防治可以从以下几个方面入手:1.加强地基加固:通过加强地基的支撑和加固,提高其承载力和稳定性,从而减小砂土液化的可能性。

2.改善土体的物理性质:增加土体的密实度和承载能力,降低砂土液化的风险。

砂土液化及其判别的微观机理研究

砂土液化及其判别的微观机理研究

砂土液化及其判别的微观机理研究一、本文概述《砂土液化及其判别的微观机理研究》这篇文章旨在深入探讨砂土液化的微观机理,以及如何通过微观机理的分析来判别砂土液化的可能性。

砂土液化是一种在地震等动力荷载作用下,砂土颗粒间的有效应力降低或完全丧失,导致砂土呈现液态化的现象。

这种现象对土木工程结构,特别是桥梁、堤坝、地下管线等基础设施的安全构成了严重威胁。

因此,对砂土液化的微观机理及其判别方法的研究具有重要的理论价值和工程实践意义。

本文首先介绍了砂土液化的基本概念、产生条件及其对工程结构的影响,然后从微观角度出发,分析了砂土颗粒间的相互作用、应力传递机制以及液化过程中颗粒间的动态变化。

在此基础上,本文提出了基于微观机理的砂土液化判别方法,包括利用颗粒尺寸、形状、排列方式等微观参数来预测砂土液化的可能性。

本文的研究方法包括理论分析、室内试验和数值模拟。

通过室内试验,模拟了地震等动力荷载作用下的砂土液化过程,观察了砂土颗粒间的动态变化,验证了理论分析的正确性。

数值模拟则进一步揭示了砂土液化过程中微观参数的变化规律,为砂土液化的判别提供了依据。

本文的研究成果不仅有助于深入理解砂土液化的微观机理,也为砂土液化的判别提供了新的思路和方法。

本文的研究对于提高土木工程结构的安全性和稳定性,具有重要的工程实践价值。

二、砂土液化的微观机理砂土液化是指在地震、波动或其他动力荷载作用下,原本固态的砂土颗粒失去其稳定性,表现出类似液态的行为。

这一过程涉及到砂土颗粒间的相互作用、颗粒排列、孔隙水压力变化以及应力传递等复杂的微观机理。

砂土由大小相近的颗粒组成,颗粒间通过接触点传递力。

在静态或低应力状态下,颗粒间主要通过摩擦力维持稳定。

然而,在强烈的动力作用下,颗粒间的摩擦力可能不足以抵抗外部荷载,导致颗粒间的相对位移增大,砂土的整体稳定性降低。

颗粒的排列方式也直接影响砂土的力学性质。

紧密的颗粒排列能够提供更好的应力传递路径,而松散的排列则容易在动力作用下发生变形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

〈三〉地震效应分析
根据《建筑抗震设计规范》(GB50011-2001)的划分,并结合波速及地脉动测试报告可知:场地位于基本烈度Ⅶ度区,建筑物应按相应地震烈度进行抗震设防。

设计基本地震加速度值为0.10g ,卓越周期变化范围为0.02s ~0.21s ,场地土类型整体为中硬土,局部区域为中软土,建筑场地类别为Ⅱ类,属于抗震不利地段。

〈四〉场地砂土液化判别
拟建场地位于基本烈度Ⅶ度区,依据《建筑抗震设计规范》(GB50011-2001)规范要求,须对场地内存在的饱和砂土进行液化判别。

根据勘察成果,场地地基土中2-3层为第四系冲洪积含粘性土中粗砂层,松散~稍密状,顶板埋深0.00~3.90m ,局部区域位于地下水位以上,未达饱和状态;按Ⅶ度区计算,该层大部份粘土含量达15%左右,故初步判别为不液化地层。

依据《建筑抗震设计规范》(GB50011-2001)规范要求,对位于地下水位以下呈饱和状态的砂土,结合标贯击数判别该层是否发生液化,对于可液化砂土层,再进一步计算液化指数,依据液化等级确定地基可能遭受的地质灾害危险性级别。

砂土液化判别公式如下:
()[]ρ
o
w
s
o
cr
d d N N
3
1.09.0-+=
(适用于地面以下15m 以
内)
[]
ρ
o
s o cr d N N 3
1.04.2-= (适用于地面以下15~20m 以
内)
式中: d s —饱和土标准贯入点深度(m );
d w —地下水位深度(m )
ρo —粘粒含量百分率,小于3或为砂土时,取3。

N cr —饱和土液化临界标准贯入锤击数;
N o —饱和土液化判别的基准标准贯入锤击数。

对于可液化土层,按下式计算的液化指数(I ie )来确定液化等级;
w d N
N I
i
i
n
i cri
i
ie
)
1(1
∑=-
= 式中: I ie :液化指数;
N i :饱和土层中i 点的实测标准贯入锤击数; N cri :相应于Ni 深度处的临界标准贯入锤击数;
n :每个钻孔内15m 深度范围内饱和土层中标准贯入点总数;
并按表4的标准进行砂土液化等级划分。

表4 砂土液化等级分级标准

5)。

冲洪积含粘性土中粗砂层(层序号2-3)液化指数I lE 为<0,均为无液化土层。

因此综合判定本场地无可液化地层分布。

相关文档
最新文档